## Numerical Methods for Engineers

Steven C. Chapra Raymond P. Canale Fifin Emimon

# Numerical Solution of <br> Ordinary Differential Equations 

Chapter 25

## Differential Equations

- Differential equations play a fundamental role in engineering. Many physical phenomena are best formulated in terms of their rate of change:

$$
\frac{d v}{d t}=g-\frac{c}{m} v
$$

$V$ - dependent variable
$t$ - independent variable

- Equations which are composed of an unknown function and its derivatives are called differential equations.
- One independent variable $\rightarrow$ ordinary differential equation (or $O D E$ )
- Two or more independent variables $\rightarrow$ partial diff. equation (or PDE)
- A first order equation includes a first derivative as its highest derivative
- Second order equation includes second derivative
- Higher order equations can be reduced to a system of first order equations, by redefining the variables.


## ODEs and Engineering Practice



$$
\frac{d v}{d t}=g-\frac{c}{m} v
$$



Swinging pendulum
$\frac{d^{2} \theta}{d t^{2}}+\frac{g}{l} \sin \theta=0$
A second-order nonlinear ODE.

Falling parachutist problem

## Solving Ordinary Differential Equations (ODEs)

- This chapter is devoted to solving ordinary differential equations (ODEs) of the form

$$
\frac{d y}{d x}=f(x, y)
$$

New value $=$ old value + slope $*($ step_size $)$
$y_{i+1}=y_{i}+\phi^{*} h$

## Euler's Method

- First derivative provides a direct estimate of the slope at $X_{i}$ :
$\phi=f\left(x_{i}, y_{i}\right) \quad$ (diff.equ.e valuatedt $x_{i}$ and $\left.y_{i}\right)$ then,
$y_{i+1}=y_{i}+f\left(x_{i}, y_{i}\right) h$



## Error Analysis for Euler's Method

- Numerical solutions of ODEs involves two types of error:
- Truncation error
- Local truncation error
- Propagated truncation error

The sum of the two is the total or global truncation error

- Round-off errors (due to limited digits in representing numbers in a computer)
- We can use Taylor series to quantify the Iocal truncation error in Euler's method.

- The error is reduced by 4 times if the step size is halved $\rightarrow O\left(h^{2}\right)$.
- In real problems, the derivatives used in the Taylor series are not easy to obtain.
- If the solution to the differential equation is linear, the method will provide error free predictions ( $2^{\text {nd }}$ derivative is zero for a straight line).


## Example: Euler's Method

Solve numerically: $\quad \frac{d y}{d x}=-2 x^{3}+12 x^{2}-20 x+8.5$
From $\mathbf{x}=\mathbf{0}$ to $\mathbf{x}=\mathbf{4}$ with step size $\mathbf{h}=\mathbf{0 . 5}$ initial condition: $\quad(\mathrm{x}=0 ; \mathrm{y}=1)$

Exact Solution: $y=-0.5 x^{4}+4 x^{3}-10 x^{2}+8.5 x+1$ Numerical
Solution:

$$
y_{i+1}=y_{i}+f\left(x_{i}, y_{i}\right) h
$$

$y(0.5)=y(0)+f(0,1) 0.5=1+8.5 * 0.5=5.25$
(true solution at $\mathrm{x}=0.5$ is $\mathrm{y}(0.5)=3.22$ and $\varepsilon_{\mathrm{t}}=63 \%$ )

$$
\begin{aligned}
y(1) & =y(0.5)+f(0.5,5.25) 0.5 \\
& =5.25+\left[-2(0.5)^{3}+12(0.5)^{2}-20(0.5)+8.5\right]^{*} 0.5 \\
& =5.25+0.625=5.875
\end{aligned}
$$

(true solution at $\mathrm{x}=1$ is $\mathrm{y}(1)=3$ and $\varepsilon_{\mathrm{t}}=96 \%$ )
$y(1.5)=y(1)+f(1,5.875) 0.5=5.125$


| $\mathbf{X}$ | $\mathbf{y}_{\text {euler }}$ | y true | Error <br> Global | Error <br> Local |
| ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | 1 | $\%$ | $\%$ |
| 0.5 | 5.250 | 3.218 | 63.1 | 63.1 |
| 1.0 | 5.875 | 3.000 | 95.8 | 28 |
| 1.5 | 5.125 | 2.218 |  |  |
| 2.0 | 4.500 | 2.000 | 125.0 | 20.5 |



## Improvements of Euler's method

- A fundamental source of error in Euler's method is that the derivative at the beginning of the interval is assumed to apply across the entire interval.
- Two simple modifications are available to circumvent this shortcoming:
- Heun's Method
- The Midpoint (or Improved Polygon) Method


## Heun's method

- To improve the estimate of the slope, determine two derivatives for the interval:
- At the initial point
- At the end point
- The two derivatives are then averaged to obtain an improved estimate of the slope for the entire interval.

$$
\begin{array}{|ll|}
\hline \text { Predictor: } & y_{i+1}^{0}=y_{i}+f\left(x_{i}, y_{i}\right) h \\
\text { Corrector : } & y_{i+1}=y_{i}+\frac{f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, y_{i+1}^{0}\right)}{2} h
\end{array}
$$



## Heun's method (improved)

## Original Huen's:

| Predictor: | $y_{i+1}^{0}=y_{i}+f\left(x_{i}, y_{i}\right) h$ |
| :--- | :--- |
| Corrector : | $y_{i+1}=y_{i}+\frac{f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, y_{i+1}^{0}\right)}{2} h$ |

Note that the corrector can be iterated to improve the accuracy of $y_{i+1}$.

$$
\begin{array}{|l|}
\text { Predictor : } y_{i+1}^{0}=y_{i}+f\left(x_{i}, y_{i}\right) h \\
\text { Corrector }: y_{i+1}^{j}=y_{i}+\frac{f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, y_{i+1}^{j-1}\right)}{2} h \quad j=1,2, \ldots
\end{array}
$$

However, it does not necessarily converge on the true answer but will converge on an estimate with a small error.

## The Midpoint (or Improved Polygon) Method

- Uses Euler's method to predict a value of $y$ using the slope value at the midpoint of the interval:

(a)

(b)


## Runge-Kutta Methods (RK)

- Runge-Kutta methods achieve the accuracy of a Taylor series approach without requiring the calculation of higher derivatives.

$$
\begin{aligned}
& y_{i+1}=y_{i}+\phi\left(x_{i}, y_{i}, h\right) h \\
& \phi=a_{1} k_{1}+a_{2} k_{2}+\cdots+a_{n} k_{n}
\end{aligned}
$$

## IncrementFunction

 $a$ 's areconstants$k_{1}=f\left(x_{i}, y_{i}\right)$
$k_{2}=f\left(x_{i}+p_{1} h, y_{i}+q_{11} k_{1} h\right) \quad \quad p^{\prime} \mathbf{s}$ and $q$ 's are constants
$k_{3}=f\left(x_{i}+p_{3} h, y_{i}+q_{21} k_{1} h+q_{22} k_{2} h\right)$
$k_{n}=f\left(x_{i}+p_{n-1} h, y_{i}+q_{n-1} k_{1} h+q_{n-1,2} k_{2} h+\cdots+q_{n-1, n-1} k_{n-1} h\right)$

## Runge-Kutta Methods (cont.)

- Various types of RK methods can be devised by employing different number of terms in the increment function as specified by $n$.
- First order RK method with $n=1$ and $a_{1}=1$ is in fact Euler's method.

$$
\begin{aligned}
& y_{i+1}=y_{i}+\phi\left(x_{i}, y_{i}, h\right) h \\
& \phi=a_{1} k_{1}+a_{2} k_{2}+\cdots+a_{n} k_{n} \\
& k_{1}=f\left(x_{i}, y_{i}\right)
\end{aligned}
$$

choose $\mathrm{n}=1$ and $\mathrm{a}_{1}=1$, weobtain

$$
y_{i+1}=y_{i}+f\left(x_{i}, y_{i}\right) h
$$

(Euler' s Method)

## Runge-Kutta Methods (cont.)

## Second-order Runga-Kutta Methods:

$$
\begin{aligned}
& y_{i+1}=y_{i}+\left(a_{1} k_{1}+a_{2} k_{2}\right) h \\
& k_{1}=f\left(x_{i}, y_{i}\right) \quad k_{2}=f\left(x_{i}+p_{1} h, y_{i}+q_{11} k_{1} h\right)
\end{aligned}
$$

- Values of $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{p}_{1}$, and $\mathbf{q}_{11}$ are evaluated by setting the above equation equal to a Taylor series expansion to the second order term. This way, three equations can be derived to evaluate the four unknown constants (See Box 25.1 for this derivation).

A value is assumed for one of the unknowns to solve for the other three.

$$
\left\{\begin{array}{l}
a_{1}+a_{2}=1 \\
a_{2} p_{1}=\frac{1}{2} \\
a_{2} q_{11}=\frac{1}{2}
\end{array}\right.
$$

$$
\begin{array}{lll}
y_{i+1}=y_{i}+\left(a_{1} k_{1}+a_{2} k_{2}\right) h & a_{1}+a_{2}=1 \\
k_{1}=f\left(x_{i}, y_{i}\right) & k_{2}=f\left(x_{i}+p_{1} h, y_{i}+q_{11} k_{1} h\right) & a_{2} p_{1}=\frac{1}{2}
\end{array}
$$

- Because we can choose an infinite number of values for $a_{2}$, $a_{2} q_{11}=\frac{1}{2}$


## Three of the most commonly used methods are:

- Huen's Method with a Single Corrector ( $a_{2}=1 / 2$ )
- The Midpoint Method $\left(a_{2}=1\right)$
- Ralston's Method $\left(a_{2}=2 / 3\right)$

Huen's Method $\left(a_{2}=1 / 2\right) \quad \rightarrow \quad a_{1}=1 / 2 \quad p_{1}=1 \quad q_{11}=1$

$$
\begin{array}{rlrl}
y_{i+1}=y_{i}+\left(a_{1} k_{1}+a_{2} k_{2}\right) h & =y_{i}+\left(\frac{1}{2} k_{1}+\frac{1}{2} k_{2}\right) h \\
k_{1}=f\left(x_{i}, y_{i}\right) & k_{2} & =f\left(x_{i}+h, y_{i}+k_{1} h\right)
\end{array}
$$

$$
\begin{aligned}
& y_{i+1}=y_{i}+\left(a_{1} k_{1}+a_{2} k_{2}\right) h \\
& a_{1}+a_{2}=1 \\
& k_{1}=f\left(x_{i}, y_{i}\right) \quad k_{2}=f\left(x_{i}+p_{1} h, y_{i}+q_{11} k_{1} h\right) \\
& a_{2} p_{1}=\frac{1}{2} \\
& \text { The Midpoint Method ( } a_{2}=1 \text { ) } \\
& a_{2} q_{11}=\frac{1}{2} \\
& \rightarrow \rightarrow \quad a_{1}=0 \quad p_{1}=1 / 2 \quad q_{11}=1 / 2 \\
& y_{i+1}=y_{i}+\left(a_{1} k_{1}+a_{2} k_{2}\right) h=y_{i}+\left(k_{2}\right) h \\
& k_{1}=f\left(x_{i}, y_{i}\right) \\
& k_{2}=f\left(x_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{1} h\right) \\
& y_{i+1}=y_{i}+\left(k_{2}\right) h=y_{i}+f\left(x_{i}+\frac{h}{2}, y_{i}+\frac{h}{2} f\left(x_{i}, y_{i}\right)\right) h
\end{aligned}
$$

- Three most commonly used methods:
- Huen Method with a Single Corrector ( $a_{2}=1 / 2$ )
- The Midpoint Method ( $a_{2}=1$ )
- Ralston's Method ( $a_{2}=2 / 3$ )

Ralston's Method ( $a_{2}=2 / 3$ )

$$
\begin{array}{ll}
y_{i+1}=y_{i}+\left(a_{1} k_{1}+a_{2} k_{2}\right) h & =y_{i}+\left(\frac{1}{3} k_{1}+\frac{2}{3} k_{2}\right) \boldsymbol{h} \\
k_{1}=f\left(x_{i}, y_{i}\right) & k_{2}=f\left(x_{i}+\frac{3}{4} h, y_{i}+\frac{3}{4} k_{1} h\right)
\end{array}
$$

Comparison of Various Second-Order RK Methods


## Systems of Equations

- Many practical problems in engineering and science require the solution of a system of simultaneous ordinary differential equations (ODEs) rather than a single equation:

$$
\begin{aligned}
& \frac{d y_{1}}{d x}=f_{1}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
& \frac{d y_{2}}{d x}=f_{2}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
& \vdots \\
& \frac{d y_{n}}{d x}=f_{n}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)
\end{aligned}
$$

- Solution requires that $n$ initial conditions be known at the starting value of $x$. i.e. $\left(x_{0}, y_{l}\left(x_{0}\right), y_{2}\left(x_{0}\right), \ldots, y_{n}\left(x_{0}\right)\right)$
- At iteration $i$, n values $\left(y_{l}\left(x_{i}\right), y_{2}\left(x_{i}\right), \ldots, y_{n}\left(x_{i}\right)\right)$ are computed.

