Q1. Problem 21.3 (page 630)
Evaluate the following integral:

$$
\int_{-2}^{4}\left(1-x-4 x^{3}+2 x^{5}\right) d x
$$

(a) analytically
(b) single application of the trapezoidal rule
(c) composite trapezoidal rule, with $n=2$ and 4
(d) single application of Simpson's $1 / 3$ rule; (e) Simpson's $3 / 8$ rule
(f) determine the percent relative error based on (a) for (b), (c), and (d).

Q2. Problem 21.10 (page 630)

Evaluate the integral of the following tabular data with
(a) the trapezoidal rule
(b) Simpson's rules:

\boldsymbol{x}	0	0.1	0.2	0.3	0.4	0.5
$\boldsymbol{f}(\boldsymbol{x})$	1	8	4	3.5	5	1

Q3. Problem 23.1 (page 670)
Compute forward and backward difference approximations of $O(h)$ and $O\left(h^{2}\right)$, and central difference approximations of $O\left(h^{3}\right)$ and $O\left(h^{4}\right)$ for the first derivative of $y=\cos x$ at $x=\pi / 4$ using a value of $h=\pi / 12$. Estimate the true percent relative error ε_{t} for each approximation.

Q4. Example 23.5 (page 666)
Resolve it completely and provide your MATLAB code and results including figures and data.

