Static and Kinetic Friction

Objective:

- 1. To find the **coefficient of static friction** μ_s .
- **2.** To find the **coefficient of kinetic friction** μ_k

Theory:

Friction is the force that resists the relative motion of one surface in contact with another. There are two types of friction, **static and kinetic**. When friction acts on an object that is **at rest**, we refer to the frictional force as **static friction**. An object that is in **motion** is subject to **kinetic friction**.

Static friction:

When we want to push a heavy object, static friction is the force that you must overcome to get it moving. The maximum force of static friction $f_{s.max}$ is given by:

$$f_{s, max} = \mu_s F_N$$

where,

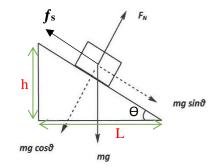
 μ_s is the coefficient of static friction, μ_s is a **dimensionless**. **F**_N is the normal force on the body from the surface. (N).

A common example of a static friction force is that of a stationary mass on an incline. If the angle at which the mass begins to slide is known, we can determine μ_s . Since if we are interested in the instant at which movement begins, we are dealing with an object in equilibrium. Thus, the **resultant force** in both the x and y directions must be **zero**. Analysis of the forces in the **x-direction**:

$$f_{\rm s} = {\rm mg \ sin}\theta$$

Following a similar procedure for the **y-direction**:

$$F_N = mg \cos\theta$$

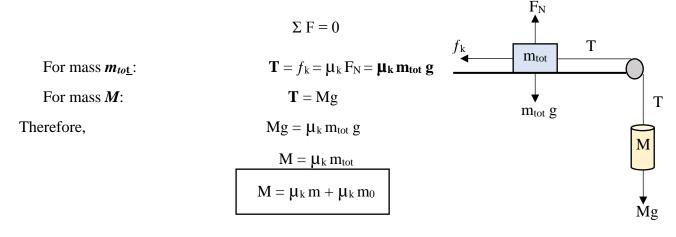

However, we know that at the instant that the mass begins to move:

$$f_s = f_{s, max} = \mu_s F_N$$

 $mg \sin\theta = \mu_s mg \cos\theta$

$$\mu_s = tan\theta = h/L$$

Note that μ s depends on the object and the surface it is laying upon.



Kinetic friction:

Once the force applied on a mass exceeds $f_{s, max}$ and the mass begins to move, a kinetic friction force f_k exists. Kinetic friction coefficients μ_k are generally less than static friction coefficients μ_s , which is the reason that it is much easier to keep a heavy object in motion than it is to start it in motion. The magnitude of the kinetic frictional force is given as follows:

$$f_k = \mu_k F_N$$

In Figure, when the mass M falls, the block m_{tot} slides on the horizontal surface. If the mass M is chosen so that its weight just balances the friction force, then the masses **move at constant speed**. When applying newton's law to the system:

Where,
m_{tot} = m + m₀
M is the hanged mass (g)
m₀ is the block's mass (g)
m are the masses added over the block m₀ (g)
μ_k is the coefficient of kinetic friction, μ_k is a dimensionless.

Then μ_k and \mathbf{m}_0 are given by:

$$\mu_{k} = \text{slope}$$

$$m_{0} = \frac{V.I}{\mu_{k}}$$

Apparatus:

Static friction		Kinetic friction		
Inclined plane	Block	Table	Block	Small pulley
Support		String	Holder	Masses

Procedure:

> Static friction:

- 1. Measure the high of support h.
- 2. Set up the inclined plane so that the support is the farthest possible point from the pivot. Place the block on the inclined plane with the wooden side down.
- **3.** Slowly move the support inward. Keep moving the support inward until the block starts to slide.
- 4. Measure that distance L between the angle and the support and find the value of $\mu_{s.}$
- 5. Return the support to its original position and repeat the above steps.
- 6. Find the average value of μ_{s} .

kinetic friction:

- 1. Measure the block's mass m_0 and the mass of the holder M_1 by using the mass balance.
- 2. Attach the pulley to the surface keeping the surface horizontal. Set the block \mathbf{m}_0 on the surface. Hang a second mass \mathbf{M} at the end of a string passing over the pulley.
- 3. Increase M until it causes the system to move with **constant speed**.
- **4.** Add each time **50** g on top of the block \mathbf{m}_0 and add masses to the hanged weight till the block starts moving.
- 5. Repeat the steps and tabulate the results.
- 6. Graph the relation between the mass **m** on the **x-axis** and the mass **M** on the **y-axis** and **calculate the slope.**
- 7. Use the graph to calculate the **coefficient of kinetic friction** μ_k and the block's mass m_0 .