

CALCULUS 110

(2.5) Continuity

Dr. Rola Asaad Hijazi

2.5 Continuity

A continuous process is one that takes place gradually, without interruption or abrupt change.

Continuous at a number a

A function f is continuous at a number a if:

$$\lim_{x \to a} f(x) = f(a)$$

So f(x) is continuous at a if:

- l. f(a) is defined $(a \in D_f)$
- 2. $\lim_{x \to a} f(x)$ exists
- $3. \lim_{x \to a} f(x) = f(a)$

The following figure shows the graph of a function f. At which numbers is f discontinuous? Why?

Where are each of the following functions discontinuous?

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

0

$$f(x) = \begin{cases} \frac{1}{x^2}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

Exercise 2

From the graph of t, state the intervals on which t is continuous.

Continuous from the right (left)

continuous from the right

A function f is continuous from the right at a number a if:

$$\lim_{x \to a^+} f(x) = f(a)$$

continuous from the left

And f is continuous from the left at a if:

$$\lim_{x \to a^{-}} f(x) = f(a)$$

Exercise 3

From the graph of f, state the numbers at which f is discontinuous and explain why.

b For each of the numbers stated in part (a), determine whether f is continuous from the right, or from the left, or neither.

Exercise 45

For what value of the constant c is the function f continuous everywhere.

$$f(x) = \begin{cases} cx^2 + 2x, & x < 2\\ x^3 - cx, & x \ge 2 \end{cases}$$

solution

Examples

The function
$$f(x) = \begin{cases} x^2 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$
 is

- (a) continuous at x = 0
- (b) continuous on \mathbb{R} .
- (c) continuous only on $(-\infty, 0) \cup (0, \infty)$
- (a) continuous only on $(0, \infty)$.

The function
$$f(x) = \begin{cases} x - 1 & \text{if } x < -1 \\ 2 & \text{if } -1 \le x \le 1 \\ x + 1 & \text{if } x > 1 \end{cases}$$

(a)
$$\{-1,1\}$$

(c)
$$\{-1\}$$

(d)
$$[-1,1]$$

Examples on continuity from one side:

- The function $\sqrt{3-x}$ is continuous from the right at x=3.
 - (a) True

- (b) False
- The function $\sqrt{x-3}$ is
 - (a) continuous at x = 3.
 - (b) continuous from the right at x = 3.
 - (c) continuous from the left at x = 3.
 - (a) continuous at x = 0.

- The function $f(x) = \begin{cases} x+1 & \text{if } x \ge 2 \\ x^2 & \text{if } x < 2 \end{cases}$ is
- (a) continuous from the right at x = 2.
- (b) continuous from the left at x = 2.
- (c) continuous on \mathbb{R} .
- (a) continuous at x = 2.

Theorem 4

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

1.
$$f + g$$

2.
$$f \cdot g$$

4.
$$f - g$$

$$5. \frac{f}{g} (if g(a) \neq 0)$$

Theorem 6

Theorem 5

- Any polynomial is continuous everywhere, that is , it is continuous on $\mathbb{R} = (-\infty, \infty)$.
- Any rational function is continuous wherever it is defined, that is, it is continuous on its domain.

Theorem 7

The following types of functions are continuous at every number in their domains:

- Polynomials
- Trigonometric functions
- Exponential functions
- Rational functions
- Root functions
- Inverse trigonometric functions
- Logarithmic functions

Theorem 8

If f is continuous at b and $\lim_{x \to a} g(x) = b$,

then
$$\lim_{x \to a} f(g(x)) = f(b)$$

i.e.
$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$$

Theorem 9

If g is continuous at a and f is continuous at g(a), then the composite function $f \circ g$ given by $(f \circ g)x$ = f(g(x)) is continuous at a.

Example 7

Evaluate
$$\lim_{x \to \pi} \frac{\sin x}{2 + \cos x}$$

Find
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

solution

Example 6

Where is the function
$$f(x) = \frac{\ln x + \tan^{-1} x}{x^2 - 1}$$
 continuous?

Evaluate $\lim_{x\to 1} arcsin\left(\frac{1-\sqrt{x}}{1-x}\right)$

$$h(x) = \sin x^2$$

solution

$$F(x) = ln(1 + \cos x)$$

17, 20, 21, 25, 38, 43