Workshop Solutions to Sections 2.1 and $2.2(1.1 \& 1.2)$

1) Find the domain of the function $f(x)=9-x^{2}$.

Solution:
Since $f(x)$ is a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

Note: The domain of any polynomial is \mathbb{R}.
3) Find the domain of the function $f(x)=6-2 x$.

Solution:

Since $f(x)$ is a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

5) Find the domain of the function $f(x)=x^{2}-2 x-3$.

Solution:
Since $f(x)$ is a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

7) Find the domain of the function $f(x)=5$.

Solution:

Since $f(x)$ is a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

9) Find the domain of the function $f(x)=|x-1|$. Solution:
Since $f(x)$ is an absolute value of a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

Note: The domain of an absolute value of any polynomial is \mathbb{R}.
11) Find the domain of the function $f(x)=|x|$. Solution:
Since $f(x)$ is an absolute value of a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

13) Find the domain of the function $f(x)=|3 x-6|$.

Solution:
Since $f(x)$ is an absolute value of a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

15) Find the domain of the function

$$
f(x)=\frac{x+2}{x-3}
$$

Solution:
$f(x)$ is defined when $x-3 \neq 0 \Rightarrow x \neq 3$. So,

$$
D_{f}=\mathbb{R} \backslash\{3\}=(-\infty, 3) \cup(3, \infty)
$$

2) Find the range of the function $f(x)=9-x^{2}$. Solution:

$$
R_{f}=(-\infty, 9]
$$

4) Find the range of the function $f(x)=6-2 x$.

Solution:

Since $f(x)$ is a polynomial of degree one (i.e. is of an odd degree), then

$$
R_{f}=\mathbb{R}=(-\infty, \infty)
$$

6) Find the domain of the function $f(x)=1+2 x^{3}-x^{5}$. Solution:
Since $f(x)$ is a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

8) Find the range of the function $f(x)=5$.

Solution:

$$
R_{f}=\{5\}
$$

10) Find the domain of the function $f(x)=|x+5|$. Solution:
Since $f(x)$ is an absolute value of a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

12) Find the range of the function $f(x)=|x|$. Solution:

$$
R_{f}=[0, \infty)
$$

Note: The range of an absolute value of any polynomial is always $[0, \infty)$.
14) Find the domain of the function $f(x)=|9-3 x|$.

Solution:

Since $f(x)$ is an absolute value of a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

16) Find the domain of the function

$$
f(x)=\frac{x-2}{x+3}
$$

Solution:
$f(x)$ is defined when $x+3 \neq 0 \Rightarrow x \neq-3$. So,

$$
D_{f}=\mathbb{R} \backslash\{-3\}=(-\infty,-3) \cup(-3, \infty)
$$

17) Find the domain of the function

$$
f(x)=\frac{x+2}{x^{2}-9}
$$

Solution:
$f(x)$ is defined when $x^{2}-9 \neq 0 \Rightarrow x^{2} \neq 9 \Longrightarrow x \neq \pm 3$. So,

$$
D_{f}=\mathbb{R} \backslash\{-3,3\}=(-\infty,-3) \cup(-3,3) \cup(3, \infty)
$$

19) Find the domain of the function

$$
f(x)=\frac{x+2}{x^{2}-x-6}
$$

Solution:
$f(x)$ is defined when $x^{2}-x-6 \neq 0$

$$
\Rightarrow(x+2)(x-3) \neq 0 \Rightarrow x \neq-2 \text { or } x \neq 3 . \text { so, }
$$

$$
D_{f}=\mathbb{R} \backslash\{-2,3\}=(-\infty,-2) \cup(-2,3) \cup(3, \infty)
$$

21) Find the domain of the function

$$
f(x)=\sqrt[3]{x-3}
$$

Solution:

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

Note: The domain of an odd root of any polynomial is \mathbb{R}.
23) Find the domain of the function

$$
f(x)=\sqrt{3-x}
$$

Solution:
$f(x)$ is defined when $3-x \geq 0 \Rightarrow-x \geq-3 \Longrightarrow x \leq 3$ because $f(x)$ is an even root. So,

$$
D_{f}=(-\infty, 3]
$$

25) Find the domain of the function

$$
f(x)=\sqrt{-x}
$$

Solution:
$f(x)$ is defined when $-x \geq 0 \Rightarrow x \leq 0$ because $f(x)$ is an even root. So,

$$
D_{f}=(-\infty, 0]
$$

27) Find the domain of the function

$$
f(x)=\sqrt{9-x^{2}}
$$

Solution:
$f(x)$ is defined when $9-x^{2} \geq 0 \Rightarrow-x^{2} \geq-9 \Rightarrow$
$x^{2} \leq 9 \Rightarrow \sqrt{x^{2}} \leq \sqrt{9} \Rightarrow|x| \leq 3 \Rightarrow-3 \leq x \leq 3$.
So,

$$
D_{f}=[-3,3]
$$

29) Find the domain of the function

$$
f(x)=\frac{x+2}{\sqrt{9-x^{2}}}
$$

Solution:
$f(x)$ is defined when $9-x^{2}>0 \Rightarrow-x^{2}>-9$
$\Rightarrow x^{2}<9 \Rightarrow \sqrt{x^{2}}<\sqrt{9} \Rightarrow|x|<3 \Rightarrow-3<x<3$.
So,

$$
D_{f}=(-3,3)
$$

18) Find the domain of the function

$$
f(x)=\frac{x+2}{x^{2}-5 x+6}
$$

Solution:
$f(x)$ is defined when $x^{2}-5 x+6 \neq 0$

$$
\Rightarrow(x-2)(x-3) \neq 0 \Rightarrow x \neq 2 \text { or } x \neq 3 \text {. So, }
$$

$$
D_{f}=\mathbb{R} \backslash\{2,3\}=(-\infty, 2) \cup(2,3) \cup(3, \infty)
$$

20) Find the domain of the function

$$
f(x)=\frac{x+2}{x^{2}+9}
$$

Solution:
$f(x)$ is defined when $x^{2}+9 \neq 0$ but for any value x the denominator $x^{2}+9$ cannot be 0 . So,

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

22) Find the domain of the function

$$
f(x)=\sqrt{x-3}
$$

Solution:
$f(x)$ is defined when $x-3 \geq 0 \Rightarrow x \geq 3$ because $f(x)$ is an even root. So,

$$
D_{f}=[3, \infty)
$$

24) Find the domain of the function

$$
f(x)=\sqrt{x+3}
$$

Solution:
$f(x)$ is defined when $x+3 \geq 0 \Rightarrow x \geq-3$ because $f(x)$ is an even root. So,

$$
D_{f}=[-3, \infty)
$$

26) Find the range of the function

$$
f(x)=\sqrt{-x}
$$

Solution:

$$
R_{f}=[0, \infty)
$$

Note: The range of an even root is always ≥ 0.
28) Find the domain of the function

$$
f(x)=\frac{x+2}{\sqrt{x-3}}
$$

Solution:
$f(x)$ is defined when $x-3>0 \Longrightarrow x>3$. So,

$$
D_{f}=(3, \infty)
$$

30) Find the domain of the function

$$
f(x)=\sqrt{x^{2}-9}
$$

Solution:
$f(x)$ is defined when $x^{2}-9 \geq 0 \Rightarrow x^{2} \geq 9$

$$
\Rightarrow \sqrt{x^{2}} \geq \sqrt{9} \Rightarrow|x| \geq 3 \Rightarrow x \geq 3 \text { or } x \leq-3
$$

So,

$$
D_{f}=(-\infty,-3] \cup[3, \infty)
$$

31) Find the range of the function

$$
f(x)=\sqrt{x^{2}-9}
$$

Solution:

$$
R_{f}=[0, \infty)
$$

33) Find the domain of the function

$$
f(x)=\sqrt{9+x^{2}}
$$

Solution:

$f(x)$ is defined when $9+x^{2} \geq 0$ but it is always true for any value x. So,

$$
D_{f}=\mathbb{R}
$$

35) Find the domain of the function

$$
f(x)=\sqrt[6]{16-x^{2}}
$$

Solution:
$f(x)$ is defined when $16-x^{2} \geq 0 \Rightarrow-x^{2} \geq-16 \Rightarrow$ $x^{2} \leq 16 \Rightarrow \sqrt{x^{2}} \leq \sqrt{16} \Rightarrow|x| \leq 4 \Rightarrow-4 \leq x \leq 4$.
So,

$$
D_{f}=[-4,4]
$$

37) Find the domain of the function

$$
f(x)=\frac{x+|x|}{x}
$$

Solution:
$f(x)$ is defined when $x \neq 0$. So,

$$
D_{f}=\mathbb{R} \backslash\{0\}=(-\infty, 0) \cup(0, \infty)
$$

39) Find the domain of the function

$$
f(x)=\frac{2-\sqrt{x}}{\sqrt{x^{2}+1}}
$$

Solution:
$f(x)$ is defined when
1- $x \geq 0 \quad \Longrightarrow \quad D_{\sqrt{x}}=[0, \infty)$
2- $x^{2}+1>0$ but this is always true for all x
$\Rightarrow D_{\sqrt{x^{2}+1}}=\mathbb{R}$.
Hence,

$$
D_{f}=D_{\sqrt{x}} \cap D_{\sqrt{x^{2}+1}}=[0, \infty) \cap \mathbb{R}=[0, \infty)
$$

41) The function $f(x)=3 x^{4}+x^{2}+1$ is a polynomial function.
42) The function $f(x)=-3 x^{2}+7$ is a quadratic function.
43) The function $f(x)=x^{7}$ is a power function.
44) The function $f(x)=\frac{x-3}{x+2}$ is a rational function and we can say it is an algebraic function as well.
45) Find the domain of the function

$$
f(x)=\frac{x+2}{\sqrt{x^{2}-9}}
$$

Solution:
$f(x)$ is defined when $x^{2}-9>0 \Rightarrow x^{2}>9$
$\Rightarrow \sqrt{x^{2}}>\sqrt{9} \Rightarrow|x|>3 \Rightarrow x>3$ or $x<-3$. So,

$$
D_{f}=(-\infty,-3) \cup(3, \infty)
$$

34) Find the domain of the function

$$
f(x)=\sqrt[4]{x^{2}-25}
$$

Solution:
$f(x)$ is defined when $x^{2}-25 \geq 0 \Rightarrow x^{2} \geq 25$
$\Rightarrow \sqrt{x^{2}} \geq \sqrt{25} \Rightarrow|x| \geq 5 \Rightarrow x \geq 5$ or $x \leq-5$.
So,

$$
D_{f}=(-\infty,-5] \cup[5, \infty)
$$

36) Find the range of the function

$$
f(x)=\sqrt{16-x^{2}}
$$

Solution:
We know that $f(x)$ is defined when $16-x^{2} \geq 0$

$$
\begin{gathered}
\Rightarrow-x^{2} \geq-16 \Rightarrow x^{2} \leq 16 \Rightarrow \sqrt{x^{2}} \leq \sqrt{16} \\
\Rightarrow|x| \leq 4 \Rightarrow-4 \leq x \leq 4 . \text { So } \\
D_{f}=[-4,4]
\end{gathered}
$$

Using D_{f} we find the outputs vary from 0 to 4 . Hence, $R_{f}=[0,4]$
38) Find the domain of the function

$$
f(x)=\left\{\begin{aligned}
-\frac{1}{x}, & x<0 \\
x, & x \geq 0
\end{aligned}\right.
$$

Solution:
It is clear from the definition of the function $f(x)$ that

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

40) Find the domain of the function

$$
f(x)=\sqrt{x-1}+\sqrt{x+3}
$$

Solution:

$$
f(x) \text { is defined when }
$$

1- $x-1 \geq 0 \Rightarrow x \geq 1 \Rightarrow D_{\sqrt{x-1}}=[1, \infty)$
2- $x+3 \geq 0 \Rightarrow x \geq-3 \Rightarrow D_{\sqrt{x+3}}=[-3, \infty)$
Hence,

$$
D_{f}=D_{\sqrt{x-1}} \cap D_{\sqrt{x+3}}=[1, \infty) \cap[-3, \infty)=[1, \infty)
$$

42) The function $f(x)=5 x^{3}+x^{2}+7$ is a cubic function.
43) The function $f(x)=2 x+3$ is a linear function.
44) The function $f(x)=\frac{2 x+3}{x^{2}-1}$ is a rational function.
45) The function $f(x)=\sin x$ is a trigonometric function.
46) The function $f(x)=e^{x}$ is a natural exponential function.
47) The function $f(x)=x^{2}+\sqrt{x-2}$ is an algebraic function.
48) The function $f(x)=\log _{3} x$ is a general logarithmic function.
49) The function $f(x)=3 x^{4}+x^{2}+1$ is

Solution:
$f(-x)=3(-x)^{4}+(-x)^{2}+1=3 x^{4}+x^{2}+1=f(x)$
Hence,
$f(x)$ is an even function.
57) The function $f(x)=x^{5}-x$ is

Solution:
$f(-x)=(-x)^{5}-(-x)=-x^{5}+x$

$$
=-\left(x^{5}-x\right)=-f(x)
$$

Hence,
$f(x)$ is an odd function.
59) The function $f(x)=3 x+\frac{2}{\sqrt{x^{2}+9}}$ is

Solution:

$$
\begin{aligned}
f(-x)=3(-x)+\frac{2}{\sqrt{(-x)^{2}+9}} & =-3 x+\frac{2}{\sqrt{x^{2}+9}} \\
& =-\left(3 x-\frac{2}{\sqrt{x^{2}+9}}\right)
\end{aligned}
$$

Hence,
$f(x)$ is neither even nor odd.
61) The function $f(x)=\sqrt{4+x^{2}}$ is

Solution:

$$
f(-x)=\sqrt{4+(-x)^{2}}=\sqrt{4+x^{2}}=f(x)
$$

Hence,
$f(x)$ is an even function.
63) The function $f(x)=\frac{9-x^{2}}{x-2}$ is

Solution:

$$
\begin{aligned}
f(-x)=\frac{9-(-x)^{2}}{(-x)-2} & =\frac{9-x^{2}}{-x-2} \\
& =-\left(\frac{9-x^{2}}{x+2}\right)
\end{aligned}
$$

Hence,
$f(x)$ is neither even nor odd.
65) The function $f(x)=3|x|$ is

Solution:

$$
f(-x)=3|(-x)|=3|x|=f(x)
$$

Hence,
$f(x)$ is an even function.
50) The function $f(x)=3^{x}$ is a general exponential function.
52) The function $f(x)=-3$ is a constant function.
54) The function $f(x)=\ln x$ is a natural logarithmic function.
56) The function $f(x)=9-x^{2}$ is

Solution:

$$
f(-x)=9-(-x)^{2}=9-x^{2}=f(x)
$$

Hence,
$f(x)$ is an even function.
58) The function $f(x)=2-\sqrt[5]{x}$ is

Solution:
$f(-x)=2-\sqrt[5]{(-x)}=2-\sqrt[5]{-x}=2+\sqrt[5]{x}$

$$
=-(-2-\sqrt[5]{x})
$$

Hence,
$f(x)$ is neither even nor odd.
60) The function $f(x)=\frac{3}{\sqrt{x^{2}+9}}$ is

Solution:

$$
f(-x)=\frac{3}{\sqrt{(-x)^{2}+9}}=\frac{3}{\sqrt{x^{2}+9}}=f(x)
$$

Hence,
$f(x)$ is an even function.
62) The function $f(x)=3$ is

Solution:
Since the graph of the constant function 3 is symmetric about the y-axis, then
$f(x)$ is an even function.
64) The function $f(x)=\frac{x^{2}-4}{x^{2}+1}$ is

Solution:

$$
f(-x)=\frac{(-x)^{2}-4}{(-x)^{2}+1}=\frac{x^{2}-4}{x^{2}+1}=f(x)
$$

Hence,
$f(x)$ is an even function.
66) The function $f(x)=x^{-2}$ is

Solution:
$f(x)=x^{-2}=\frac{1}{x^{2}}$

$$
f(-x)=\frac{1}{(-x)^{2}}=\frac{1}{x^{2}}=f(x)
$$

Hence, $f(x)$ is an even function.
67) The function $f(x)=x^{3}-2 x+5$ is

Solution:

$$
\begin{aligned}
f(-x)=(-x)^{3}-2(-x)+5 & =-x^{3}+2 x+5 \\
& =-\left(x^{3}-2 x-5\right)
\end{aligned}
$$

Hence,
$f(x)$ is neither even nor odd.

69) The function $f(x)=7$ is

Solution:

Since the graph of the constant function 7 is symmetric about the y-axis, then
$f(x)$ is an even function.
71) The function $f(x)=\frac{x^{2}-1}{x^{3}+3}$ is

Solution:

$$
f(-x)=\frac{(-x)^{2}-1}{(-x)^{3}+3}=\frac{x^{2}-1}{-x^{3}+3}=-\frac{x^{2}-1}{x^{3}-3}
$$

Hence,
$f(x)$ is neither even nor odd.
73) The function $f(x)=x^{2}$ is increasing on $(0, \infty)$.
75) The function $f(x)=x^{3}$ is increasing on $(-\infty, \infty)$.
77) The function $f(x)=\sqrt{x}$ is increasing on $(0, \infty)$.
79) The function $f(x)=\frac{1}{x}$ is not increasing at all.
68) The function $f(x)=\sqrt[3]{x^{5}}-x^{3}+x$ is

Solution:

$$
\begin{gathered}
f(-x)=\sqrt[3]{(-x)^{5}}-(-x)^{3}+(-x)=-\sqrt[3]{x^{5}}+x^{3}-x \\
=-\left(\sqrt[3]{x^{5}}-x^{3}+x\right)=-f(x)
\end{gathered}
$$

Hence,
$f(x)$ is an odd function.
70) The function $f(x)=\frac{x^{3}-4}{x^{3}+1}$ is

Solution:

$$
f(-x)=\frac{(-x)^{3}-4}{(-x)^{3}+1}=\frac{-x^{3}-4}{-x^{3}+1}=-\frac{x^{3}+4}{-x^{3}+1}
$$

Hence,
$f(x)$ is neither even nor odd.
72) The function $f(x)=x^{6}-4 x^{2}+1$ is Solution:
$f(-x)=(-x)^{6}-4(-x)^{2}+1=x^{6}-4 x^{2}+1=f(x)$
Hence,
$f(x)$ is an even function.
74) The function $f(x)=x^{2}$ is decreasing on $(-\infty, 0)$.
76) The function $f(x)=x^{3}$ is not decreasing at all.
78) The function $f(x)=\sqrt{x}$ is not decreasing at all.
80) The function $f(x)=\frac{1}{x}$ is decreasing on $(-\infty, \infty)-\{0\}$

