Examples

to convert 2 min to seconds

$$2 \min = (2 \min)(1) = (2 \min) \left(\frac{60 \text{ s}}{1 \min} \right) = 120 \text{ s}$$

to convert 15 inch to centimeters

15.0 in. =
$$(15.0 \text{ in.}) \left(\frac{2.54 \text{ cm}}{1 \text{ in.}} \right) = 38.1 \text{ cm}$$

to convert 15 h to seconds

15 h = 15 h X l = 15 h X
$$\left(\frac{60 \text{ min}}{1 \text{ h}}\right)$$
 = 900 min
= 900 min X l = 900 min X $\left(\frac{60 \text{ s}}{1 \text{ min}}\right)$ = 54000 s

to convert 10 km/h to m/s'

$$10 \text{ km/h} = 10 \text{ km/h} \left(\frac{1000 \text{ m/h}}{1 \text{ km/h}}\right) = 10000 \text{ m/h}$$
$$= 10000 \text{ m/h} \left(\frac{1 \text{ m/s}}{3600 \text{ m/h}}\right) = \frac{100}{36} \text{ m/s} = \frac{100}{36} \text{ m/s} = 2.78 \text{ m/s}$$

to convert 15 m/s to km/h

$$15 \text{ m/s} = 15 \text{ m/s} \left(\frac{1 \text{ km/s}}{1000 \text{ m/s}} \right) = 0.015 \text{ km/s}$$
$$= 0.015 \text{ km/s} \left(\frac{3600 \text{ km/h}}{1 \text{ km/s}} \right) = 54 \text{ km/h}$$

Samples of Exam Questions

Q.1 104 milliseconds is equal to: (A) 103 s

(B) 10^2 s

(C) 1 s

(D) 10 s

(E) 10⁻¹ s

Q.2 A cubic box with an edge of exactly 3 cm has a volume of: (volume = edge³) (A) 10^{-6} m³ (B) 8×10^{-6} m³ (C) 2.7×10^{-5} m³ (D) 6.4×1

(D) 6.4×10⁻⁵ m³

(E) 4×10⁻⁶ m³

Q.3 The speed v in m/s of a car is given by $v = bt^3$ where the time t is in seconds. The unit of b is:

(A) m/s4

(B) ms

(C) m/s

(D) m/s3

(E) m/s2

 $10^4 \text{ ms} = 10^4 \text{ ms} \left(\frac{1 \text{ s}}{1000 \text{ ms}} \right) = 10 \text{ s}$ (1)

$$V = 3x3x3 = 27 \text{ cm}^3 = 27 \text{ cm}^3 \left(\frac{1 \text{ m}^3}{10^6 \text{ cm}^3}\right)$$

$$= 27x10^{-6} \text{ m}^3 = 2.7x10^{-5} \text{ m}^3$$

 $m/s = unit(b) s^3 unit(b) = m/s^4$

Using the dimensional analysis:

(3)
$$[v]=[b][t^3] \Rightarrow \frac{L}{T}=[b]T^3 \Rightarrow [b]=\frac{L}{T^4}$$

Then the unit of b is m/s⁴

Q.1 The SI unit of (A) m/s ²		(C) kg m/s	(D) m/s	(E) kg
		eed of this car is equi (C) 54 km/h		(E) 72 km/h
	(B) 2.84×10 ⁻⁶ m ³	e is: (C) 2.84×10 ⁻⁴ m ³	(D) 28.4 m ³	(E) 2.84 m ³
	dge 30.5 mm, its volur (B) 2.84×10 ⁻⁶ m ³	me is: (C) 2.84×10 ⁻⁴ m ³	(D) 28.4 m ³	(E) 2.84 m ³
Q.1 A man of mass (A) 490 N	50 kg. His weight is: (B) 50 N	(C) zero	(D) 98 N	(E) 980 N
Q.2 1Newton is equ (A) 9.8 kg.m/s ²		(C) 1 kg of mass	(D) 1 kg of force	(E) none of these
Q.1 The SI unit of (A) m/s ²	velocity is: (B) s/m	(C) kg m/s	(D) m/s	(E) kg
Q.2 A car is traveli (A) 40 km/h	ng at 20 m/s. The spe (B) 20 km/h	eed of this car is equiv (C) 10 km/h	valent to: (D) 11 km/h	(E) 72 km/h
Q.3 A cube of edg (A) 43 m ³	e 47.5 mm, its volume (B) 0.473 m ³	e is: (C) 1.072×10 ⁻⁴ m ³	³ (D) 47.3 m ³	(E) 475 m ³