Steven C. Chapra

taymond P. Canale

FDT ETT giTT CCTS Firm Enimion

Numerical Solution
of
Ordinary Differential Equations

Chapter 25




Differential Equations

« Differential equations play a fundamental role in engineering. Many
physical phenomena are best formulated in terms of their rate of change:

dv C v- dependent variable
dt m t- independent variable

 Equations which are composed of an unknown function and its
aerivatives are called differential equations.

« One independent variable =» orainary differential equation (or ODE)

« Two or more independent variables = partial diff. equation (or
PDE)

A first order equation includes a first derivative as its highest derivative
« Second order equationincludes second derivative

 Higher order equations can be reduced to a system of first order
equations, by redefining the variables.
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ODEs and Engineering Practice

Physical law F=ma
.
\.
1 \
ODE Doog-Ly .
r S Tm Swinging pendulum
d’6 g .
Analytical Numerical +>=siné=0
/ \ dt® |
Solution p =81 _ o) Vie1 = v+ (g = Sv)Ar A second-order

nonlinear ODE.

Falling parachutist problem
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Solving Ordinary Differential Equations (ODESs)

« This chapter is devoted to solving ordinary
differential equations (ODESs) of the form

dy
— = f(x,
i (X, )

New value =old value + slope * (step_size)
Yia=Y;+o*h

Euler’s Method

* First derivative provides a direct estimate of
the slope at x;

¢=T(X;,y;) (diffequevaluatedtx; andy;)
then,
Yiia=Yi t 1:(Xi , yu)h
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Error Analysis for Euler’s Method

« Numerical solutions of ODEs involves two types of error:
— Truncation error
« Local truncation error
» Propagated truncation error
The sum of the two is the fotal or global truncation error
— Round-offerrors (due to limited digits in representing numbers in a computer)

« We can use Taylor series to quantify the /ocal truncation error in Euler’s method.

Given y'= f(Xx,Y)

e PO e g

i (n)
yi+1=yi+yi'h+£h2+...+y‘—h“+Rn : 2!
2! n!

112

' (n-1)
Vi = Yo+ O yORH eI e T W e ooy | B

EULER Local Truncation ERROR

a

00 Y) e s
I~ o(h')

« The error is reduced by 4 times if the step size is halved = O(f¥).
* Inreal problems, the derivatives used in the Taylor series are not easy to obtain.

« |f the solution to the differential equation is /inear, the method will provide error free
predictions (2" derivative is zero for a straight line).
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Example: Euler’s Method
Solve numerically :

oy _ —2x> +12x* —20x+8.5
dx

From x=0 to x=4 with step size h=0.5
initial condition. (x=0 ; y=1)

Exact Solution: y =-0.5x+ 4x%- 10x°+ 8.5x+ 1
Numerical

Solution: Via =V + f (Xi’ yl)h

y(0.5) = y(0)+#0, 1)0.5 = 1+8.5*0.5 = 5.25
(true solution at x=0.5 is y(0.5) = 3.22 and ¢, = 63%)

y(1) = y(0.5)+£0.5, 5.25)0.5
= 5.25+[-2(0.5)3+12(0.5)?-20(0.5)+8.5]*0.5

= 5.25+0.625 = 5.875
(true solutionat x=1is y(1) = 3 and &, = 96%)

y(L.5) = y(1)+A1, 5.875)0.5 = 5.125
>95>
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Improvements of Euler’s method

» A fundamental source of error in Euler’s method 1s that the
derivative at the beginning of the interval is assumed to
apply across the entire interval.

« Two simple modifications are available to circumvent this
shortcoming:

— Heun’s Method
— The Midpoint (or Improved Polygon) Method
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Heun’s method

« To improve the estimate of the slope,

determine two derivatives for the interval: | Slope =fe, oV g
« At the initial point Slope = /O
« At the end point y i
|
/g | I
 The two derivatives are then averaged to / i i
obtain an improved estimate of the slope V4 I i

for the entire interval. /
(a)

¥ slope—j(‘ \)+f(\+, y; +,)

: . /f.-,»:»-:j;‘;t?éé’*g
Predictor: y., =V, + f(x,y)h j/ =
0 y |
Corrector : y., =Yy + F O, Y+ (X, Yie) h / i i
2 74/ | |
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Heun’s method (Improved)

Original Huen’s:

Predictor : y ,=vy. + f(x,y,)h

f (X, y)+ (X, yio+1) h
2

Corrector : vy, , =Y, +

Note that the corrector can be iterated to improve the
accuracy of yi,,.

Predictor :y., =y, + f(x,, y,)h

f(Xl’yl)_l_-I:(X|+1’y|+1)h J:12
2 s Ly

Corrector :y! =y, +

However, it does not necessarily converge on the true answer
but will converge on an estimate with a small error.

Example 25.5 from Textbook
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The Midpoint (or Improved Polygon) Method

v Slope = f(x;, 12 Yi+ 1/2)

» Uses Euler’s method to predict a
value of )y using the slope value at

al
|
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|
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X;

the midpoint of the interval:

Xi 4 1/2

(a)

y A ] y
: Slope —f(.li + 12 Yi+ 1/2)

h
Yiwo = Yi + T (X, yi)E

[

e e e s et e A

Yia =Yi + T (X120 Yiias2)D
(b)
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Runge-Kutta Methods (RK)

» Runge-Kutta methods achieve the accuracy of a Taylor series approach
without requiring the calculation of higher derivatives.

Yiie =Y, +¢(Xi  Yio h)h
¢ — alk1 +a, k2 +---4da, kn IncrementFunction
a’' s areconstants

K = T(X,Y;)
K, = T (X + p;h,y, +0q,kh) p'sandg’s are constants

Ks = T (X + psh, y; + 0,k h+0a,,k;h)

kn = f (Xi + pn—lh’ Yi t qn—lklh + qn—1,2k2h Tt qn—l,n—lkn—lh)



Runge-Kutta Methods (cont.)

« Various types of RK methods can be devised by employing different number
of terms in the increment function as specified by 7.

* First order RK method with 7=1 and &, =1 is in fact Euler’s method.

Yia =Y, +¢(Xi’ yl’h)h
¢=ak +ak,+---+ak

kp = 1(x,Y;)

choose n=1 and a,=1, weobtain

Vi, =Y+ f(X,y)h (Euler’ s Method)



Runge-Kutta Methods (cont.)

Second-order Runga-Kutta Methods:

Yia =Y +(ak, +a,k;)h
Ky = T(X;, ¥:) K, = (X + p.h, y; +a,.k;h)

* Values of a,, a,, p;, and q,, are evaluated by setting the above equation
equal to a 7aylor series expansionto the second order term. This way, three
equations can be derived to evaluate the four unknown constants (See Box
25.1 for this derivation).

" a,+a,=1
3 B 1
A value is assumed for one of the < Py = 2
unknowns to solve for the other three. 1
a0, =+
_ 2
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Yia =Y +(ak, +a,k;,)h a+a,=1
k, = (X, ;) k, = T (X; + p;h, y; + 0.,k h)

« Because we can choose an infinite number of values for a,,
there are an infinite number of second-order RK methods. a,0; =

Three of the most commonly used methods are:
—Huen’s Method with a Single Corrector (a,~1/2)

—The Midpoint Method (a~1)

— Ralston’s Method (a,~2/3)

Huen’s Method (a,=1/2) = a,=12 p,=1 ¢q,=1

yi+1
Ky = T (X, ) K, = T(X +h,y; +kh)

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1 1
Yi +(a1k1 +a2k2)h = Y, "‘(E k1 +§k2)h



Yia=Yit (alkl + azkz)h

a +a,=1
k]_ = f (Xi’ yl) k2 =f (Xi + plh, Yi + qllklh) 1
ap, =
2
1
The Midpoint Method (a,= 1) a,0,, = 7

>>-> a,=0 p,=12 q,,=1/2

Yie = Y +(ak, +a,k;)h =y, +(k,)h
k= (%00 ¥) o = £+ 2y, + 2 k)

h h
Yia = yi+(k2)h:yi+f(xi+§1yi+§f(xi’yi))h



» Three most commonly used
methods:

—Huen Method with a Single
Corrector (a~1/2)

—The Midpoint Method (a~1)

—Ralston’s Method (a~2/3)

Ralston’s Method (a~2/3)

yi+1

k1: f(wai)

y. +(a,k; +a,k,)h

— Analytical
Y4 @=—@ Euler
B Heun

@ Midpoint
A=A Ralston

1 2
= Y+ Gkt k)N

3 3
k, =f(xX.+—h,y. +—Kkh
2 (I 4 yl 4 1)
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Systems of Equations

« Many practical problems in engineering and science require the solution of a
system of simultaneous ordinary differential equations (ODES) rather than a
single equation:

ay

= 1,06 Y, Yo, Y,
. L O6 Y1 Yareea Vi)

d
%: fZ(X’ yl,y21°"’yn)

dy,
dx

« Solution requires that » initial conditions be known at the starting value of x.
L.e. (Xp VX0 VAXD) - Vi{X0)

=f (XY, Y- Y,)

o At iteration /, nvalues (V/x), VAx), ..., V(X)) are computed.
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