Numerical Methods for Engincers

Steven C. Chapra Raymond P. Canale Fifin Egimon
~ Numerical Differentiation and Integration ~
Newton-Cotes Integration Formulas

Chapter 21

- Calculus is the mathematics of change. Since engineers continuously deal with systems and processes that change, calculus is an essential tool of engineering.
- Standing at the heart of calculus are the concepts of:

Differentiation

$$
\begin{aligned}
& \frac{\Delta y}{\Delta x}=\frac{f\left(x_{i}+\Delta x\right)-f\left(x_{i}\right)}{\Delta x} \\
& \frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{i}+\Delta x\right)-f\left(x_{i}\right)}{\Delta x}
\end{aligned}
$$

and Integration

$$
I=\int_{a}^{b} f(x) d x
$$

(a)

(b)

(c)

Newton-Cotes Integration Formulas

- Based on the strategy of replacing a complicated function or tabulated data with an approximating function that is easy to integrate:

$$
I=\int_{a}^{b} f(x) d x \cong \int_{a}^{b} f_{n}(x) d x
$$

$$
f_{n}(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

Zero order approximation
First-order
Second-order

The Trapezoidal Rule

- Use a first order polynomial in approximating the function $f(X)$:

$$
I=\int_{a}^{b} f(x) d x \cong \int_{a}^{b} f_{1}(x) d x
$$

- The area under this first order polynomial is an estimate of the integral of $f(x)$ between a and b :

$$
\underbrace{I=(b-a) \frac{f(a)+f(b)}{2}}_{\text {Trapezoidal rule }}
$$

Error:

$$
E_{t}=-\frac{1}{12} f^{\prime \prime}(\xi)(b-a)^{3}
$$

where ξ lies somewhere in the interval from a to b

Example 21.1 Single Application of the Trapezoidal Rule

$$
f(x)=0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}
$$

Integrate $f(x)$ from $\mathrm{a}=0$ to $\mathrm{b}=0.8$

$$
\text { True integral value : } I=\int_{a=0}^{b=0.8} f(x) d x=1.64053
$$

Solution: $\mathrm{f}(\mathrm{a})=\mathrm{f}(0)=0.2$ and $\mathrm{f}(\mathrm{b})=\mathrm{f}(0.8)=0.232$
Trapezoidal Rule: $I=(b-a) \frac{f(a)+\boldsymbol{f}(b)}{2}$

$$
=0.8 \frac{0.2+0.232}{2}=0.1728
$$

which representsan error of :

$$
\mathbf{E}_{t}=1.64053-0.1728=1.46773 \varepsilon_{t}=89.5 \%
$$

The Multiple-Application Trapezoidal Rule

- The accuracy can be improved by dividing the interval from a to b into a number of segments and applying the method to each segment.
- The areas of individual segments are added to yield the integral for the entire interval.

$$
\begin{aligned}
& h=\frac{b-a}{n} \quad \mathrm{n}=\# \text { of seg. } \quad a=x_{0} \quad b=x_{n} \\
& I=\int_{x_{0}}^{x_{1}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\cdots+\int_{x_{n-1}}^{x_{n}} f(x) d x
\end{aligned}
$$

Using the trapezoidal rule, we get:

$$
\begin{aligned}
& I=h \frac{f\left(x_{0}\right)+f\left(x_{1}\right)}{2}+h \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}+\cdots+h \frac{f\left(x_{n-1}\right)+f\left(x_{n}\right)}{2} \\
& I=\frac{b-a}{2 n}\left[f\left(x_{0}\right)+f\left(x_{n}\right)+2 \sum_{i=1}^{n-1} f\left(x_{i}\right)\right]
\end{aligned}
$$

The Error Estimate for The Multiple-Application Trapezoidal Rule

- Error estimate for one segment is given as:

$$
E_{t}=\left|\frac{(b-a)^{3}}{12} f^{\prime \prime}(\xi)\right|
$$

- An error for multiple-application trapezoidal rule can be obtained by summing the individual errors for each segment:

$$
\begin{aligned}
& E_{a}=\frac{h^{3}}{12} \sum_{i=1}^{n} f^{\prime \prime}\left(\xi_{i}\right) \quad \text { since } \quad \sum f^{\prime \prime}\left(\xi_{i}\right) \cong n \bar{f}^{\prime \prime} \\
& E_{a}=\frac{h^{3}}{12} n \bar{f}^{\prime \prime} \quad \text { where } \bar{f} " \text { is the mean of the second derivative over the interval } \\
& \text { Since } h=\frac{(b-a)}{n} \quad E_{a}=\frac{(b-a)^{3}}{12 n^{2}} \bar{f}^{\prime \prime}=\frac{(b-a)}{12} h^{2} \bar{f}^{\prime \prime}=\mathrm{O}\left(h^{2}\right)
\end{aligned}
$$

Thus, if the number of segments is doubled, the truncation error will be quartered.

Simpson's Rules

- More accurate estimate of an integral is obtained if a high-order polynomial is used to connect the points. These formulas are called Simpson's rules.

Simpson's $\mathbf{1 / 3}$ Rule: results when a $2^{\text {nd }}$ order
Lagrange interpolating polynomial is used for $f(x)$

$I=\int_{a}^{b} f(x) d x \cong \int_{a}^{b} f_{2}(x) d x \quad$ where $f_{2}(x)$ is a second- orderpolynomial
Using $\quad a=x_{0} \quad b=x_{2}$
$I=\int_{x_{0}}^{x_{2}}\left[\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)\right] d x$
afterintegratio and algebraicmanipulaton, thefollowingformularesults:
$I \cong \frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad h=\frac{b-a}{2} \Leftarrow \quad$ SIMPSON'S 1/3 RULE

The Multiple-Application Simpson's 1/3 Rule

- Just as the trapezoidal rule, Simpson's rule can be improved by dividing the integration interval into a number of segments of equal width.
- However, it is limited to cases where values are equispaced, there are an even number of segments and odd number of points.

$$
\begin{aligned}
& h=\frac{b-a}{n} \quad \mathrm{n}=\# \text { of seg. } \quad a=x_{0} \quad b=x_{n} \\
& I= \int_{x_{0}}^{x_{2}} f^{0}(x) d x+\int_{x_{2}}^{x_{4}} f^{2}(x) d x+\cdots+\int_{x_{n-2}}^{x_{n}} f^{n-2}(x) d x \\
& I= \frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right) \\
& \quad+\frac{h}{3}\left(f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right)+ \\
& \cdots \quad+\frac{h}{3}\left(f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
\end{aligned}
$$

$$
I=\frac{h}{3}\left(f\left(x_{0}\right)+4 \sum_{i=1,3,5, \ldots}^{n-1} f\left(x_{i}\right)+2 \sum_{j=2,4,6 . . .}^{n-2} f\left(x_{j}\right)+f\left(x_{n}\right)\right)
$$

Simpson's 3/8 Rule

Fit a $3^{\text {rd }}$ order Lagrange interpolating polynomial to four points and integrate

$$
\begin{aligned}
& I=\int_{a}^{b} f(x) d x \cong \int_{a}^{b} f_{3}(x) d x \\
& I \cong \frac{3 h}{8}\left[f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right] \\
& h=\frac{(b-a)}{3}
\end{aligned}
$$

$$
I \cong(b-a) \frac{f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)}{8}
$$

Simpson's $1 / 3$ and $3 / 8$ rules can be applied in tandem to handle multiple applications with odd number of intervals

Newton-Cotes Closed Integration Formulas

Points	Name	Formula	Truncation Error
2	Trapezoidal	$(\mathrm{b}-\mathrm{a}) *\left(f\left(x_{0}\right)+f\left(x_{1}\right)\right) / 2$	$(1 / 12)(\mathrm{b}-\mathrm{a})^{3} f(\xi)$
3	Simpson's $1 / 3$	$(\mathrm{~b}-\mathrm{a}) *\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right) / 6$	$(1 / 2880)(\mathrm{b}-\mathrm{a})^{5} f^{(4)}(\xi)$
4	Simpson's $3 / 8$	$(\mathrm{b}-\mathrm{a}) *\left(f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right) / 8$ Boole's $(\mathrm{b}-\mathrm{a}) *\left(7 f\left(x_{0}\right)+32 f\left(x_{1}\right)+12 f\left(x_{2}\right)+32 f\left(x_{3}\right)\right.$ $\left.+7 f\left(x_{4}\right)\right) / 90$	proportional with $(\mathrm{b}-\mathrm{a})^{7}$
5	Same order, but Simpson's $3 / 8$ is more accurate		

In engineering practice, higher order (greater than 4-point) formulas are rarely used

Integration with Unequal Segments

Using Trapezoidal Rule

$I=h_{1} \frac{f\left(x_{0}\right)+f\left(x_{1}\right)}{2}+h_{2} \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}+\cdots+h_{n} \frac{f\left(x_{n-1}\right)+f\left(x_{n}\right)}{2}$

Example 21.7

$$
\begin{aligned}
I & =0.12 \frac{1.309+0.2}{2}+0.10 \frac{1.305+1.309}{2}+\cdots+0.06 \frac{0.363+3.181}{2}+0.10 \frac{0.232+2.363}{2} \\
& =0.0905+0.1307+\ldots+0.12975=1.594
\end{aligned}
$$

which represents a relative error of $\varepsilon=2.8 \%$

Data for
$f(x)=0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}$

\boldsymbol{X}	$\boldsymbol{f}(\boldsymbol{X})$	\boldsymbol{X}	$\boldsymbol{f}(\boldsymbol{X)}$
0.0	0.2	0.44	2.842
0.12	1.309	0.54	3.507
0.22	1.305	0.64	3.181
0.32	1.743	0.70	2.363
0.36	2.074	0.80	0.232
0.40	2.456		

Compute Integrals Using MATLAB

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{X})$	\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{X})$
0.0	0.2	0.44	2.842
0.12	1.309	0.54	3.507
0.22	1.305	0.64	3.181
0.32	1.743	0.70	2.363
0.36	2.074	0.80	0.232
0.40	2.456		

First, create a file called fx.m which contains $f(x)$:
function $y=f x(x)$
$y=0.2+25 * x-200 * x .{ }^{\wedge} 2+675 * x .{ }^{\wedge} 3-900 * x . \wedge 4+400 * x .{ }^{\wedge} 5 ;$

Then, execute in the command window.
>> Q=integral('fx', $0,0.8$) \% true integral
$\mathrm{Q}=1.6405 \quad$ true value

$\gg y=\mathbf{f x}(x)$
$\mathrm{y}=0.200 \quad 1.309 \quad 1.305 \quad 1.743 \quad 2.074 \quad 2.456$
$\begin{array}{llllll}2.843 & 3.507 & 3.181 & 2.363 & 0.232\end{array}$
$\gg \mathrm{I}=\operatorname{trapz}(\mathrm{x}, \mathrm{y}) \quad$ \% or $\quad \operatorname{trapz}(\mathrm{x}, \mathrm{fx}(\mathrm{x}))$ Integral $=1.5948$

Demo: (how I changes wrt n$)+\left(0^{\text {th }}\right.$ order approx. With large n$)$.

Numerical Methods for Engincers

 Raymond P. Canale Fifit Edimon~ Numerical Differentiation and Integration ~

Integration of Equations

Chapter 22

Romberg Integration

Successive application of the trapezoidal rule to attain efficient numerical integrals of functions.
Richardson's Extrapolation: In numerical analysis, Richardson extrapolation is a sequence acceleration method, used to improve the rate of convergence of a sequence.
Here we use two estimates of an integral to compute a third and more accurate approximation.

$$
I=I(h)+E(h) \quad h=(b-a) / n \quad n=(b-a) / h
$$

$$
\int I\left(h_{1}\right)+E\left(h_{1}\right)=I\left(h_{2}\right)+E\left(h_{2}\right) \quad \begin{aligned}
& I=\text { exact value of integral } E(h)=\text { the truncation error } \\
& I(h): \text { trapezoidal rule (n segments, step size h) }
\end{aligned}
$$

$E \cong \frac{b-a}{12} h^{2} \bar{f}^{\prime \prime}=O\left(h^{2}\right)$
(assume $\bar{f}^{\prime \prime}$ is constantfordifferentstepsizes)

$$
\frac{E\left(h_{1}\right)}{E\left(h_{2}\right)} \cong \frac{h_{1}^{2}}{h_{2}^{2}} \quad \Rightarrow \quad E\left(h_{1}\right) \cong E\left(h_{2}\right)\left(\frac{h_{1}}{h_{2}}\right)^{2}
$$

$$
I\left(h_{1}\right)+E\left(h_{2}\right)\left(h_{1} / h_{2}\right)^{2} \cong I\left(h_{2}\right)+E\left(h_{2}\right) \Rightarrow E\left(h_{2}\right) \cong \frac{I\left(h_{2}\right)-I\left(h_{1}\right)}{\left(h_{1} / h_{2}\right)^{2}-1}
$$

$$
\boldsymbol{I}=\boldsymbol{I}\left(\boldsymbol{h}_{2}\right)+\boldsymbol{E}\left(\boldsymbol{h}_{2}\right)
$$

$$
\left.\boldsymbol{I} \cong \boldsymbol{I}\left(\boldsymbol{h}_{2}\right)+\frac{1}{\left(h_{1} / h_{2}\right)^{2}-1}\left[\boldsymbol{I}\left(\boldsymbol{h}_{2}\right)-\boldsymbol{I}\left(\boldsymbol{h}_{1}\right)\right]\right\}
$$

Improved estimate of the integral.
It is shown that the error of this estimate is $\mathrm{O}\left(\mathrm{h}^{4}\right)$. Trapezoidal rule had an error estimate of $\mathrm{O}\left(\mathrm{h}^{2}\right)$.

$$
I \cong I\left(h_{2}\right)+\frac{1}{\left(h_{1} / h_{2}\right)^{2}-1}\left[I\left(h_{2}\right)-I\left(h_{1}\right)\right]
$$

If $\left(h_{2}=h_{1} / 2\right) \Rightarrow \quad I \cong I\left(h_{2}\right)+\frac{1}{2^{2}-1}\left[I\left(h_{2}\right)-I\left(h_{1}\right)\right]=\frac{4}{3} I\left(h_{2}\right)-\frac{1}{3} I\left(h_{1}\right)$

Example

Evaluate the integral of from $a=0$ to $b=0.8$.

$$
\begin{aligned}
& f(x)=0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5} \\
& I(\text { True Integral value })=1.6405
\end{aligned}
$$

Segments	h	Integral	$\varepsilon_{t r} \%$	Segments $1 \& 2$ combined to give :$\begin{aligned} & I \cong \frac{4}{3}(1.0688)-\frac{1}{3}(0.1728)=1.3675 \\ & \mathrm{E}_{\mathrm{t}}=1.6405-1.3675=0.273 \quad\left(\varepsilon_{t}=16.6 \%\right) \end{aligned}$
1	0.8	0.1728	89.5	
2	0.4	1.0688	34.9	
4	0.2	1.4848	9.5	Segments $2 \& 4$ combined to give : $I \cong \frac{4}{3}(1.4848)-\frac{1}{3}(1.0688)=1.6234$
In each case, two estimates with error $\mathrm{O}\left(\mathrm{h}^{2}\right)$ are combined to give a third estimate with error $\mathrm{O}\left(\mathrm{h}^{4}\right)$				$\mathrm{E}_{\mathrm{t}}=1.6405-1.6234=0.0171 \quad\left(\varepsilon_{\mathrm{t}}=1 \%\right)$

In Example 22.1, we computed two improved estimates of $\mathbf{O}\left(\mathbf{h}^{4}\right)$. These two estimates can, in turn, be combined to yield an even better value with error $\mathbf{O}\left(\mathbf{h}^{6}\right)$. For the special case where the original trapezoidal estimates are based on successive halving of the step size, the equation used for $\mathbf{O}\left(\mathbf{h}^{6}\right)$ accuracy is:

$$
I \cong \frac{16}{15} I_{m}-\frac{1}{15} I_{l}
$$

where I_{m} and I_{l} are more and less accurate estimates

Similarly, two $\mathrm{O}\left(\mathrm{h}^{6}\right)$ estimates can be combined to compute an I that is $\mathrm{O}\left(\mathrm{h}^{8}\right)$.

$$
I \cong \frac{64}{63} I_{m}-\frac{1}{63} I_{l}
$$

The Romberg Integration Algorithm

$$
I_{j, k} \cong \frac{4^{k-1} I_{j+1, k-1}-I_{j, k-1}}{4^{k-1}-1}
$$

$\mathrm{k}=1$ refers to trapezoidal rule, hence $\mathbf{O}\left(\mathbf{h}^{2}\right)$ accuracy.
$\mathrm{k}=2$ refers to $\mathbf{O}\left(\mathbf{h}^{4}\right)$ and $\mathrm{k}=3 \quad \rightarrow \mathbf{O}\left(\mathbf{h}^{\mathbf{6}}\right)$

Index j is used to distinguish between the more $(\mathrm{j}+1)$ and the less (j) accurate estimates.

Numerical Methods for Engincers

 Raymond P. Canale Fifin Eminion~ Numerical Differentiation and Integration ~
Numerical Differentiation

Chapter 23

High Accuracy Differentiation Formulas

- High-accuracy divided-difference formulas can be generated by including additional terms from the Taylor series expansion.

$$
\begin{aligned}
& f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right)}{2} h^{2}+\cdots \\
& f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h}-\frac{f^{\prime \prime}\left(x_{i}\right)}{2} h-\cdots \\
& f^{\prime \prime}\left(x_{i}\right)=\frac{f^{\prime}\left(x_{i+1}\right)-f^{\prime}\left(x_{i}\right)}{h}=\frac{f\left(x_{i+2}\right)-2 f\left(x_{i+1}\right)+f\left(x_{i}\right)}{h^{2}}+O(h) \\
& \boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\frac{\boldsymbol{f}\left(\boldsymbol{x}_{i+1}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{i}\right)}{\boldsymbol{h}}-\frac{\boldsymbol{f}\left(\boldsymbol{x}_{i+2}\right)-2 \boldsymbol{f}\left(\boldsymbol{x}_{i+1}\right)+\boldsymbol{f}\left(\boldsymbol{x}_{i}\right)}{2 \boldsymbol{h}^{2}} \boldsymbol{h}+\boldsymbol{O}\left(\boldsymbol{h}^{2}\right) \\
& \boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\frac{-\boldsymbol{f}\left(\boldsymbol{x}_{i+2}\right)+4 \boldsymbol{f}\left(\boldsymbol{x}_{i+1}\right)-3 \boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)}{2 \boldsymbol{h}}+\boldsymbol{O}\left(\boldsymbol{h}^{2}\right)
\end{aligned}
$$

- Inclusion of the $2^{\text {nd }}$ derivative term has improved the accuracy to $O\left(h^{2}\right)$.
- Similar improved versions can be developed for the backward and centered formulas

Forward finite-divided-difference formulas

First Derivative

$$
\begin{aligned}
& f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h} \\
& f^{\prime}\left(x_{i}\right)=\frac{-f\left(x_{i+2}\right)+4 f\left(x_{i+1}\right)-3 f\left(x_{i}\right)}{2 h}
\end{aligned}
$$

Error
$\mathrm{O}(\mathrm{h})$
$\mathrm{O}\left(h^{2}\right)$

Error
O(h)
$\mathrm{O}\left(h^{2}\right)$

Backward finite-divided-difference formulas

First Derivative

$$
\begin{aligned}
& f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{h} \\
& f^{\prime}\left(x_{i}\right)=\frac{3 f\left(x_{i}\right)-4 f\left(x_{i-1}\right)+f\left(x_{i-2}\right)}{2 h}
\end{aligned}
$$

Error
$\mathrm{O}(\mathrm{h})$
$\mathbf{O}\left(h^{2}\right)$

Error
O(h)
$\mathbf{O}\left(h^{2}\right)$

Centered finite-divided-difference formulas

First Derivative

$$
\begin{aligned}
& f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2 h} \\
& f^{\prime}\left(x_{i}\right)=\frac{-f\left(x_{i+2}\right)+8 f\left(x_{i+1}\right)-8 f\left(x_{i-1}\right)+f\left(x_{i-2}\right)}{12 h}
\end{aligned}
$$

Error
$\mathbf{O}\left(h^{2}\right)$
$\mathbf{O}\left(h^{4}\right)$

Second Derivative

$$
\begin{aligned}
& f^{\prime \prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-2 f\left(x_{i}\right)+f\left(x_{i-1}\right)}{h^{2}} \\
& f^{\prime \prime}\left(x_{i}\right)=\frac{-f\left(x_{i+2}\right)+16 f\left(x_{i+1}\right)-30 f\left(x_{i}\right)+16 f\left(x_{i-1}\right)-f\left(x_{i-2}\right)}{12 h^{2}}
\end{aligned}
$$

$\mathbf{O}\left(h^{2}\right)$
$\mathbf{O}\left(h^{4}\right)$

Derivation of the centered formula for $f^{\prime}\left(x_{i}\right)$

$$
\begin{aligned}
f\left(x_{i+1}\right) & =f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right)}{2} h^{2}+\cdots \\
f^{\prime \prime}\left(x_{i}\right) & =\frac{2\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right) h\right)}{h^{2}} \\
& =\frac{2\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)-\frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2 h} h\right)}{h^{2}} \\
& =\frac{2 f\left(x_{i+1}\right)-2 f\left(x_{i}\right)-f\left(x_{i+1}\right)+f\left(x_{i-1}\right)}{h^{2}} \\
f^{\prime \prime}\left(x_{i}\right) & =\frac{f\left(x_{i+1}\right)-2 f\left(x_{i}\right)+f\left(x_{i-1}\right)}{h^{2}}
\end{aligned}
$$

Differentiation Using MATLAB

	\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
$i-2$	0	1.2
$i-1$	0.25	1.1035
i	0.50	0.925
$i+1$	0.75	0.6363
$i+2$	1	0.2

First, create a file called fx1.m which contains $y=f(x)$: function $\mathrm{y}=\mathbf{f x} \mathbf{1}(\mathrm{x})$

$$
y=1.2-.25 * x-.5 * x . \wedge 2-.15 * x . \wedge 3-.1 * x . \wedge 4 ;
$$

Command window:
>> $x=0: .25: 1$
$0 \quad 0.25$
0.5
0.75
1
$\gg y=f x 1(x)$

$$
\begin{array}{lllll}
1.2 & 1.1035 & 0.925 & 0.6363 & 0.2
\end{array}
$$

$\gg \mathrm{d}=\operatorname{diff}(\mathrm{y}) . / \operatorname{diff}(\mathrm{x}) \quad \% \operatorname{diff}()$ takes differences between \% consecutive vector elements

$$
\mathrm{d}=-0.3859 \quad-0.7141 \quad-1.1547 \quad-1.7453
$$

Forward: $x=0$	0.25	0.5	0.75	1
Backward: $x=0.25$	0.5	0.75	1	

Example :

$$
f(x)=-0.1 x^{4}-0.15 x^{3}-0.5 x^{2}-0.25 x+1.2
$$

At $\mathbf{x}=\mathbf{0 . 5}$ True value for First Derivative $=\mathbf{- 0 . 9 1 2 5}$
Using finite divided differences and a step size of $\mathbf{h}=\mathbf{0 . 2 5}$ we obtain:

	\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
$i-2$	0	1.2
$i-1$	0.25	1.1035
i	0.50	0.925
$i+1$	0.75	0.6363
$i+2$	1	0.2

	Forward $O(h)$	Backward $O(h)$
Estimate	-1.155	-0.714
$\varepsilon_{\mathrm{t}}(\%)$	26.5	21.7

Forward difference of accuracy $O\left(h^{2}\right)$ is computed as:

$$
f^{\prime}(0.5)=\frac{-0.2+4(0.6363)-3(0.925)}{2(0.25)}=-0.8593 \quad \varepsilon_{\mathrm{t}}=5.82 \%
$$

Backward difference of accuracy $O\left(h^{2}\right)$ is computed as:

$$
f^{\prime}(0.5)=\frac{3(0.925)-4(1.1035)+1.2}{2(0.25)}=-0.8781 \quad \varepsilon_{\mathrm{t}}=3.77 \%
$$

Richardson Extrapolation

- There are two ways to improve derivative estimates when employing finite divided differences:
- Decrease the step size, or
- Use a higher-order formula that employs more points.
- A third approach, based on Richardson extrapolation, uses two derivative estimates (with $O\left(h^{2}\right)$ error) to compute a third (with $O\left(h^{4}\right)$ error), more accurate approximation. We can derive this formula following the same steps used in the case of the integrals:

$$
h_{2}=h_{1} / 2 \Rightarrow D \cong \frac{4}{3} D\left(h_{2}\right)-\frac{1}{3} D\left(h_{1}\right)
$$

Example: using the previous example and Richardson's formula, estimate the first derivative at $\mathbf{x}=\mathbf{0 . 5}$ Using Centered Difference approx. (with error $\boldsymbol{O}\left(\boldsymbol{h}^{2}\right)$) with $\mathbf{h}=0.5$ and $\mathbf{h}=0.25$:
$\mathbf{D}_{\mathrm{h}=0.5}(\mathbf{x}=0.5)=(0.2-1.2) / \mathrm{l}=-1$
$\mathbf{D}_{\mathbf{h}=0.25}(\mathbf{x}=\mathbf{0 . 5})=(0.6363-1.103) / 0.5=-0.9343 \quad\left[\varepsilon_{\mathrm{t}}=|(-.9125+0.9343) /-.9125|=2.4 \%\right]$
The improved estimate is:
$\mathbf{D}=4 / 3(-0.9343)-1 / 3(-1)=-0.9125 \quad\left[\varepsilon_{\mathrm{t}}=(-.9125+.9125) /-.9125=\mathbf{0} \% \boldsymbol{\rightarrow}\right.$ perfect! $]$

Derivatives of Unequally Spaced Data

- Derivation formulas studied so far (especially the ones with $O\left(h^{2}\right)$ error) require multiple points to be spaced evenly.
- Data from experiments or field studies are often collected at unequal intervals.
- Fit a Lagrange interpolating polynomial, and then calculate the $1^{\text {st }}$ derivative.

As an example, second order Lagrange interpolating polynomial is used below:

$$
\begin{aligned}
f(x)= & f\left(x_{i-1}\right) \frac{\left(x-x_{i}\right)\left(x-x_{i+1}\right)}{\left(x_{i-1}-x_{i}\right)\left(x_{i-1}-x_{i+1}\right)} & f^{\prime}(x) & =f\left(x_{i-1}\right) \frac{2 x-x_{i}-x_{i+1}}{\left(x_{i-1}-x_{i}\right)\left(x_{i-1}-x_{i+1}\right)} \\
& +f\left(x_{i}\right) \frac{\left(x-x_{i-1}\right)\left(x-x_{i+1}\right)}{\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right)} & & +f\left(x_{i}\right) \frac{2 x-x_{i-1}-x_{i+1}}{\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right)} \\
& +f\left(x_{i+1}\right) \frac{\left(x-x_{i-1}\right)\left(x-x_{i}\right)}{\left(x_{i+1}-x_{i-1}\right)\left(x_{i+1}-x_{i}\right)} & & +f\left(x_{i+1}\right) \frac{2 x-x_{i-1}-x_{i}}{\left(x_{i+1}-x_{i-1}\right)\left(x_{i+1}-x_{i}\right)}
\end{aligned}
$$

*Note that any three points, $x_{i-1} x_{i}$ and x_{i+1} can be used to calculate the derivative. The points do not need to be spaced equally.

Example:

The heat flux at the soil-air interface can be computed with Fourier's Law.

$$
q(z=0)=-\left.k \rho C \frac{d T}{d z}\right|_{z=0} \begin{aligned}
& \mathrm{q}=\text { heat flux } \\
& \mathrm{k}=\text { coefficient of thermal diffusivity in soil }\left(\approx 3.5 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}\right) \\
& \rho=\text { soil density }\left(\approx 1800 \mathrm{~kg} / \mathrm{m}^{3}\right) \\
& \text { *Positive flux value means heat is transferred from the air to the soil }
\end{aligned}
$$

Calculate $\boldsymbol{d T} / \boldsymbol{d} \boldsymbol{z}(\mathrm{z}=0)$ first and then and determine the heat flux.
A temperature gradient can be measured down into the soil as shown below.

MEASUREMENTS

$$
\begin{aligned}
f^{\prime}(z=0)= & 13.5 \frac{2(0)-1.25-3.75}{(0-1.25)(0-3.75)} \\
& +12 \frac{2(0)-0-3.75}{(1.25-0)(1.25-3.75)} \\
& +10 \frac{2(0)-0-1.25}{(3.75-0)(3.75-1.25)} \\
& =-14.4+14.4-1.333=-1.333{ }^{0} \mathrm{C} / \mathrm{cm}
\end{aligned}
$$

which can be used to compute the heat flux at $\mathrm{z}=0$:

$$
q(\mathrm{z}=0)=-3.5 \times 10^{-7}(1800)(840)\left(-133.3^{\circ} \mathrm{C} / \mathrm{m}\right)=70.56 \quad \mathrm{~W} / \mathrm{m}^{2}
$$

