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~ Numerical Differentiation and Integration ~

Newton-Cotes Integration Formulas

Chapter 21
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• Calculus is the mathematics of change. Since engineers continuously deal with 

systems and processes that change, calculus is an essential tool of engineering.

• Standing at the heart of calculus are the concepts of:
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• Based on the strategy of replacing a

complicated function or tabulated data

with an approximating function that is 

easy to integrate:

Zero order approximation First-order Second-order 
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Error:

where x lies somewhere in the 

interval from a to b

The Trapezoidal Rule

• Use a first order polynomial in 
approximating the function f(x) :

• The area under this first order 
polynomial is an estimate of the 
integral of f(x) between a and b:

Trapezoidal rule
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Example 21.1 Single Application of the Trapezoidal Rule

f(x) = 0.2 +25x – 200x2 + 675x3 – 900x4 + 400x5

Integrate f(x) from  a=0 to b=0.8
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Solution: f(a)=f(0) = 0.2  and   f(b)=f(0.8) = 0.232
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• The accuracy can be improved by dividing the 

interval from a to b into a number of segments 

and applying the method to each segment.

• The areas of individual segments are added to 

yield the integral for the entire interval.

Using the trapezoidal rule, we get:
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The Multiple-Application Trapezoidal Rule
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• Error estimate for one segment is given as:

• An error for multiple-application trapezoidal rule can be obtained by 
summing the individual errors for each segment:

Thus, if the number of segments is doubled,

the truncation error will be quartered.

3( )
( )

12
t

b a
E f x

−
=

3
" " "

1

3
"

3
" 2 " 2

2

where "  is the mean of the second derivative over the interval

                     

( )       since     ( )
12

  
12

( ) ( ) ( )
O( )

12 12
Since  

n

a i i

i

a

a

f

h
E f f nf

h
E nf

b a b a b a
h E f h f h

n n

x x
=

= 

=

− − −
= = = =

 

The Error Estimate for 

The Multiple-Application Trapezoidal Rule



Copyright © 2006 The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

Simpson’s Rules

• More accurate estimate of an integral is obtained if 
a high-order polynomial is used to connect the 
points. These formulas are called Simpson’s rules.

Simpson’s 1/3 Rule: results when a 2nd order 
Lagrange interpolating polynomial is used for f(x)
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• Just as the trapezoidal rule, Simpson’s rule can be improved by dividing the 
integration interval into a number of segments of equal width.

• However, it is limited to cases where values are equispaced, there are an even 
number of segments and odd number of points.

The Multiple-Application Simpson’s 1/3 Rule
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Simpson’s 3/8 Rule

Simpson’s 1/3 and 3/8 rules can be 
applied in tandem to handle 
multiple applications with odd 
number of intervals

Fit a 3rd order Lagrange interpolating 
polynomial to four points and integrate
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Newton-Cotes Closed Integration Formulas

Points Name Formula Truncation

Error

2 Trapezoidal (b-a) * (f(x0)+ f(x1))/2 (1/12)(b-a)3f”(ξ)

3 Simpson’s 

1/3

(b-a) * (f(x0)+ 4f(x1)+f(x2))/6 (1/2880)(b-a)5f(4)(ξ)

4 Simpson’s 

3/8

(b-a) * (f(x0)+ 3f(x1)+ 3f(x2)+ f(x3))/8 (1/6480)(b-a)5f(4)(ξ)

5 Boole’s (b-a) * (7f(x0) + 32f(x1) + 12f(x2) + 32f(x3) 

+ 7f(x4))/90

proportional with (b-a)7

Same order, 

but Simpson’s 3/8 is more accurate 

In engineering practice, higher order (greater than 4-point) formulas are rarely used 
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Integration with Unequal Segments

Example 21.7
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x f(x) x f(x)
0.0 0.2 0.44 2.842

0.12 1.309 0.54 3.507

0.22 1.305 0.64 3.181
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Data for    

f(x)= 0.2+25x-200x2+675x3-900x4+400x5

which represents a relative error of  = 2.8%

Using Trapezoidal Rule
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Compute Integrals Using MATLAB

First, create a file called fx.m which contains f(x):

function y = fx(x)

y = 0.2+25*x-200*x.^2+675*x.^3-900*x.^4+400*x.^5 ;

Then, execute in the command window:

>> Q=integral('fx', 0, 0.8)        % true integral

Q =1.6405         true value

>> x=[0  .12  .22  .32  .36  .4  .44  .54  .64  .7  .8]

>> y = fx(x)

y = 0.200    1.309    1.305    1.743    2.074   2.456    

2.843    3.507    3.181    2.363    0.232

>> I = trapz(x,y)              %  or trapz(x, fx(x)) 

Integral =1.5948

Demo: (how I changes wrt n) + (0th order approx. With large n).

x f(x) x f(x)
0.0 0.2 0.44 2.842

0.12 1.309 0.54 3.507

0.22 1.305 0.64 3.181

0.32 1.743 0.70 2.363

0.36 2.074 0.80 0.232

0.40 2.456
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~ Numerical Differentiation and Integration ~

Integration of Equations

Chapter 22
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Romberg Integration
Successive application of the trapezoidal rule to attain efficient numerical integrals of functions.

Richardson’s Extrapolation: In numerical analysis, Richardson extrapolation is a

sequence acceleration method, used to improve the rate of convergence of a sequence.

Here we use two estimates of an integral to compute a third and more accurate approximation.
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Example
Evaluate the integral of f(x) = 0.2 +25x – 200x2 + 675x3 – 900x4 + 400x5

from    a=0   to   b=0.8.        I (True Integral value) = 1.6405

Segments h Integral εtr%

1 0.8 0.1728 89.5

2 0.4 1.0688 34.9

4 0.2 1.4848 9.5
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In each case, two estimates with 

error O(h2) are combined to give a 

third estimate with error O(h4)
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In Example 22.1, we computed two improved estimates of O(h4). These two 
estimates can, in turn, be combined to yield an even better value with error O(h6).

For the special case where the original trapezoidal estimates are based on 
successive halving of the step size, the equation used for O(h6) accuracy is:

where Im and Il are more and less accurate estimates

Similarly, two O(h6) estimates can be combined to compute an  I that is O(h8).
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k=1 refers to trapezoidal rule, hence O(h2) accuracy.

k=2 refers to O(h4) and         k=3   ➔ O(h6)

Index j is used to distinguish between the more (j+1) and the less (j) accurate estimates.
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The Romberg Integration Algorithm
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~ Numerical Differentiation and Integration ~

Numerical Differentiation

Chapter 23
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High Accuracy Differentiation Formulas

• High-accuracy divided-difference formulas can be generated by including additional 

terms from the Taylor series expansion.

• Inclusion of the 2nd derivative term has improved the accuracy to O(h2).

• Similar improved versions can be developed for the backward and centered formulas
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Forward finite-divided-difference formulas
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Backward finite-divided-difference formulas
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Centered finite-divided-difference formulas
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Differentiation Using MATLAB

First, create a file called fx1.m which contains y=f(x):

function y = fx1(x)

y = 1.2 - .25*x - .5*x.^2 - .15*x.^3 -.1*x.^4 ;

Command window:

>> x=0:.25:1

0         0.25        0.5         0.75         1

>> y = fx1(x)

1.2     1.1035    0.925    0.6363     0.2

>> d = diff(y) ./ diff(x)     % diff() takes differences between

% consecutive vector elements

d  =    -0.3859     -0.7141     -1.1547    -1.7453

Forward:   x   =     0              0.25             0.5             0.75          1

Backward:  x  = 0.25             0.5            0.75                1

x f(x)

i-2 0 1.2

i-1 0.25 1.1035

i 0.50 0.925

i+1 0.75 0.6363

i+2 1 0.2



Copyright © 2006 The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

Forward difference of accuracy O(h2) is computed as:

Backward difference of accuracy O(h2) is computed as:

26

Example :

f(x) = -0.1x4  – 0.15x3 – 0.5x2 – 0.25x +  1.2

At  x = 0.5 True value for First Derivative = -0.9125

Using finite divided differences and a step size of   h = 0.25 we obtain:

t

0.2 4(0.6363) 3(0.925)
(0.5) 0.8593        5.82%

2(0.25)
f 

− + −
 = = − =

Forward

O(h)

Backward

O(h)

Estimate -1.155 -0.714

εt (%) 26.5 21.7

x f(x)

i-2 0 1.2

i-1 0.25 1.1035

i 0.50 0.925

i+1 0.75 0.6363

i+2 1 0.2

t

3(0.925) 4(1.1035) 1.2
(0.5) 0.8781        3.77%

2(0.25)
f 

− +
 = = − =
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Richardson Extrapolation

• There are two ways to improve derivative estimates when employing finite divided 
differences:

– Decrease the step size, or

– Use a higher-order formula that employs more points.

• A third approach, based on Richardson extrapolation, uses two derivative estimates 
(with O(h2) error) to compute a third (with O(h4) error) , more accurate approximation. 
We can derive this formula following the same steps used in the case of the integrals:

)(
3

1
)(

3

4
        2/ 1212 hDhDDhh −=

Example: using the previous example and Richardson’s formula, estimate the first 

derivative at x=0.5 Using Centered Difference approx. (with error O(h2)) with 

h=0.5 and h=0.25 :

Dh=0.5(x=0.5) = (0.2-1.2)/1 = -1 [  εt=|(-.9125+1)/-.9125| = 9.6%  ]        

Dh=0.25(x=0.5) = (0.6363-1.103)/0.5=-0.9343          [  εt=|(-.9125+0.9343)/-.9125| = 2.4%] 

The improved estimate is:

D = 4/3(-0.9343) – 1/3(-1) = -0.9125 [  εt=(-.9125+.9125)/-.9125 = 0%  ➔ perfect!] 
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Derivatives of Unequally Spaced Data

• Derivation formulas studied so far (especially the ones with O(h2) error) require 

multiple points to be spaced evenly. 

• Data from experiments or field studies are often collected at unequal intervals. 

• Fit a Lagrange interpolating polynomial, and then calculate the 1st derivative. 

As an example, second order Lagrange interpolating polynomial is used below:

*Note that any three points, xi-1 xi and xi+1 can be used to calculate the derivative. The 

points do not need to be spaced equally.
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A temperature gradient can be measured down into the soil as shown below.

Example:
The heat flux at the soil-air interface can be computed with Fourier’s Law:

q = heat flux

k = coefficient of thermal diffusivity in soil (≈3.5x10-7 m2/s)

ρ = soil density(≈ 1800 kg/m3) 

C = soil specific heat(≈ 840 J/kg . Co)

*Positive flux value means heat is transferred from the air to the soil

Calculate dT/dz (z=0) first and then and determine the heat flux.
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/  333.1333.14.144.14                

25.175.3075.3
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75.325.1)0(2
5.13)0(

0−=−+−=

−−

−−
+

−−

−−
+

−−

−−
==

0

)0(
=

−==
zdz

dT
Ckzq 

MEASUREMENTS

which can be used to compute the heat flux at z=0:

q(z=0) = -3.5x10-7(1800)(840)(-133.3 0C/m)=70.56   W/m2


