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• Differential equations play a fundamental role in engineering. Many 
physical phenomena are best formulated in terms of their rate of change: 
 

 

 

 

 

• Equations which are composed of an unknown function and its 
derivatives are called differential equations. 

 

• One independent variable  ordinary differential equation (or ODE)  

• Two or more independent variables  partial diff.  equation (or 
PDE) 
 

• A first order equation includes a first derivative as its highest derivative 

• Second order equation includes second derivative 
 

• Higher order equations can be reduced to a system of first order 
equations, by redefining the variables. 
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ODEs and Engineering Practice 
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Solving Ordinary Differential Equations (ODEs) 

• This chapter is devoted to solving ordinary 

differential equations (ODEs) of the form 
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Euler’s Method 

• First derivative provides a direct estimate of 

the slope at xi: 
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Error Analysis for Euler’s Method 
 

• Numerical solutions of ODEs involves two types of error: 

– Truncation error 

• Local truncation error 

• Propagated  truncation error 

    The sum of the two is the total or global truncation error 

– Round-off errors  (due to limited digits in representing numbers in a computer) 

• We can use Taylor series to quantify the local truncation error in Euler’s method.  

 

 

 

 

 

 

 

• The error is reduced by 4 times if the step size is halved   O(h2). 

• In real problems, the derivatives used in the Taylor series are not easy to obtain. 

• If the solution to the differential equation is linear, the method will provide error free 
predictions (2nd derivative is zero for a straight line). 
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Example:  Euler’s Method 

Solve numerically : 

 

From x=0 to x=4 with step size h=0.5 

  initial condition:   (x=0 ; y=1) 

 

Exact Solution: y = -0.5x4 + 4x3 - 10x2 + 8.5x + 1 

Numerical  

Solution: 

 

y(0.5) = y(0)+f(0, 1)0.5 = 1+8.5*0.5 = 5.25 

(true solution at x=0.5 is y(0.5) = 3.22  and et = 63%) 

 

y(1) = y(0.5)+f(0.5, 5.25)0.5 

       = 5.25+[-2(0.5)3+12(0.5)2-20(0.5)+8.5]*0.5 

       = 5.25+0.625 = 5.875 

(true solution at x=1 is y(1) = 3 and  et = 96%) 

y(1.5) = y(1)+f(1, 5.875)0.5 = 5.125 

….                 

5.820122 23  xxx
dx

dy

hyxfyy iii ),(1i 

X yeuler ytrue Error 
Global 

Error 
Local 

0 1 1 % % 

0.5 5.250 3.218 63.1 63.1 

1.0 5.875 3.000 95.8 28 

1.5 5.125 2.218 131.0 1.41 

2.0 4.500 2.000 125.0 20.5 
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Improvements of Euler’s method 

 

• A fundamental source of error in Euler’s method is that the 

derivative at the beginning of the interval is assumed to 

apply across the entire interval. 

 

• Two simple modifications are available to circumvent this 

shortcoming: 
 

– Heun’s Method 

– The Midpoint (or Improved Polygon) Method 
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• To improve the estimate of the slope, 
determine two derivatives for the interval: 

• At the initial point 

• At the end point 

 

• The two derivatives are then averaged to 
obtain an improved estimate of the slope 
for the entire interval. 
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Note that the corrector can be iterated to improve the 
accuracy of yi+1.  

Original Huen’s: 

However, it does not necessarily converge on the true answer 
but will converge on an estimate with a small error. 
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• Uses Euler’s method to predict a 

value of y using the slope value at 

the midpoint of the interval: 
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Runge-Kutta Methods (RK) 

• Runge-Kutta methods achieve the accuracy of a Taylor series approach 

without requiring the calculation of higher derivatives. 
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Runge-Kutta Methods (cont.) 

• Various types of  RK methods can be devised by employing different number 

of terms in the increment function as specified by n. 

 

• First order RK method with n=1 and a1 =1 is in fact Euler’s method. 
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Second-order Runga-Kutta Methods: 

 

 
 

 

• Values of a1, a2, p1, and q11 are evaluated by setting the above equation 

equal to a Taylor series expansion to the second order term. This way, three 

equations can be derived to evaluate the four unknown constants (See Box 

25.1 for this derivation). 
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• Because we can choose an infinite number of values for a2,  

 there are an infinite number of second-order RK methods. 

 

Three of the most commonly used methods are: 

– Huen’s Method with a Single Corrector (a2=1/2) 

 

– The Midpoint Method (a2=1) 

 

– Ralston’s Method (a2=2/3) 
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The Midpoint Method (a2 = 1)    
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• Three most commonly used 
methods: 

 

– Huen Method with a Single 
Corrector (a2=1/2) 

 

– The Midpoint Method (a2=1) 

 

– Ralston’s Method (a2=2/3) 
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Systems of Equations 

• Many practical problems in engineering and science require the solution of a 

system of simultaneous ordinary differential equations (ODEs) rather than a 

single equation: 

 

 

 

 

 

 

 

• Solution requires that n initial conditions be known at the starting value of x. 

 i.e.   (x0, y1(x0), y2(x0), …, yn(x0)) 
 

• At iteration i,  n values  (y1(xi), y2(xi), …, yn(xi)) are computed. 
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