CALCULUS 110
(2.2) The Limit of a Function

Dr. Rola Asaad Hijazi

(2.2) The Limit of a Functions

Definition

Suppose $f(x)$ is defined when x is near the number a (this means that f is defined on some open interval that contains a, except possibly at a itself.) then we write:

$$
\lim _{x \rightarrow a} f(x)=L
$$

And say "the limit of $f(x)$ as x approaches a, equals L "
An alternative notation for the limits: $f(x) \rightarrow L$ as $x \rightarrow a$

remark

(1) $x \rightarrow a$ doesn't mean that $x=a$.
(2) In fact a doesn't have to be in the domain.
i.e. $f(x)$ need not even be defined when $x=a$.

We have the following cases

One - Sided Limits

$\lim _{x \rightarrow a^{-}} f(x)=L$ is called left hand limit or limit from the left. Here x is close to a and less than $(x<a)$.

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

$\lim _{x \rightarrow a^{+}} f(x)=L$ is called right hand limit or limit from the right. Here x is close to a and greater than $a .(x>a)$

$$
\lim _{x \rightarrow a} f(x)=L \quad \Leftrightarrow \quad \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)
$$

When do we have to study the limit from the left and from the right?
(1) If we are studying the limit at the endpoint
(2) If the definition of the function change at
 this point. See example 7 .

When do we say that limit does not exist?
(1) If $\lim _{x \rightarrow a^{+}} f(x)$ or $\lim _{x \rightarrow a^{-}} f(x)$ does not exist. (D.N.E).
(2) If both limits exist but $\lim _{x \rightarrow a^{+}} f(x) \neq \lim _{x \rightarrow a^{-}} f(x)$

Examples

(1) $\lim _{x \rightarrow 5} \sqrt{x^{2}-25}=\left\{\begin{array}{l}\lim _{x \rightarrow 5^{+}} \sqrt{x^{2}-25}= \\ \lim _{x \rightarrow 5^{-}} \sqrt{x^{2}-25}=\end{array}\right.$

$$
\lim _{x \rightarrow 5} \sqrt{x^{2}-25}
$$

$\lim _{x \rightarrow 2} \sqrt{x-2}=$

$$
x \rightarrow 2
$$

$$
\lim _{x \rightarrow 2^{-}} \sqrt{x-2}=
$$

$$
\lim _{x \rightarrow 2} \frac{-3 x}{x-2}=
$$

$$
\lim _{x \rightarrow 2^{-}} \frac{-3 x}{x-2}=
$$

The graph of a function g is shown in the following figure. Use it to state the values (if they exist) of the following:

solution

(a) $\lim _{x \rightarrow 2^{-}} g(x)=-\quad$ (c) $\lim _{x \rightarrow 2} g(x)-$
(b) $\lim _{x \rightarrow 2^{+}} g(x)=-$
(d) $\lim _{x \rightarrow 5^{-}} g(x)=-$
(f) $\lim _{x \rightarrow 5} g(x)=$

Infinitelimits

$\lim _{x \rightarrow a} f(x)=\infty$ means that the values of $f(x)$ can be made arbitrarily large by taking x close to a, but not equal to a.

$\lim _{x \rightarrow a} f(x)=\infty$
$\lim _{x \rightarrow a} f(x)=-\infty$ means that the values of $f(x)$ can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to a.

remark

If $\lim _{x \rightarrow a} f(x)= \pm \infty$, we can say that limit does not exist.
The converse is not true.
$\lim _{x \rightarrow a} f(x)= \pm \infty$ are called infinite limits.

Example 8

(a) Find $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ if limit exists.

Solution

(b) Find $\lim _{x \rightarrow 0}\left(-\frac{1}{x^{2}}\right)$

One-sided infinite limits

The vertical line $x=a$ is called a vertical asymptote of the curve $y=f(x)$ if at least one of the following statements is true:
(a) $\lim _{x \rightarrow a} f(x)=\infty$
(C) $\lim _{x \rightarrow a^{-}} f(x)=\infty$,
(e) $\lim _{x \rightarrow a^{+}} f(x)=\infty$
(b) $\lim _{x \rightarrow a} f(x)=-\infty$
(d) $\lim _{x \rightarrow a^{-}} f(x)=-\infty$,
(f) $\lim _{x \rightarrow a^{+}} f(x)=-\infty$

How to find vertical asymptotes
(1) From the graph of $\frac{1}{x^{2}}$ $x=0$, is a vertical asymptote.

Example

Find the vertical asymptote of

$$
f(x)=\frac{x^{2}-4}{x^{2}+x-6}=\frac{p(x)}{q(x)}
$$

Solution

Example 10

Find the vertical asymptotes of $f(x)=\tan x$.

Solution
(I)
(2) Find $\lim _{x \rightarrow \pi^{+}} \tan x=$

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi^{-}}{2}} \tan x= \\
& \lim _{x \rightarrow(2 n+1) \frac{\pi^{+}}{2}} \tan x= \\
& \lim _{x \rightarrow(2 n+1) \frac{\pi^{-}}{2}} \tan x=
\end{aligned}
$$

Example

Find the vertical asymptotes of $f(x)=\ln x$ Solution

Exercise 9

For the function f whose graph is shown, state the following
(a) $\lim _{x \rightarrow-7} f(x)=$
(b) $\lim _{x \rightarrow-3} f(x)=$
(C) $\lim _{x \rightarrow 0} f(x)=$
(d) $\lim _{x \rightarrow 6^{-}} f(x)=$
(e) $\lim _{x \rightarrow 6^{+}} f(x)=$

Exercise 12 Sketch the graph of the function and use it to determine the value of a for which $\lim _{x \rightarrow a} f(x)$ exists

$$
f(x)=\left\{\begin{array}{lr}
1+\sin x & \text { if } x<0 \\
\cos x & \text { if } 0 \leq x \leq \pi \\
\sin x & \text { if } x>\pi
\end{array}\right.
$$

$\lim _{x \rightarrow 0} f(x)=$
$\lim _{x \rightarrow \pi} f(x)$

Exercise 39

Determine the infinite limit.

$$
\lim _{x \rightarrow 2 \pi^{-}} x \csc x
$$

Solution
$\lim _{x \rightarrow 2 \pi^{-}} x \csc x=$
$\lim _{x \rightarrow 2 \pi^{+}} x \csc x=$

Exercise 44 Find the vertical asymptotes

$$
y=\frac{x^{2}+1}{3 x-2 x^{2}}=\frac{P(x)}{Q(x)}
$$

Solution

Some functions have no vertical asymptote since their domain is \mathbb{R} such as: polynomials, $\sin x, \cos x, e^{x}$.
(b) $\frac{1}{0}=\left\{\begin{array}{l}+\infty \\ -\infty\end{array}\right.$

(C) Vertical Asymptotes of
 C) Trigonometric Functions

$$
\tan x, \sec x, \text { have } x= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots
$$

$\cot x, \csc x$ have $x=0, \pm \pi, \pm 2 \pi, \ldots$
note
$\lim _{x \rightarrow a} \frac{1}{(x-a)^{n}}$

Example

$$
\lim _{x \rightarrow 3} \frac{1}{(x-3)^{4}}=
$$

$$
\lim _{x \rightarrow 4} \frac{1}{(x-4)^{3}}=
$$

