(1.5) Inverse Functions and Logarithms

Dr. Rola Asaad Hijazi

CALCULUS 110

(1.5) Inverse Functions and Logarithms

Dr. Rola Asaad Hijazi

1.5 Inverse Functions and Logarithms

1-1 function

A function f is called a one to one function if it never takes on the same value twice; that is $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.
i.e. if $x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$
or if $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$

Example l
(a) Is the function $f(x)=x^{3}$ one-to-one?
(b) Is $g(x)=x^{2}$ one - to - one?
solution

Example 2

Use definition to show that $f(x)=\sqrt[3]{\frac{x+2}{2}}$ is $1-1$.
solution

Let f be a one-to-one function with domain A and range B. Then the inverse function f^{-1} has the domain B and A and is denoted by:

$$
\begin{aligned}
& f^{-1}: B \rightarrow A \\
& f^{-1}(y)=x \Leftrightarrow f(x)=y
\end{aligned}
$$

Don't mistake the (-1) in f^{-1} for an exponent. Thus:

$$
f^{-1}(x) \neq \frac{1}{f(x)}=[f(x)]^{-1}
$$

remark

If f is not $1-1$, then f^{-1} is not uniquely defined.

Example 3

$$
\text { If } f(1)=5, f(3)=7, f(8)=-10 \text { then } f^{-1}(5)=\cdots, f^{-1}(7)=\cdots, f^{-1}(10)
$$

=

Cancellation Equations:- $f: A \rightarrow B$

Example

(1) $f^{-1}(f(x))=x \quad \forall x \in A$ i.e. $\forall x \in D_{f}$

$$
\begin{aligned}
& f(x)=x^{3}, f^{-1}(x)=x^{\frac{1}{3}} \\
& f^{-1}(f(x))=\ldots \ldots \ldots \ldots
\end{aligned}
$$

(2) $f\left(f^{-1}(x)\right)=x \quad \forall x \in B$ i.e. $\forall x$ $\in D_{f^{-1}}$

How to Find the Inverse Function of a 1-1 function
(1) Write $y=f(x)$
(2) Solve this equation for x in terms of y if possible.
(3) Express f^{-1} as a function of x, interchange x and y.

The resulting equation is $y=f^{-1}(x)$

Example 4

Find the inverse of $f(x)=x^{3}+2$
solution
(1)

2

3

remark

The graph of f^{-1} is obtained by reflecting the graph of $f(x)$ about the line $y=x$

Example 5

Sketch the graph of $f(x)=\sqrt{x-1}$ and its inverse function using the same coordinate axes.

x	1	$\mathbf{2}$	$\mathbf{5}$
y	0	1	2
	$(1,0)$	$(2,1)$	$(5,2)$

The coordinate of f^{-1} :

Example

The figure which represent a graph of a function and it's inverse at the same coordínate axis is
a)

b)

C)

d)

Logarthmic Functions If $a>0, a \neq 1, a^{x}\left\{\begin{array}{l}\text { increasing } \\ \text { decreasing }\end{array}\right.$

$$
\text { and so it is } 1-1 \text { by Horizontal Line Test. }
$$

So it has an inverse function f^{-1} which is called the logarithmic function with base a and is denoted by $\log _{a}$

$$
\begin{aligned}
& f^{-1}(x)=y \Leftrightarrow f(y)=x \\
& \log _{a}(x)=y \Leftrightarrow x=a^{y}
\end{aligned}
$$

note

$\log _{a}(x)$: is the exponent to which the base a must be raised to give x.
$\log _{2} 8=--$

Graph of $\log _{a}(x)$ when $a>1$

If x and y are positive numbers, then:
(1) $\log _{a}(x y)=\log _{a}(x)+\log _{a}(y)$
(2) $\log _{10}(x)=\log (x)$
(3) $\log _{a} 1=0 \quad \log _{a} a=1$
(4) $\log _{a} x^{r}=r \log _{a} x \quad \log _{a} a^{r}=r$
(5) $\log _{a} \frac{x}{y}=\log _{a}(x)-\log _{a}(y)$

Examples

(1) $\log _{2} 2^{2}=\ldots, \quad \log _{4} 16=$
(2) $\log _{3} \frac{1}{9}=-$
(3) $\log _{10} 1000=---$
(4) $\log _{10} 0.001=---$
(5) $\quad \log _{9} 3=---$

Example Evaluate $\log _{2} 80-\log _{2} 5$

The logarithm with base e is called natural logarithm and it has a special notation

$$
\begin{gathered}
y=\log _{e} x=\ln x, \\
y=\ln x \Rightarrow x=e^{y}
\end{gathered}
$$

Example 8

Solve the equation $e^{5-3 x}=10$

solution

Example 9

Cancelation Equations
(1) $\ln \left(e^{x}\right)=x \quad \forall \quad x \in \mathbb{R}$
(2) $e^{\ln x}=x \quad \forall \quad x>0$

Example $7 \quad$ Find x if $\ln x=5$

Change of Base Formula
For any positive number $a(a \neq 1)$ we have:

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

Example 10

Evaluate $\log _{8} 5$
solution
Graph and growth of the natural logarithm $\ln x$

Example II

Sketch the graph of $\ln (x-2)-1$

solution

Domain=

Range $=$

(1) $f(x)=\sin x$

From the graph, $\sin x$ is not $1-1$ function by the horizontal line test, but if we restrict the domain to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then it will be $1-1$ and we can define an inverse function $\sin ^{-1} x$.

$$
\sin ^{-1} x \neq \frac{1}{\sin x}
$$

$-\frac{\pi}{2} \leq \sin ^{-1}(x) \leq \frac{\pi}{2}$, therefore $\sin ^{-1} x$ is either in the

Cancelation Equations

(1) $\sin ^{-1}(\sin x)=x \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
(2) $\sin \left(\sin ^{-1} x\right)=x \quad-1 \leq x \leq 1$

Example
Find $D_{f}, f(x)=\sin ^{-1}(x-1)$
solution

$$
\begin{aligned}
& \sin ^{-1} x=y \quad \Leftrightarrow \quad \sin y=x \\
& -1 \leq x \leq 1, \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
\end{aligned}
$$

Example 12

Evaluate the following:

(a) $\sin ^{-1}\left(\frac{1}{2}\right)$
solution
(b) $\sin ^{-1}\left(-\frac{1}{2}\right)$

(2) $f(x)=\cos x$

$$
\cos ^{-1} x \neq \frac{1}{\cos x}
$$

$\cos ^{-1} x$ is either in the $\left\{\begin{array}{l}\text { - qurarter } \\ \text { - quarter }\end{array}\right.$

Cancelation Equations
(1) $\cos ^{-1}(\cos x)=x, \quad 0 \leq x \leq \pi$
(2) $\cos \left(\cos ^{-1} x\right)=x,-1 \leq x \leq 1$

Example
(a) $\cos ^{-1}\left(\frac{1}{2}\right)$
solution
(b) $\cos ^{-1}\left(-\frac{1}{2}\right)$
solution
(3) $f(x)=\tan x$
$\boldsymbol{\operatorname { t a n }} \boldsymbol{x}$ is not $1-1$, so we restrict the domain to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
\tan ^{-1} x
$$

$$
\begin{aligned}
& D= \\
& R=
\end{aligned}
$$

$$
D=
$$

$$
\begin{gathered}
y=\tan ^{-1} x \Leftrightarrow \tan y=x \\
x \in(-\infty, \infty),-\frac{\pi}{2}<y<\frac{\pi}{2}
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\text { - qurarter } \\
\text { - quarter }
\end{array}\right.
$$

Example

Simplify the expression $\cos \left(\tan ^{-1} x\right)$.

solution

$$
\tan ^{-1}(1)=
$$

Cancelation Equations

$\begin{array}{cc}\text { (1) } \tan ^{-1}(\tan x)=x & -\frac{\pi}{2}<x<\frac{\pi}{2} \\ \text { (2) } & \tan \left(\tan ^{-1} x\right)=x\end{array} \quad x \in \mathbb{R}$
$\tan ^{-1} x$ is either in the $\left\{\begin{array}{l}1^{\text {st }} \text { qurarter } \\ \text { 4thquarter }\end{array}\right.$

Exercise 22

Find the formula for the inverse of the function

$$
f(x)=\frac{4 x-1}{2 x+3}
$$

Exercise 23

$$
f(x)=e^{2 x-1}
$$

Exercise 37(b)

Find the exact value of

$$
\log _{8} 60-\log _{8} 3-\log _{8} 5
$$

Exercise 40

Express $\ln (b)+2 \ln (c)-3 \ln d$ as a single logarithm.

Exercise 48(a)

SKtech $\ln (-x)$

Exercise 51

Solve each equation for x :
(a) $e^{7-4 x}=6$
(b) $\log _{5}(3 x-10)=2$
(C) $\ln (3 x-10)=2$

Solution

Exercise 53(a)

$$
2^{x-5}=3
$$

Exercise 57

(a) Find the domain of $\ln \left(e^{x}-3\right)$
(b) Find f^{-1} and its domain

Exercise 64

Find the exact value of each expression
(a) $\tan ^{-1}(\sqrt{3})$
(b) $\tan ^{-1}(-1)$

Exercise

(a) $\sin ^{-1}(1)$
(b) $\cos ^{-1}(1)$
$\cos ^{-1}(0)$

$$
21-26(\text { odd }), 35-41(\text { odd }), 52
$$

