## Projectile Motion

## Objective:-

To calculate the initial velocity $\boldsymbol{v}_{0}$ of the projectile.

## Theory:-

A particle moves in a vertical plane with some initial velocity $\boldsymbol{v}_{\mathbf{0}}$ but its acceleration is always the freefall acceleration $\mathbf{g}$, which is downward. Such a particle is called a projectile (meaning that it is projected or launched), and its motion is called projectile motion.

If neglecting frictional forces, such as air resistance, an object projected from a launcher undergoes a motion that is the simple vector combination of uniform velocity in the horizontal direction and uniform acceleration in the vertical direction (acceleration of gravity $\mathbf{g}$ ) but the acceleration in x direction is zero. For a projectile launched with a speed $\boldsymbol{v}_{\mathbf{0}}$ at an angle $\boldsymbol{\theta}_{\boldsymbol{0}}$ with respect to the positive $x$ axis, it can be shown that the trajectory caused by such a combination predicts a parabolic shape.

In projectile motion, the horizontal motion and the vertical motion are independent of each other; that is, neither motion affects the other.


The horizontal range R of the projectile is the horizontal distance the projectile has travelled when it returns to its initial height and is given by:

$$
R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0}
$$

$$
v_{0}=\sqrt{g \times s l o p e}
$$

The horizontal range R is maximum for a launch angle of $45^{\circ}$.

## Apparatus:

| Projectile Launcher | Plastic ball | Table |
| :---: | :---: | :---: |
| Paper target | Meter stick |  |



## Procedure:

1. Be sure the Projectile Launcher and paper target at the same height.
2. The launcher has three ranges: each range is determined by a click in the spring launcher and is also marked on the side of the launcher. Be sure to use the first click (short range setting).
3. Set up a projectile launcher at a $30^{\circ}$ angle.
4. Fire the launcher, plastic ball now would leave a mark on the paper target. Measure the horizontal distance (R) by using a meter stick from the launcher to the paper.
5. Record the ranges for different values of $\boldsymbol{\theta}_{0}$ and tabulate the result.
6. Graph the relation between the $\boldsymbol{\operatorname { s i n }} \mathbf{2 \theta}_{0}$ on the $\mathbf{x}$-axis and the $\mathbf{R}$ on the $\mathbf{y}$-axis and calculate the slope.
7. Use the graph to calculate the initial velocity $\mathbf{v} \mathbf{0}$.
