to convert 2 min to seconds

$$
2 \min =(2 \mathrm{~min})(1)=\left(2 \text { mĩi) }\left(\frac{60 \mathrm{~s}}{1 \text { míl }}\right)=120 \mathrm{~s}\right.
$$

to convert 15 inch to centimeters

$$
15.0 \mathrm{in} .=(15.0 \mathrm{in.})\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}^{\prime}}\right)=38.1^{\circ} \mathrm{cm}
$$

to convert 15 h to seconds

$$
\begin{aligned}
& 15 \mathrm{~h}=15 \mathrm{hX} 1=15 \mathrm{~h} \times\left(\frac{60 \mathrm{~min}}{1 \mathrm{~h}}\right)=900 \mathrm{~min} \\
& \quad=900 \mathrm{~min} \times 1=900 \mathrm{~min} \times\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=54000 \mathrm{~s}
\end{aligned}
$$

to convert $10 \mathrm{~km} / \mathrm{h}$ to $\mathrm{m} / \mathrm{s}^{`}$

$$
\begin{aligned}
10 \mathrm{~km} / \mathrm{h} & =10 \mathrm{~km} / \mathrm{h}\left(\frac{1000 \mathrm{~m} / \mathrm{h}}{1 \mathrm{~km} / \mathrm{h}}\right)=10000 \mathrm{~m} / \mathrm{h} \\
& =10000 \mathrm{~m} / \mathrm{h}\left(\frac{1 \mathrm{~m} / \mathrm{s}}{3600 \mathrm{~m} / \mathrm{h}}\right)=\frac{100}{36} \mathrm{~m} / \mathrm{s}=\frac{100}{36} \mathrm{~m} / \mathrm{s}=2.78 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

to convert $15 \mathrm{~m} / \mathrm{s}$ to km / h

$$
\begin{aligned}
15 \mathrm{~m} / \mathrm{s}= & 15 \mathrm{~m} / \mathrm{s}\left(\frac{1 \mathrm{~km} / \mathrm{s}}{1000 \mathrm{~m} / \mathrm{s}}\right)=0.015 \mathrm{~km} / \mathrm{s} \\
& =0.015 \mathrm{~km} / \mathrm{s}\left(\frac{3600 \mathrm{~km} / \mathrm{h}}{1 \mathrm{~km} / \mathrm{s}}\right)=54 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Samples of Exam Questions

Q. 110^{4} milliseconds is equal to:
(A) $10^{3} \mathrm{~s}$
(B) $10^{2} \mathrm{~s}$
(C) 1 s
(D) 10 s
(E) $10^{-1} \mathrm{~s}$
Q. 2 A cubic box with an edge of exactly 3 cm has a volume of: (volume $=$ edge 3)
(A) $10^{-6} \mathrm{~m}^{3}$
(B) $8 \times 10^{-6} \mathrm{~m}^{3}$
(C) $2.7 \times 10^{-5} \mathrm{~m}^{3}$
(D) $6.4 \times 10^{-5} \mathrm{~m}^{3}$
(E) $4 \times 10^{-6} \mathrm{~m}^{3}$
Q. 3 The speed v in m / s of a car is given by $v=b t^{3}$ where the time t is in seconds. The unit of b is:
(A) $\mathrm{m} / \mathrm{s}^{4}$
(B) ms
(C) m / s
(D) $\mathrm{m} / \mathrm{s}^{3}$
(E) $\mathrm{m} / \mathrm{s}^{2}$
(1)

$$
10^{4} \mathrm{~ms}=10^{4} \mathrm{~ms}\left(\frac{1 \mathrm{~s}}{1000 \mathrm{~ms}}\right)=10 \mathrm{~s}
$$

(2)

$$
\mathrm{V}=3 \times 3 \times 3=27 \mathrm{~cm}^{3}=27 \mathrm{~cm}^{3}\left(\frac{1 \mathrm{~m}^{3}}{10^{6} \mathrm{~cm}^{3}}\right)
$$

$$
\begin{aligned}
& =27 \times 10^{-6} \mathrm{~m}^{3}=2.7 \times 10^{-5} \mathrm{~m}^{3} \\
& \mathrm{~m} / \mathrm{s}=\operatorname{unit}(\mathrm{b}) \mathrm{s}^{3} \text { unit }(\mathrm{b})=\mathrm{m} / \mathrm{s}^{4}
\end{aligned}
$$

Using the dimensional analysis:
(3)

$$
[\mathrm{v}]=[\mathrm{b}]\left[\mathrm{t}^{3}\right] \Rightarrow \frac{\mathrm{L}}{\mathrm{~T}}=[\mathrm{b}] \mathrm{T}^{3} \Rightarrow[\mathrm{~b}]=\frac{\mathrm{L}}{\mathrm{~T}^{4}}
$$

Then the unit of b is $\mathrm{m} / \mathrm{s}^{4}$
Q. 1 The SI unit of acceleration is:
(A) $\mathrm{m} / \mathrm{s}^{2}$
(B) s / m
(C) $\mathrm{kg} \mathrm{m} / \mathrm{s}$
(D) m / s
(E) kg
Q. 2 A car is traveling at $15 \mathrm{~m} / \mathrm{s}$. The speed of this car is equivalent to:
(A) $45 \mathrm{~km} / \mathrm{h}$
(B) $20 \mathrm{~km} / \mathrm{h}$
(C) $54 \mathrm{~km} / \mathrm{h}$
(D) $11 \mathrm{~km} / \mathrm{h}$
(E) $72 \mathrm{~km} / \mathrm{h}$
Q. 3 A cube of edge 30.5 mm , its volume is:
(A) $2.84 \times 10^{-5} \mathrm{~m}^{3}$
(B) $2.84 \times 10^{-6} \mathrm{~m}^{3}$
(C) $2.84 \times 10^{-4} \mathrm{~m}^{3}$
(D) $28.4 \mathrm{~m}^{3}$
(E) $2.84 \mathrm{~m}^{3}$
Q. 11 A cube of edge 30.5 mm , its volume is:
(A) $2.84 \times 10^{-5} \mathrm{~m}^{3}$
(B) $2.84 \times 10^{-6} \mathrm{~m}^{3}$
(C) $2.84 \times 10^{-4} \mathrm{~m}^{3}$
(D) $28.4 \mathrm{~m}^{3}$
(E) $2.84 \mathrm{~m}^{3}$
Q. 1 A man of mass 50 kg . His weight is:
(A) 490 N
(B) 50 N
(C) zero
(D) 98 N
(E) 980 N
Q. 21 Newton is equivalent to:
(A) $9.8 \mathrm{~kg} . \mathrm{m} / \mathrm{s}^{2}$
(B) $1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
(C) 1 kg of mass
(D) 1 kg of force
(E) none of these
Q. 1 The SI unit of velocity is:
(A) $\mathrm{m} / \mathrm{s}^{2}$
(B) s / m
(C) $\mathrm{kg} \mathrm{m} / \mathrm{s}$
(D) m / s
(E) kg
Q. 2 A car is traveling at $20 \mathrm{~m} / \mathrm{s}$. The speed of this car is equivalent to:
(A) $40 \mathrm{~km} / \mathrm{h}$
(B) $20 \mathrm{~km} / \mathrm{h}$
(C) $10 \mathrm{~km} / \mathrm{h}$
(D) $11 \mathrm{~km} / \mathrm{h}$
(E) $72 \mathrm{~km} / \mathrm{h}$
Q. 3 A cube of edge 47.5 mm , its volume is:
(A) $43 \mathrm{~m}^{3}$
(B) $0.473 \mathrm{~m}^{3}$
(C) $1.072 \times 10^{-4} \mathrm{~m}^{3}$
(D) $47.3 \mathrm{~m}^{3}$
(E) $475 \mathrm{~m}^{3}$

