

CALCULUS 110

(2.5) Continuity

Dr. Rola Asaad Hijazi

2.5 Continuity

A continuous process is one that takes place gradually, without interruption or abrupt change.

Continuous at a number a

A function f is continuous at a number a if:

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

So $f(x)$ is continuous at a if:
I. $f(a)$ is defined $\left(a \in D_{f}\right)$
2. $\lim _{x \rightarrow a} f(x)$ exists

3. $\lim _{x \rightarrow a} f(x)=f(a)$

Examplel

The following figure shows the graph of a function f. At which numbers is f discontinuous? Why?

solution

Example 2 Where are each of the following

 functions discontinuous?a $f(x)=\frac{x^{2}-x-2}{x-2}$
(C) $f(x)=\left\{\begin{array}{cc}\frac{x^{2}-x-2}{x-2}, & x \neq 2 \\ 1, & x=2\end{array}\right.$

Exercise 2

From the graph of t, state the intervals on which t is continuous.

continuous from the right

A function f is continuous from the right at a number a if:

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

continuous from the left

And f is continuous from the left at a if:

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

Exercise 3

(a)

From the graph of f, state the numbers at which f is discontinuous and explain why.

(b) For each of the numbers stated in part (a), determine whether f is continuous from the right, or from the left, or neither.

Exercise 45

Examples

(1) The function $f(x)=\left\{\begin{array}{c}x^{2} \text { if } x \geq 0 \\ 0 \text { if } x<0\end{array}\right.$ is
(a) continuous at $x=0$
(b) continuous on \mathbb{R}.
(c) continuous only on $(-\infty, 0) \cup(0, \infty)$
(d) continuous only on $(0, \infty)$.
(2) The function $f(x)=\left\{\begin{array}{l}x-1 \text { if } \quad x<-1 \\ 2 \quad \text { if }-1 \leq x \leq 1 \\ x+1 \text { if } x>1\end{array}\right.$ is
(a) $\{-1,1\}$
(b) $\{1\}$
(c) $\{-1\}$
(d) $[-1,1]$

Examples on continuity from one side:

(3) The function $\sqrt{3-x}$ is continuous from the right at $x=3$.
(a) True
(b) False
4) The function $\sqrt{x-3}$ is
(a) continuous at $x=3$.
(b) continuous from the right at $x=3$.
(c) continuous from the left at $x=3$.
(d) continuous at $x=0$.
(5) The function $f(x)=\left\{\begin{array}{c}x+1 \text { if } x \geq 2 \\ x^{2} \text { if } x<2\end{array}\right.$ is
(a) continuous from the right at $x=2$.
(b) continuous from the left at $x=2$.
(c) continuous on \mathbb{R}.
(d) continuous at $x=2$.

Theorem 4

Theorem 5

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a :

1. $f+g$
2. $f \cdot g$
3. $c f$
4. $f-g$
5. $\frac{f}{g}$ (if $g(a) \neq 0$)

Theorem 6

(2) $\lim _{\theta \rightarrow 0} \cos \theta=1$
(2) $\lim _{\theta \rightarrow 0} \sin \theta=0$
(2) Any polynomial is continuous everywhere, that is , it is continuous on $\mathbb{R}=(-\infty, \infty)$.
(2) Any rational function is continuous wherever it is defined, that is, it is continuous on its domain.

Theorem 7

The following types of functions are continuous at every number in their domains:

- Polynomials
- Trigonometric functions
- Exponential functions
- Rational functions
- Root functions
- Inverse trigonometric functions
- Logarithmic functions

Theorem 8

If f is continuous at b and $\lim _{x \rightarrow a} g(x)=b$,
then $\lim _{x \rightarrow a} f(g(x))=f(b)$
i.e. $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$

Theorem 9

If g is continuous at a and f is continuous at $g(a)$, then the composite function $f \circ g$ given by $(f \circ g) x$ $=f(g(x))$ is continuous at a.

Example 7

Evaluate $\lim _{x \rightarrow \pi} \frac{\sin x}{2+\cos x}$
solution

Example 5

Find $\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}$
solution

Example 6

Where is the function $f(x)=\frac{\ln x+\tan ^{-1} x}{x^{2}-1}$ continuous?
solution

Example8

Evaluate $\lim _{x \rightarrow 1} \arcsin \left(\frac{1-\sqrt{x}}{1-x}\right)$
solution

Where are the following functions continuous?
(a) $h(x)=\sin x^{2}$
solution

$17,20,21,25,38,43$

