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Introduction to Matrices

- Properties 
- Operations 
- Inverse of Matrix
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Operations with Matrices

Matrix:
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(i, j)-th entry (or element): ija

number of rows:  m

number of columns:  n

size:  m×n

Square matrix: m = n
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For [ ]  and  [ ] ,ij m n ij m nA a B b = =

Equal matrices: two matrices are equal if they have the same size 

(m × n) and entries corresponding to the same position are equal

   if and only if     for 1 ,   1ij ijA B a b i m j n= =    

Ex 1: Equality of matrices
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If  ,  then 1,  2,  3,  and 4A B a b c d= = = = =
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Matrix addition:

If [ ] ,   [ ] ,ij m n ij m nA a B b = =

then  [ ] [ ] [ ] [ ]ij m n ij m n ij ij m n ij m nA B a b a b c C   + = + = + = =

Ex 2: Matrix addition
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Matrix subtraction:

BABA )1(−+=−

Scalar multiplication:

If [ ]  and  is a constant scalar,ij m nA a c=

Ex 3: Scalar multiplication and matrix subtraction
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Find (a) 3A,  (b) –B,  (c) 3A – B

then [ ]ij m ncA ca =
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Matrix multiplication:

If [ ]  and [ ] ,ij m n ij n pA a B b = =

then [ ] [ ] [ ] ,ij m n ij n p ij m pAB a b c C  = = =

njin

n

k

jijikjikij babababac +++==
=


1

2211where

size of C=AB
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inii

n

cccc

bbb

bbb

bbb

aaa

aaa

aaa






















21

1

2221

1111

21

21

11211

 

※ The entry cij is obtained by calculating the sum of the entry-by-entry 

product between the ith row of A and the jth column of B

should be equal
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3 2

1 3

4 2

5 0

A



− 
 

= −
 
  

2 2

3 2

4 1
B



− 
=  

− 

Ex 4: Find AB

Sol:

3 2

3 2

( 1)( 3) (3)( 4) ( 1)(2) (3)(1)

(4)( 3) ( 2)( 4) (4)(2) ( 2)(1)

(5)( 3) (0)( 4) (5)(2) (0)(1)

9 1

4 6

15 10

AB





− − + − − + 
 

= − + − − + −
 
 − + − + 

− 
 

= −
 
 − 

Note: (1) BA is not multipliable

(2) Even BA is multipliable, AB≠BA
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Matrix form of a system of linear equations in n variables:
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equationslinear  m

single matrix equation

    A  =x b
1  nnm 1m
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Partitioned matrices:
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=
2221

1211

34333231

24232221

14131211

AA

AA

aaaa

aaaa

aaaa

A

submatrix

11 12 13 14 1

21 22 23 24 2

31 32 33 34 3

a a a a

A a a a a

a a a a

   
   

= =
   
      

r

r

r

 
11 12 13 14

21 22 23 24 1 2 3 4

31 32 33 34

a a a a

A a a a a

a a a a

 
 

= =
 
  

c c c c

※ Partitioned matrices can be 

used to simplify equations or 

to obtain new interpretation of 

equations (see the next slide)

row vector

column vector
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11 12 1

21 22 2

1 2

1 2

n

n

n

m m mn

a a a

a a a
A

a a a

 
 
 = =
 
 
 

c c c

1

2

n

x

x

x

 
 
 =
 
 
 

x

11 1 12 2 1

21 1 22 2 2

1 1 2 2 1

n n

n n

m m mn n m

a x a x a x

a x a x a x
A

a x a x a x


+ + + 
 

+ + +
  =
 
 

+ + + 

x

A linear combination of the column vectors of matrix A:
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22
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1
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11

1

1c

=

2c

=

nc

=

1 1 2 2 n nx x x= + + +c c c Ax can be viewed as the linear combination of column 

vectors of A with coefficients x1, x2,…, xn

 

1

2

1 2 n

n

x

x

x

 
 
 =
 
 
 

c c c ← You can derive the same result if you perform 

the matrix multiplication for matrix A

expressed in column vectors and x directly



2.13

Diagonal matrix: a square matrix in which nonzero elements are

found only in the principal diagonal

Trace operation:

),,,( 21 nddddiagA =
nn

n

M

d

d

d





















=









00

00

00

2

1

11 22If [ ] ,  then ( )ij n n nnA a Tr A a a a=  + + +

※ It is the usual notation for a diagonal matrix.

To practice, we need to know the trace operation and the

notion of diagonal matrices
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Keywords 

• equality of matrices: 

• matrix addition:

• scalar multiplication: 

• matrix multiplication: 

• partitioned matrix: 

• row vector: 

• column vector: 

• trace: 

• diagonal matrix: 
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Properties of Matrix Operations

Three basic matrix operators, introduced in Sec. 2.1:

(1) matrix addition

(2) scalar multiplication

(3) matrix multiplication

Zero matrix :

0 0 0

0 0 0

0 0 0

m n

m n





 
 
 =
 
 
 

0

Identity matrix of order n :

1 0 0

0 1 0

0 0 1

n

n n

I



 
 
 =
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then  (1)  A+B = B+A

(2)  A+(B+C) = (A+B)+C

(3)  ( cd ) A = c ( dA )

(4)  1A = A

(5)  c( A+B ) =  cA + cB

(6)  ( c+d ) A = cA + dA

If  , , ,  and ,  are scalars,m nA B C M c d

Properties of matrix addition and scalar multiplication:

(Commutative property  of addition)

(Associative property of addition)

(Associative property of scalar multiplication)

(Multiplicative identity property, and 1 is the multiplicative 

identity for all matrices)

(Distributive  property of scalar 

multiplication over matrix addition)

(Distributive property of scalar 

multiplication over real-number addition)

Notes:

All above properties are very similar to the counterpart

properties for real numbers
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If  ,  and  is a scalar,m nA M  c

then  (1) m nA A+ =0

(2) ( ) m n A A + − = 0

(3) 0 or m n m n cA  c  A =  = =0 0

Notes:

All above properties are very similar to the counterpart

properties for the real number 0

Properties of zero matrices:

※ So, 0m×n is also called the additive identity for the set of all m×n matrices

※ Thus , –A is called the additive inverse of A
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(1) Ａ(BC) = (AB ) C

(2) Ａ(B+C) = AB + AC

(3) (A+B)C = AC + BC

(4) c (AB) = (cA) B = A (cB)

Properties of the identity matrix:

If  , then  (1) 

                              (2) 

m n n

m

A M AI A

I A A

 =

=

Properties of matrix multiplication:

(Associative property of matrix multiplication)

(Distributive property of LHS matrix multiplication 
over matrix addition)

(Distributive property of RHS matrix multiplication 
over matrix addition)

※ For real numbers, the properties (2) and (3) are the same since the order for the 

multiplication of real numbers is irrelevant.

※ For real numbers, in addition to satisfying above properties, there is a 

commutative property of real-number multiplication, i.e., cd = dc.

※ For real numbers, the role of 1 is similar to the identity matrix. However, 1 is 

unique for real numbers and there could be many identity matrices with 

different sizes
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1 0
1 2 1 0 2

,  ,  and 3 1 .
2 1 3 2 1

2 4

A B C

− 
−     

= = =     − −      

Ex 3: Matrix Multiplication is Associative
Calculate (AB)C and A(BC) for

Sol:
1 0

1 2 1 0 2
( ) 3 1

2 1 3 2 1
2 4

1 0
5 4 0 17 4

3 1
1 2 3 13 14

2 4

AB C

− 
 −     

=       − −       

− 
−    

= =    −     
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1 0
1 2 1 0 2

( ) 3 1
2 1 3 2 1

2 4

1 2 3 8 17 4

2 1 7 2 13 14

A BC

 − 
−     

=      − −       

−     
= =     

− −     
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Properties for Ak:

Definition of Ak : repeated multiplication of a square matrix:

1 2

 matrices

,  , ,  k

k

A A A AA A AA A= = =

(1) AjAk = Aj+k

(2) (Aj)k = Ajk

where j and k are nonegative integers and A0 is assumed 

to be I

1 1

2 2

0 0 0 0

0 0 0 0

0 0 0 0

k

k

k

k
n n

d d

d d
D D

d d

  
  
  =  =
  
  
    

For diagonal matrices:
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11 12 1

21 22 2

1 2

If   ,

n

n

m n

m m mn

a a a

a a a
A M

a a a



 
 
 = 
 
 
 

11 21 1

12 22 2

1 2

then   

m

mT

n m

n n mn

a a a

a a a
A M

a a a



 
 
 = 
 
 
 

Transpose of a matrix :

※ The transpose operation is to move the entry aij (original at the position (i, j)) to 

the position (j, i)

※ Note that after performing the transpose operation, AT is with the size n×m
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A (b)
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654

321

A (c)

















−

=

11

42

10

A

Sol: (a)









=

8

2
A  82= TA

(b)

















=

987

654

321

A

















=

963

852

741
TA

(c)

















−

=

11

42

10

A









−
=

141

120
TA

(a)

Ex 8: Find the transpose of the following matrix
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AA TT =)(  )1(

TTT BABA +=+ )(  )2(

)()(  )3( TT AccA =

 )(  )4( TTT ABAB =

Properties of transposes:

※ Properties (2) and (4) can be generalized to the sum or product of

multiple matrices. For example, (A+B+C)T = AT+BT+CT and (ABC)T =

CTBTAT

※ Since a real number also can be viewed as a 1 × 1 matrix, the transpose

of a real number is itself, that is, for , aT = a. In other words,

transpose operation has actually no function on real numbers

a R
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2 1 2

1 0 3

0 2 1

A

− 
 

= −
 
 − 

3 1

2 1

3 0

B

 
 

= −
 
  

Sol:

Ex 9: Show that (AB)T and BTAT are equal

2 1 2 3 1 2 1
2 6 1

( ) 1 0 3 2 1 6 1
1 1 2

0 2 1 3 0 1 2

T T

TAB

 −     
−       

= − − = − =         −       − −      

2 1 0
3 2 3 2 6 1

1 0 2
1 1 0 1 1 2

2 3 1

T TB A

− 
−    

= − =    − −    − 
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A square matrix A is symmetric if A = AT

Ex:

















=

6

54

321

  If

cb

aA is symmetric, find a, b, c?

A square matrix A is skew-symmetric if AT = –A

Skew-symmetric matrix :

Sol:

















=

6

54

321

cb

aA

















=

653

42

1

c

ba

AT

5 ,3 ,2 === cba

TAA=



Symmetric matrix:
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=

0

30

210

  If

cb

aA is a skew-symmetric, find a, b, c?

Note: TAA must be symmetric

Pf:

symmetric is 

)()(

T

TTTTTT

AA

AAAAAA



==

Sol:














=

0
30
210

cb
aA

















−−

−−

−−

=−

032

01

0

c

ba

AT

TAA −= 3 ,2 ,1 −=−=−= cba

Ex:

※ The matrix A could be with any size,

i.e., it is not necessary for A to be a

square matrix.

※ In fact, AAT must be a square matrix.
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ab = ba (Commutative property of real-number multiplication)

If   , then  is defined, but  is undefinedm p AB BA( 1) 

mmmm MBAMABnpm  ==  ， (3) then ,  If

If  , , then ,  m m n nm p m n AB M BA M =   ( 2) (Sizes are not the same)

(Sizes are the same, but resultant matrices are not equal)

Real number:

Matrix:

BAAB 
pnnm   

Three situations for BA:

 n p m n 

Before finishing this section, two properties will be discussed,

which is held for real numbers, but not for matrices: the first is the

commutative property of matrix multiplication and the second is

the cancellation law
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−
=

12

31
A 







 −
=

20

12
B

Sol:










−
=







 −









−
=

44

52

20

12

12

31
AB

BAAB 










−
=









−






 −
=

24

70

12

31

20

12
BA

Ex 4:
Sow that AB and BA are not equal for the matrices.

and

(noncommutativity of matrix multiplication)
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Notes:

(1) A+B = B+A (the commutative law of matrix addition)

(2)                  (the matrix multiplication is not with the 

commutative law) 

(so the order of matrix multiplication is very important)

BAAB 

※ This property is different from the property for the
multiplication operations of real numbers, for which the
order of multiplication is with no difference
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(Cancellation law is not 

necessary to be valid)

0  , = cbcac

b a = (Cancellation law for real numbers)

Matrix:

 and  (  is not a zero matrix)AC BC C C=  0

(1) If C is invertible, then A = B

(2) If C is not invertible, then

Real number:

BA 

※ Here I skip to introduce the definition of “invertible” because

we will study it soon in the next section
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−

−
=








=








=

21

21
    ,

32

42
    ,

10

31
CBA

Sol:










−

−
=









−

−








=

21

42

21

21

10

31
AC

So, although                , BCAC = BA










−

−
=









−

−








=

21

42

21

21

32

42
BC

Ex 5: (An example in which cancellation is not valid)
Show that AC=BC
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Keywords

• zero matrix: 

• identity matrix: 

• commutative property: 

• associative property:

• distributive property:

• cancellation law: 

• transpose matrix: 

• symmetric matrix: 

• skew-symmetric matrix: 
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The Inverse of a Matrix

nnMA 

if there exists a matrix  such that ,n n nB M AB BA I = =

Note:

A square matrix that does not have an inverse is called 

noninvertible (or singular)

Consider                  ,

then  (1) A is invertible (or nonsingular)

(2) B is the inverse of A

Inverse matrix :

※ The definition of the inverse of a matrix is similar to that of the inverse of a

scalar, i.e., c · (1/c) = 1

※ Since there is no inverse (or said multiplicative inverse) for the real number 0,

you can “imagine” that noninvertible matrices act a similar role to the real

number 0 is some sense
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If B and C are both inverses of the matrix A, then B = C.

Pf:

CB

CIB

CBCA

CIABC

IAB

=

=

=

=

=

)(

)(

Consequently, the inverse of a matrix is unique.

Notes:

(1) The inverse of A is denoted by 1−A

IAAAA == −− 11  )2(

Theorem 2.7: The inverse of a matrix is unique

(associative property of matrix multiplication and the property 

for the identity matrix)
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If A is an invertible matrix, k is a positive integer, and c is a scalar,

then
AAA =−−− 111 )( and  invertible  is (1)   

1 1(2) is  invertible  and ( ) ( )k k k kA A A A− − −= =  

1 11
(3)  c   is  invertible if 0 and  ( )A c cA A

c

− − =

Theorem : Properties of inverse matrices

TTT AAA )()( and  invertible  is (4) 11 −− =  

1

1 1

Ex.

2 3 2 4 0.1 0.3

4 1 3 1 0.4 0.2

0.1 0.4
( ) ( )

0.3 0.2

T

T T

A A A

A A

−

− −

−     
=  =  =     

−     

− 
= = 

− 

← “T” is not the number of 
power. It denotes the 
transpose operation
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Theorem : The inverse of a product

If A and B are invertible matrices of order n, then AB is invertible 

and
111)( −−− = ABAB

1 1Thus, if   is invertible, then its inverse is AB B A− −

Pf:
1 1 1 1 1 1 1( )( ) ( ) ( ) ( )AB B A A BB A A I A AI A AA I− − − − − − −= = = = =

Note: 

(1) It can be generalized to the product of multiple matrices

(2) It is similar to the results of the transpose of the products of 

multiple matrices (see Slide 2.23)

( ) 1

1

1

2

1

3

11

321

−−−−−
= AAAAAAAA nn 

( )1 2 3 3 2 1

T T T T T

n nA A A A A A A A=

(associative property of matrix multiplication)
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Theorem : Cancellation properties for matrix multiplication

If C is an invertible matrix, then the following properties hold:

(1) If AC=BC, then A=B (right cancellation property)

(2) If CA=CB, then A=B   (left cancellation property)

Pf:

BA

BIAI

CCBCCA

CBCCAC

BCAC

=

=

=

=

=

−−

−−

)()(

)()(

11

11 -1(  is invertible, so  exists)C C

Note:

If C is not invertible, then cancellation is not valid.

(Associative property of matrix multiplication)
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Theorem : Systems of equations with a unique solution

If A is an invertible matrix, then the system of linear equations

Ax = b has a unique solution given by
1A−=x b

Pf:

( A is nonsingular)
1 1

1

1

      

        

         

A

A A A

I A

A

− −

−

−

=

=

=

=

x b

x b

x b

x b

This solution is unique.

1 2If  and  were  two  solutions  of  equation  ,A =x x x b

1 2then A A= =x b x 1 2   =x x (left cancellation property)
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Ex 8: 
Use an inverse matrix to solve each system
(a)                                                 (b)

(c)
2 3 1

3 3 1

2 4 2

x y z

x y z

x y z

+ + = −

+ + =

+ + = −

2 3 4

3 3 8

2 4 5

x y z

x y z

x y z

+ + =

+ + =

+ + =

2 3 0

3 3 0

2 4 0

x y z

x y z

x y z

+ + =

+ + =

+ + =

Gauss-Jordan Elimination 1

2 3 1 1 1 0

3 3 1 1 0 1

2 4 1 6 2 3

A A−

−   
   

 = ⎯⎯⎯⎯⎯⎯⎯→ = −
   
   − −   

Sol:
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(a)                                                 

(b)

(c)

1

1 1 0 1 2

1 0 1 1 1

6 2 3 2 2

A−

− −     
     

= = − = −
     
     − − − −     

x b

1

1 1 0 4 4

1 0 1 8 1

6 2 3 5 7

A−

−     
     

= = − =
     
     − − −     

x b

1

1 1 0 0 0

1 0 1 0 0

6 2 3 0 0

A−

−     
     

= = − =
     
     − −     

x b

※ This technique is very 

convenient when you 

face the problem of 

solving several systems 

with the same coefficient 

matrix.

※ Because once you have 

A-1, you simply need to 

perform the matrix 

multiplication to solve 

the unknown variables.

※ If you only want to solve 

one system, the 

computation effort will 

be less for the G. E. plus 

the back substitution or 

the G. J. E.
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• Notice that the system in (c) is Homogeneous System. If
a homogeneous system has any nontrivial solution, this
system must have infinitely many nontrivial solutions

1

1 1

1

Suppose there is a nonzero solution  for this homegeneous system such 

that . Then it is straightforward to show that  must be another 

solution, i.e.,

                              ( ) (

A t

A t t A

=

=

x

x 0 x

x x1) ( )

Finally, since  can be any real number, it can be concluded that there are

infinitely many solutions for this homogeneous system

t

t

= =0 0

The fourth property of matrix multiplication 



L and U Matrices 

Diagonal

Lower triangular matrix

Upper triangular matrix

















=

3

2

1

 x

x

x

x

][ 3    2     1 xxxx =

Column vector

Row vector
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Keywords:

• inverse matrix: 

• invertible: 

• nonsingular: 

• singular: 

• Upper Triangular Matrix

• Lower Triangular Matrix
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Linear Systems Solutions Methods

Direct Methods

- Gauss Elimination

- Gauss Jordan Elimination 

- Inverse of Coefficients Matrix 

- Determinants and Crammer’s Rule

- LU Factorization

-Tridiagonal Systems

Iterative Methods

- Gauss Seidel Iteration 

- Jacobi Iteration

- Accuracy and Convergence 

- Successive Overrelaxation

1-Graphical   Method 

2-Computational Methods:                           

One or more of the following conditions holds:

1- equations < 100

2- most of the coefficients are nonzero

3- the system is not diagonally dominant 

4- the system of equations is ill conditioned 

Iterative methods are used when number of 

equations is large and most of the coefficients 

are zero (sparse matrix) .

Note: Iterative methods generally diverge unless 

the system is diagonally dominant 
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• For two equations:

• Solve both equations for x2:

2222121

1212111

bxaxa

bxaxa

=+

=+

22

2
1

22

21
2

12

12

1
1

12

11
2 intercept(slope)

a

b
x

a

a
x

xx
a

b
x

a

a
x

+







−=

+=+







−=

Graphical Method
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• Plot x2 vs. x1

on rectilinear 
paper, the 
intersection of 
the lines 
present the 
solution.

Fig. 9.1
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Graphical Method

• Or equate and solve for x1









−









−

=









−









−

−=

=−+







−

+







−=+








−=

12

11

22

21

12

1

22

2

12

11

22

21

22

2

12

1

1

22

2

12

1
1

12

11

22
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Figure 9.2

No solution Infinite solutions Ill-conditioned

(Slopes are too close)
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• Determinant can be illustrated for a set of three 
equations:

• Where A is the coefficient matrix:

bAx =

















=

333231

232221

131211

aaa

aaa

aaa

A

Determinants and Cramer’s Rule
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• Assuming all matrices are square matrices, there is a 
number associated with each square matrix  A called 
the determinant, D, of A. (D=det (A)). If [A] is order 
1, then [A] has one element:

A=[a11]

D=a11

• For a square matrix of order 2,  A= 

the determinant is D= a11 a22-a21 a12

a11   a12

a21  a22



52

• For a square matrix of order 3,  the minor of an 
element aij is the determinant of the matrix of order 2 
by deleting row i and column j of A.

22313221

3231

2221

13

23313321

3331

2321

12

23323322

3332

2322

11

333231

232221

131211

aaaa
aa

aa
D

aaaa
aa

aa
D

aaaa
aa

aa
D

aaa

aaa

aaa

D

−==

−==

−==

=

3231

2221

13

3331

2321

12

3332

2322

11
aa

aa
a

aa

aa
a

aa

aa
aD +−=
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• Cramer’s rule expresses the solution of a systems 

of linear equations in terms of ratios of determinants 

of the array of coefficients of the equations. The 

solution for xj(j=1,2,…n) is 

Where Aj is the nxn matrix obtained by replacing 

column j in matrix A by the column vector b. 

)det(

)det(

A

A
x

j

j =

• For example, x1 would be computed as: 

D

aab

aab

aab

x
33323

23222

13121

1 =



Theorem of Determinants  

• If a multiple of one row of [A]nxn is added or subtracted to another row of [A]nxn

to result in [B]nxn then det(A)=det(B)

• The determinant of an upper triangular matrix [A]nxn is given by 

( ) nnii aaaa = ......Adet 2211


=

=
n

i

iia
1
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Method of Elimination

• The basic strategy is to successively solve one of the equations of the 
set for one of the unknowns and to eliminate that variable from the 
remaining equations by substitution.

• The elimination of unknowns can be extended to systems with more 
than two or three equations; however, the method becomes extremely 
tedious to solve by hand.
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Naive Gauss Elimination

• Extension of method of elimination to large sets of equations by 
developing a systematic scheme or algorithm to eliminate unknowns 
and to back substitute.

• As in the case of the solution of two equations, the technique for n
equations consists of two phases:

▪ Forward elimination of unknowns

▪ Back substitution
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Pitfalls of Elimination Methods

• Division by zero. It is possible that during both elimination and back-
substitution phases a division by zero can occur.

• Round-off errors.

• Ill-conditioned systems. Systems where small changes in coefficients 
result in large changes in the solution. Alternatively, it happens when 
two or more equations are nearly identical, resulting a wide ranges of 
answers to approximately satisfy the equations. Since round off errors 
can induce small changes in the coefficients, these changes can lead to 
large solution errors.



• Singular systems. When two equations are 
identical, we would loose one degree of 
freedom and be dealing with the impossible 
case of n-1 equations for n unknowns. For 
large sets of equations, it may not be obvious 
however. The fact that the determinant of a 
singular system is zero can be used and tested 
by computer algorithm after the elimination 
stage. If a zero diagonal element is created, 
calculation is terminated.
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• Use of more significant figures.

• Pivoting. If a pivot element is zero, normalization step leads to 
division by zero. The same problem may arise, when the pivot element 
is close to zero. Problem can be avoided:

• Partial pivoting. Switching the rows so that the largest element is the pivot 
element.

• Complete pivoting. Searching for the largest element in all rows and columns 
then switching.

Techniques for Improving Solutions



Forward Elimination
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2.279

2.177

8.106

 

112144

1864

1525

3

2

1

x

x

x

The goal of forward elimination is to transform the coefficient matrix into 
an upper triangular matrix
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7.000

56.18.40
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1

x
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x



Forward Elimination

A set of n equations and n unknowns

11313212111 ... bxaxaxaxa nn =++++

22323222121 ... bxaxaxaxa nn =++++

nnnnnnn bxaxaxaxa =++++ ...332211

.                 .

.                 .

.                 .

(n-1) steps of forward elimination



Forward Elimination
Step 1 
For Equation 2, divide Equation 1 by and multiply by     
.

)...( 11313212111

11

21 bxaxaxaxa
a

a
nn =++++









1

11

21
1

11

21
212

11

21
121 ... b

a

a
xa

a

a
xa

a

a
xa nn =+++

11a

21a



Forward Elimination

1

11

21
1

11

21
212

11

21
121 ... b

a

a
xa

a

a
xa

a

a
xa nn =+++

1

11

21
21

11

21
2212

11

21
22 ... b

a

a
bxa

a

a
axa

a

a
a nnn −=










−++










−

'

2

'

22

'

22 ... bxaxa nn =++

22323222121 ... bxaxaxaxa nn =++++

Subtract the result from Equation 2.

−
_________________________________________________

or



Forward Elimination
Repeat this procedure for the remaining 
equations to reduce the set of equations as

11313212111 ... bxaxaxaxa nn =++++

'

2

'

23

'

232

'

22 ... bxaxaxa nn =+++

'

3

'

33

'

332

'

32 ... bxaxaxa nn =+++

''

3

'

32

'

2 ... nnnnnn bxaxaxa =+++

. . .

. . .

. . .

End of Step 1



Step 2
Repeat the same procedure for the 3rd term of 
Equation 3.

Forward Elimination

11313212111 ... bxaxaxaxa nn =++++

'

2

'

23

'

232

'

22 ... bxaxaxa nn =+++

"

3

"

33

"

33 ... bxaxa nn =++

""

3

"

3 ... nnnnn bxaxa =++

. .

. .

. .

End of Step 2



Forward Elimination
At the end of (n-1) Forward Elimination steps, the system of equations will look like

'

2

'

23

'

232

'

22 ... bxaxaxa nn =+++

"

3

"

33

"

33 ... bxaxa nn =++

( ) ( )11 −− =
n

nn

n

nn bxa

. .

. .

. .

11313212111 ... bxaxaxaxa nn =++++

End of Step (n-1)



Matrix Form at End of Forward Elimination
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'
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Back Substitution Starting Eqns

'

2

'

23
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232
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33 ... bxaxa nn =++
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. .

. .

. .

11313212111 ... bxaxaxaxa nn =++++

Start with the last equation because it has only one unknown
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Back Substitution
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−
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−
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Example 1

The upward velocity of a rocket is given at three 

different times

Time, Velocity, 

5 106.8

8 177.2

12 279.2

The velocity data is approximated by a polynomial as:

( ) 12.t5           , 32

2

1 ++= atatatv

Find the velocity at t=6 seconds .

( )s t ( )m/s v

Table 1 Velocity vs. time data.



Example 1 Cont. 
Assume

( ) 12.t5    ,atatatv ++= 32

2

1
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2

3

2

2

2

1

2

1

1

1

1

v
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v

a

a

a

 

tt

tt

tt

3

2

1

Results in a matrix template of the form:

Using data from Table 1, the matrix becomes:

















=

































2.279

2.177

8.106

112144

1864

1525

3

2

1

a

a

a

 



Divide Equation 1 by 25 and

multiply it by 64,               .

Forward Elimination: Step 1

.

   408.27356.28.126456.28.1061525  =

 
 

 208.96    56.18.4 0   

408.273     56.2   8.1264

177.2         1        8     64   

−−−

−























2.279112144

2.1771864

8.1061525























−−−

2.279112144

208.9656.18.40

8.1061525







56.2
25

64
=

Subtract the result from Equation 2

Substitute new equation for Equation 2

Augmented Matrix



Forward Elimination: Step 1 (cont.)

.

   168.61576.58.2814476.58.1061525  =

















−−−

2.279112144

208.9656.18.40

8.1061525







 
 

 968.335  76.48.16   0   

168.615     76.5  8.28   144

279.2        1        12      144   

−−−

−























−−−

−−−

968.33576.48.160

208.9656.18.40

8.1061525







Divide Equation 1 by 25 and

multiply it by 144,               .
76.5

25

144
=

Subtract the result from Equation 3

Substitute new equation for Equation 3



Forward Elimination: Step 2

   728.33646.58.1605.3208.9656.18.40 −−−=−−− 

















−−−

−−−

968.33576.48.160

208.9656.18.40

8.1061525







 
 

 .760         7.0    0        0   

728.33646.516.80

335.968   76.416.80   







−−−−

−−

















−−−

76.07.000

208.9656.18.40

8.1061525







Divide Equation 2 by −4.8

and multiply it by −16.8,           

.
5.3

8.4

8.16
=

−

−

Subtract the result from Equation 3

Substitute new equation for Equation 3



Back Substitution
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76.0

208.96

8.106

 

7.000

56.18.40

1525

7.07.000

2.9656.18.40

8.1061525

3

2

1

a

a

a







08571.1

7.0

76.0

76.07.0

3

3

3

=

=

=

a

a

a

Solving for a3



Back Substitution (cont.)

Solving for a2

690519. 

4.8

1.085711.5696.208
 

8.4
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Back Substitution (cont.)

Solving for a1

290472.0

25

08571.16905.1958.106

25

58.106
 

8.106525

32
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Naïve Gaussian Elimination Solution
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Example 1 Cont.

Solution

The solution vector is
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08571.1

6905.19

290472.0
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1

a

a

a

The polynomial that passes through the three data points is then:

( )

125   ,08571.16905.19290472.0 2

32

2

1

++=

++=

ttt

atatatv

( ) ( ) ( )
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08571.166905.196290472.06
2

=

++=v
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11326

3710

321
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=+−

=++

=−

xxx
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xx

Naïve Gauss Elimination Pitfalls

Pitfall #1. Division by zero
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Is division by zero an issue here?
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Is division by zero an issue here? YES

28524
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Division by zero is a possibility at any step of 
forward elimination



Pitfall#2. Large Round-off Errors
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Exact Solution
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Pitfall#2. Large Round-off Errors
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Solve it on a computer using 6 significant digits with chopping
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Pitfall#2. Large Round-off Errors
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Solve it on a computer using 5 significant digits with chopping
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x

Is there a way to reduce the round off error?



Avoiding Pitfalls

Increase the number of significant digits

• Decreases round-off error

• Does not avoid division by zero

Gaussian Elimination with Partial Pivoting

• Avoids division by zero

• Reduces round off error



Gauss Elimination with Partial 
Pivoting



What is Different About Partial Pivoting?

pka

At the beginning of the kth step of forward elimination, find the maximum of

nkkkkk aaa .......,,........., ,1+

If the maximum of the values is 

in the p th row, ,npk  then switch rows p and k.



Example (2nd step of FE)























−

=













































−

−

3

9

8

6

5

431112170

862390

1111240

21670

67.31.5146
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Which two rows would you switch? 



Example (2nd step of FE)
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Switched Rows



Gaussian Elimination 
with Partial Pivoting

A method to solve simultaneous linear 
equations of the form [A][X]=[C]

Two steps
1. Forward Elimination
2. Back Substitution



Forward Elimination

Same as naïve Gauss elimination method except that we switch rows 
before each of the (n-1) steps of forward elimination.



Example: Matrix Form at Beginning of 2nd

Step of Forward Elimination
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Matrix Form at End of Forward Elimination
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Back Substitution Starting Eqns

'
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Back Substitution
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Example 2
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Solve the following set of equations by Gaussian 
elimination with partial pivoting
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2.279112144

2.1771864

8.1061525







First we write the system in the augmented form



Forward Elimination: 

Number of steps of forward elimination is (n−1)=(3−1)=2

Step 1
• Examine absolute values of first column, first row 

and below.

144,64,25

• Largest absolute value is 144 and exists in row 3.
• Switch row 1 and row 3.



































8.1061525

2.1771864

2.279112144

2.279112144

2.1771864

8.1061525















Forward Elimination: Step 1 (cont.)

.

   1.1244444.0333.599.634444.02.279112144  =

















8.1061525

2.1771864

2.279112144







 
 

 10.53.55560667.2      0    

124.1 0.44445.33363.99

177.21        8            64     







−

















8.1061525

10.535556.0667.20

2.279112144







Divide Equation 1 by 144 and

multiply it by 64,                   .
4444.0

144

64
=

Subtract the result from Equation 2

Substitute new equation for Equation 2



Forward Elimination: Step 1 (cont.)

.

   47.481736.0083.200.251736.0279.2112144  =

 
 

 33.588264.0 917.20    

48.470.17362.08325

106.81        5       25     







−

















8.1061525

10.535556.0667.20

2.279112144























33.588264.0917.20

10.535556.0667.20

2.279112144







Divide Equation 1 by 144 and

multiply it by 25,                  .
1736.0

144

25
=

Subtract the result from Equation 3

Substitute new equation for Equation 3



Forward Elimination: Step 2
• Examine absolute values of second column, second row 

and below.

2.917,667.2

• Largest absolute value is 2.917 and exists in row 3.
• Switch row 2 and row 3.



































10.535556.0667.20

33.588264.0917.20

2.279112144

33.588264.0917.20

10.535556.0667.20

2.279112144















Forward Elimination: Step 2 (cont.)

.

   33.537556.0667.209143.058.330.82642.9170  =

















10.535556.0667.20

33.588264.0917.20

2.279112144







 
 

 23.02.0   0       0   

53.33 0.75562.6670

53.10 0.55562.6670   

−−
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−− 23.02.000

33.588264.0917.20

2.279112144







Divide Equation 2 by 2.917 and
multiply it by 2.667,    

.9143.0
917.2

667.2
=

Subtract the result from Equation 3

Substitute new equation for Equation 3



Back Substitution
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2.0
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a

Solving for a3
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Back Substitution (cont.)

Solving for a2

6719.

917.2

15.18264.033.58
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Back Substitution (cont.)

Solving for a1

2917.0
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15.167.19122.279
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122.279

2.27912144
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Gaussian Elimination with Partial Pivoting 
Solution
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2279

2177

8106

112144

1864

1525

3

2

1

.

.

.

a

a

a

 

















=

















15.1

67.19

2917.0

3

2

1

a

a

a



Gauss Elimination with Partial 
Pivoting
Another Example



Example 3

Consider the system of equations

655

901.36099.23

7710

321

321

21

=+−

=++−

=−

xxx

xxx

xx

In matrix form

















−

−

−

515

6099.23

0710

















3

2

1

x

x

x

















6

901.3

7

=

Solve using Gaussian Elimination with Partial Pivoting using five 

significant digits with chopping



Forward Elimination: Step 1

Examining the values of the first column

|10|, |-3|, and |5| or 10, 3, and 5

The largest absolute value is 10, which means, to 

follow the rules of Partial Pivoting, we switch 

row1 with row1.
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−

−

−

6

901.3

7

515

6099.23

0710

3

2

1

x

x

x

















=

































−

−

5.2

001.6

7

55.20

6001.00

0710

3

2

1

x

x

x



Performing Forward Elimination



Forward Elimination: Step 2

Examining the values of the first column

|-0.001| and |2.5| or 0.0001 and 2.5

The largest absolute value is 2.5, so row 2 is 

switched with row 3
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−

−

5.2

001.6

7

55.20

6001.00

0710

3

2

1

x

x

x


















=

































−

−

001.6

5.2

7

6001.00

55.20

0710

3

2

1

x

x

x

Performing the row swap



Forward Elimination: Step 2

Performing the Forward Elimination results in: 
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 −

002.6

5.2

7

002.600

55.20

0710

3

2

1

x

x

x



Partial Pivoting: Example
Back Substitution

Solving the equations through back substitution 

1
002.6

002.6
3 ==x

1
5.2

55.2 3
2 −=

−
=

x
x

0
10

077 32

1 =
−+

=
xx

x

















=































 −

002.6

5.2

7

002.600

55.20

0710

3

2

1

x

x

x



Partial Pivoting: Example

 
















−=

















=

1

1

0

3

2

1

x

x

x

X exact
 

















−=

















=

1

1

0

3

2

1

x

x

x

X calculated

Compare the calculated and exact solution

The fact that they are equal is coincidence, but it 

does illustrate the advantage of Partial Pivoting



Example 4

 

112144

1864

1525

















Using naïve Gaussian elimination find the 
determinant of the following square matrix.



Forward Elimination: Step 1

.

   56.28.126456.21525 =

 
 

 56.18.40   

56.2  8.1264

1       8     64   

−−

−

 

112144

1864

1525

















 

112144

56.18.40

1525

















−−

Divide Equation 1 by 25 and

multiply it by 64,               .
56.2

25

64
=

Subtract the result from Equation 2

Substitute new equation for Equation 2



Forward Elimination: Step 1 (cont.)

.

   76.58.2814476.51525 =

 
 

 76.48.16 0   

76.5   8.28144

1        12   144   

−−

−

 

76.48.160

56.18.40

1525

















−−

−−

 

112144

56.18.40

1525

















−−
Divide Equation 1 by 25 and

multiply it by 144,               .
76.5

25

144
=

Subtract the result from Equation 3

Substitute new equation for Equation 3



Forward Elimination: Step 2

.

 

76.48.160

56.18.40

1525

















−−

−−

 ( )  46.58.1605.356.18.40 −−=−−

 
 

 7.0     0        0   

46.58.160

76.48.160   

−−−

−−

 

7.000

56.18.40

1525

















−−

Divide Equation 2 by −4.8

and multiply it by −16.8,           

.
5.3

8.4

8.16
=

−

−

Subtract the result from Equation 3

Substitute new equation for Equation 3



Finding the Determinant

.

 

7.000

56.18.40

1525

112144

1864

1525

















−−→

















After forward elimination

( )

( )

00.84

7.08.425

Adet 332211

−=

−=

= uuu



GAUSS-JORDAN-Method

• The Gauss-Jordan method is a variation of Gauss elimination. 
The major difference is that when an unknown is eliminated in 
the Gauss-Jordan method, it is eliminated from all other 
equations rather than just the subsequent ones. 

• All rows are normalized by dividing them by their pivot 
elements. Thus, the elimination step results in an identity 
matrix rather than a triangular matrix (Fig. 9.9). 

• Not necessary to employ back substitution to obtain the 
solution. 



Example   (9.12)

• Use Gauss-Jordan to solve the following system:

4.71102.03.0

3.193.071.0

85.72.01.03

321

321

321

=+−

−=−+

=−−

xxx

xxx

xxx

















−

−−

−−

4.71102.03.0

3.193.071.0

85.72.01.03







• Express the system as an augmented matrix

• Normalize first row by dividing it by the pivot element

















−

−−

−−

4.71102.03.0

3.193.071.0

61667.2066667.00333333.1







• x1 can be eliminated from second row by subtracting  0.1 
times 1st row from 2nd row. Similarly for 0.3 and x1 will be
eliminated From 3rd row.

















−

−−

−−

6150.700200.10190000.00

5617.1929333.000333.70

61667.2066667.00333333.1









• Normalize 2nd row by dividing it by 7.00333

















−

−−

−−

6150.700200.10190000.00

79320.20418848.010

61667.2066667.00333333.1







• Eliminate x3 from 1st and 2rd rows

















−−

−

0843.7001200.1000

79320.20418848.010

52356.20680629.001







• Normalize 3nd row by dividing it by 10.0120

















−−

−

0000.7100

79320.20418848.010

52356.20680629.001







• Eliminate x2 from 1st and 3rd rows

















−

0000.7100

5000.2010

0000.3001







Thus, the coefficient matrix has been transformed to 
an Identity matrix



Summary

-Forward Elimination

-Back Substitution

-Pitfalls

-Improvements

-Partial Pivoting

-Determinant of a Matrix

-Gauss-Jordan
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Chapter 10



LU Decomposition

LU Decomposition is another method to solve a set of 

simultaneous linear equations

Which is better, Gauss Elimination or LU Decomposition?

To answer this, a closer look at LU decomposition is 

needed.



Method

For most non-singular matrix [A] that one could conduct Naïve Gauss 

Elimination forward elimination steps, one can always write it as

[A] = [L][U]

where

[L] = lower triangular matrix

[U] = upper triangular matrix

LU Decomposition



How does LU Decomposition work?

If solving a set of linear equations

If  [A] = [L][U]  then

Multiply by

Which gives

Remember  [L]-1[L] = [I] which leads to

Now, if [I][U] = [U] then

Now, let

Which ends with

and

[A][X] = [C]

[L][U][X] = [C]

[L]-1

[L]-1[L][U][X] = [L]-1[C]

[I][U][X] = [L]-1[C]

[U][X] = [L]-1[C]

[L]-1[C]=[Z]

[L][Z] = [C]   (1)

[U][X] = [Z]   (2)



LU Decomposition

How can this be used?

Given  [A][X] = [C]       

1. Decompose [A] into [L] and [U]

2. Solve [L][Z] = [C] for [Z]  

3. Solve [U][X] = [Z] for [X]



Method: [A] Decompose to [L] and [U]

    
































==

33

2322

131211

3231

21

00

0

1

01

001

u

uu

uuu

ULA





[U] is the same as the coefficient matrix at the end of the forward 

elimination step.

[L] is obtained using the multipliers that were used in the forward 

elimination process



Finding the [U] matrix

Using the Forward Elimination Procedure of Gauss Elimination

 

112144

1864

1525

















( )  

112144

56.18.40

1525

56.212;56.2
25

64

















−−=−= RowRow

( )  

76.48.160

56.18.40

1525

76.513;76.5
25

144

















−−

−−=−= RowRow

Step 1:



Finding the [U] Matrix

Step 2:

 

















−−

−−

76.48.160

56.18.40

1525

( )  

7.000

56.18.40

1525

5.323;5.3
8.4

8.16

















−−=−=
−

−
RowRow

 
















−−=

7.000

56.18.40

1525

U

Matrix after Step 1:



Finding the [L] matrix

Using the multipliers used during the Forward Elimination Procedure

















1

01

001

3231

21





56.2
25

64

11

21
21 ===

a

a


76.5
25

144

11

31
31 ===

a

a


From the first step 

of forward 

elimination  

112144

1864

1525



















Finding the [L] Matrix

 
















=

15.376.5

0156.2

001

L

From the second 

step of forward 

elimination
















−−

−−

76.48.160

56.18.40

1525

5.3
8.4

8.16

22

32
32 =

−

−
==

a

a




Does [L][U] = [A]?

   =

















−−

















=

7.000

56.18.40

1525

15.376.5

0156.2

001

UL ?



Using LU Decomposition to solve SLEs

Solve the following set of 

linear equations using LU 

Decomposition
















=

































2279

2177

8106

112144

1864

1525

3

2

1

.

.

.

x

x

x

 

Using the procedure for finding the [L] and [U] matrices

    
















−−

















==

7.000

56.18.40

1525

15.376.5

0156.2

001

ULA



Example

Set  [L][Z] = [C]

Solve for [Z]

















=

































2.279

2.177

8.106

15.376.5

0156.2

001

3

2

1

z

z

z

2.2795.376.5

2.17756.2

8.106

321

21

1

=++

=+

=

zzz

zz

z



Example

Complete the forward substitution to solve for [Z]

( )

( ) ( )

735.0

21.965.38.10676.52.279

5.376.52.279

2.96

8.10656.22.177

56.22.177

8.106

213

12

1

=

−−−=

−−=

−=

−=

−=

=

zzz

zz

z

 
















−=

















=

735.0

21.96

8.106

3

2

1

z

z

z

Z



Example

Set [U][X] = [Z]

Solve for [X] The 3 equations become

















−=

































−−

7350

2196

8106

 

7.000

56.18.40

1525

3

2

1

.

.

.

x

x

x

735.07.0

21.9656.18.4

8.106525

3

32

321

=

−=−−

=++

a

aa

aaa



Example

From the 3rd equation

0501

70

7350

735070

3

3

3

.a

.

.
a

.a.

=

=

=

Substituting in a3 and using the 

second equation

219656184 32 .a.a. −=−−

( )

7019

84

05015612196

84

5612196

2

2

3
2

.a

.

...
a

.

a..
a

=

−

+−
=

−

+−
=



Example

Substituting in a3 and a2 using 

the first equation

8106525 321 .aaa =++

Hence the Solution Vector is:

















=

















050.1

70.19

2900.0

3

2

1

a

a

a

( )

29000

25

0501701958106

25

58106 32
1

.

...

aa.
a

=

−−
=

−−
=



Finding the inverse of a square matrix

• Using LU Decomposition 

Assume the first column of [B] to be [b11 b12 … bn1]
T

Using this and the definition of matrix multiplication

First column of [B]      Second column of [B]

 



















=



















0

0

1

1

21

11



nb

b

b

A  



















=



















0

1

0

2

22

12



nb

b

b

A

The remaining columns in [B] can be found in the same manner



Example:

Find the inverse of a square matrix [A] using LU decomposition method.

 
















=

112144

1864

1525

A

    
















−−

















==

7000

561840

1525

153765

01562

001

.

.. 

..

.ULA

The [L] and [U] matrices are found to be



Example:

Solving for the each column of [B] requires two steps

1) Solve [L] [Z] = [C] for [Z] 

2) Solve [U] [X] = [Z] for [X] 

Step 1:     
















=

































→=

0

0

1

15.376.5

0156.2

001

3

2

1

z

z

z

CZL

This generates the equations:

05.376.5

056.2

1

321

21

1

=++

=+

=

zzz

zz

z



Example:

Solving for [Z]

( )

( ) ( )

23

5625317650

537650

562

15620

5620

1

213

12

1

.

...

z.z.z

.

.

z.  z

 z

=

−−−=

−−=

−=

−=

−=

=

 
















−=

















=

23

562

1

3

2

1

.

.

z

z

z

Z



Example:

Solving [U][X] = [Z] for [X]

















−=

































−−

3.2

2.56

1

  

7.000

56.18.40

1525

31

21

11

b

b

b

2.37.0

56.256.18.4

1525

31

3121

312111

=

−=−−

=++

b

bb

bbb



Example:

Using Backward Substitution

( )

( )
04762.0

25

571.49524.051

25

51

9524.0
8.4

571.4560.156.2

8.4

560.156.2

571.4
7.0

2.3

3121
11

31
21

31

=
−−−

=

−−
=

−=
−

+−
=

−

+−
=

==

bb
b

b
b

b So the first column of 

the inverse of [A] is:

















−=

















571.4

9524.0

04762.0

31

21

11

b

b

b



Example: Inverse of a Matrix

Repeating for the second and third columns of the inverse

Second Column Third Column

















=

































0

1

0

112144

1864

1525

32

22

12

b

b

b

















−

−

=

















000.5

417.1

08333.0

32

22

12

b

b

b

















=

































1

0

0

 

112144

1864

1525

33

23

13

b

b

b

















−=

















429.1

4643.0

03571.0

33

23

13

b

b

b



Example:

The inverse of [A] is

 
















−

−−

−

=
−

429.1000.5571.4

4643.0417.19524.0

03571.008333.004762.0
1

A

To check your work do the following operation

[A][A]-1 = [I] = [A]-1[A]



2.149

  Gauss-Jordan  Elimination 1| |A I I A− ⎯⎯⎯⎯⎯⎯⎯→ 

Ex 2: Find the inverse of the matrix A










−−
=

31

41
A

Sol:
AX I=









=

















−− 10

01

31

41

2221

1211

xx

xx









=









−−−−

++

10

01

33

44

22122111

22122111

xxxx

xxxx

▪ Find the inverse of a matrix by the Gauss-Jordan 
Elimination:



2.150

(1) ( 4)
1,2 2,1,   1 4 1 1 0 3

(1)
1 3 0 0 1 1

A A
− −   

 ⎯⎯⎯⎯→   
− −   

(1) ( 4)
1,2 2,1,   1 4 0 1 0 4

(2)
1 3 1 0 1 1

A A
− −   

 ⎯⎯⎯⎯→   
− −   

1 ,3 2111 =−= xx

1 ,4 2212 =−= xx








 −−
== −

11

43
1AX

Thus

(2)       
13

04
     

(1)       
03

14
  

2212

2212

2111

2111

=−−

=+

=−−

=+


xx

xx

xx

xx

by equating corresponding entries

This two systems of linear 

equations have the same 

coefficient matrix, which 

is exactly the matrix A.

Perform the Gauss-

Jordan elimination on 

the matrix A with the 

same row operations
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(1) ( 4)
1,2 2,1

Gauss Jordan Elimination

,

1

1 4 1 0 1 0 3 4

1 3 0 1 0 1 1 1

                                                                            

A A

A I I A

−

−

−

− −   
⎯⎯⎯⎯→   

− −   

※ If A cannot be row reduced to I, then A is singular

Note:

Rather than solve the two systems separately, you can solve them

simultaneously by adjoining (appending) the identity matrix to the right of the

coefficient matrix

11

21

solution for 
x

x

 
 
 

12

22

solution for 
x

x

 
 
 



2.152















−
−

−
=

326
101
011

A

( 1)
1,2

1 1 0 1 0 0

  0 1 1 1 1 0   

6 2 3 0 0 1

A
−

− 
 

⎯⎯⎯→ − −
 
 − 

Sol:

 














−
−

−
=

100
010
001

326
101
011

    




 IA

(6)
1,3

1 1 0 1 0 0

  0 1 1 1 1 0

0 4 3 6 0 1

A

− 
 

⎯⎯⎯→ − −
 
 − 

( 1)
3

1 1 0 1 0 0

  0 1 1 1 1 0

0 0 1 2 4 1

M
−

− 
 

⎯⎯⎯→ − −
 
 − − − 

( 4)
2,3

1 1 0 1 0 0

  0 1 1 1 1 0

0 0 1 2 4 1

A

− 
 

⎯⎯⎯→ − −
 
 − 

Ex 3: Find the inverse of the following matrix



2.153

(1)
3,2

1 1 0 1 0 0

 0 1 0 3 3 1

0 0 1 2 4 1

A

− 
 

⎯⎯→ − − −
 
 − − − 

(1)
2,1

1 0 0 2 3 1

 0 1 0 3 3 1

0 0 1 1 4 1

A

− − − 
 

⎯⎯→ − − −
 
 − − − 

So the matrix A is invertible, and its inverse is

















−−−

−−−

−−−

=−

142

133

132
1A

]  [  1−= AI 

Check it by yourselves:

IAAAA == −− 11  



When is LU Decomposition better than Gaussian Elimination?

To solve [A][X] = [B]

Table. Time taken by methods

where T = clock cycle time and n = size of the matrix

So both methods are equally efficient.

Gaussian Elimination LU Decomposition









++

3

4
12

3

8 2
3 n

n
n

T 







++

3

4
12

3

8 2
3 n

n
n

T



To find inverse of [A]

Time taken by Gaussian Elimination Time taken by LU Decomposition

( )









++=

+=

3

4
12

3

8

||

2
3

4 n
n

n
T

CTCTn BSFE









++=

++=

3

20
12

3

32

|||

2
3 n

n
n

T

CTnCTnCT BSFSLU

n 10 100 1000 10000

CT|inverse GE / CT|inverse LU 3.28 25.83 250.8 2501

Table 1 Comparing computational times of finding inverse of a matrix using LU 
decomposition and Gaussian elimination.
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Iterative Methods
Chap  11

▪ Gauss-Seidel Method

▪ Jacobi Method



Gauss-Seidel Method

An iterative method.

Basic Procedure:

-Algebraically solve each linear equation for xi  

-Assume an initial guess solution array

-Solve for each xi and repeat

-Use absolute relative approximate error after each iteration 

to check if error is within a pre-specified tolerance.



Gauss-Seidel Method

Why?

The Gauss-Seidel Method allows the user to control round-off error.

Elimination methods such as Gaussian Elimination and LU 

Decomposition are prone to prone to round-off error.

Also: If the physics of the problem are understood, a close initial 

guess can be made, decreasing the number of iterations needed. 



Gauss-Seidel Method

Algorithm
A set of n equations and n unknowns:

11313212111 ... bxaxaxaxa nn =++++

2323222121 ... bxaxaxaxa n2n =++++

nnnnnnn bxaxaxaxa =++++ ...332211

. .

. .

. .

If: the diagonal elements are 

non-zero

Rewrite each equation solving 

for the corresponding unknown

ex:

First equation, solve for x1

Second equation, solve for x2



Gauss-Seidel Method

Algorithm
Rewriting each equation

11

13132121
1

a

xaxaxac
x nn−−−
=



nn

nnnnnn

n

nn

nnnnnnnnn

n

nn

a

xaxaxac
x

a

xaxaxaxac
x

a

xaxaxac
x

11,2211

1,1

,122,122,111,11

1

22

23231212
2

−−

−−

−−−−−−−

−

−−−−
=

−−−−
=

−−−
=









From Equation 1

From equation 2

From equation n-1

From equation n



Gauss-Seidel Method

Algorithm
General Form of each equation

11

1
1

11

1
a

xac

x

n

j
j

jj

=

−

=

22

2
1

22

2
a

xac

x

j

n

j
j

j

=

−

=

1,1

1
1

,11

1

−−

−
=

−−

−

−

=
nn

n

nj
j

jjnn

n
a

xac

x

nn

n

nj
j

jnjn

n
a

xac

x



=

−

=
1



Gauss-Seidel Method

Algorithm
General Form for any row ‘i’

.,,2,1,
1

ni
a

xac

x
ii

n

ij
j

jiji

i =

−

=



=

How or where can this equation be used?



Gauss-Seidel Method

Solve for the unknowns 

Assume an initial guess for [X]























n

-n

2

x

x

x

x

1

1



Use rewritten equations to solve for 

each value of xi.

Important: Remember to use the 

most recent value of xi. Which 

means to apply values calculated to 

the calculations remaining in the 

current iteration.



Gauss-Seidel Method

Calculate the Absolute Relative Approximate Error 

100
−

=
new

i

old

i

new

i

ia
x

xx

So when has the answer been found?

The iterations are stopped when the absolute relative 

approximate error is less than a prespecified tolerance for all 

unknowns.
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Gauss-Seidel Method: 
Example 1

The upward velocity of a rocket 

is given at three different times

Time, Velocity

5 106.8

8 177.2

12 279.2

The velocity data is approximated by a polynomial as:

( ) 12.t5 , 32

2

1 ++= atatatv

( )s  t ( )m/s  v

Table 1 Velocity vs. Time data.



Gauss-Seidel Method: Example 1
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1Using a Matrix template of the form

The system of equations becomes
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2.279

2.177

8.106

112144

1864

1525

3

2

1

a

a

a

 

Initial Guess: Assume an initial guess of
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5

2

1

3

2

1

a

a

a



Gauss-Seidel Method: Example 1

Rewriting each equation
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2.279

2.177

8.106

112144

1864

1525

3

2

1

a

a

a

 

25

58.106 32

1

aa
a

−−
=

8

642.177 31

2

aa
a

−−
=

1

121442.279 21

3

aa
a

−−
=



Gauss-Seidel Method: Example 1

Applying the initial guess and solving for ai
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5

2

1

3

2

1

a

a

a 6720.3
25

)5()2(58.106
a1 =

−−
=

( ) ( )
8510.7

8

56720.3642.177
a 2 −=

−−
=

( ) ( )
36.155

1

8510.7126720.31442.279
a3 −=

−−−
=

Initial Guess

When solving for a2, how many of the initial guess values were used?



Gauss-Seidel Method: Example 1

%76.72100
6720.3

0000.16720.3
1a =

−
= x

%47.125100
8510.7

0000.28510.7
2a =

−

−−
= x

%22.103100
36.155

0000.536.155
3a =

−

−−
= x

Finding the absolute relative approximate error

100
−

=
new

i

old

i

new

i

ia
x

xx At the end of the first iteration

The maximum absolute 

relative approximate error is 

125.47%
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8510.7

6720.3
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2

1

a

a

a



Gauss-Seidel Method: Example 1

Iteration #2
Using
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−=

















36.155

8510.7

6720.3

3

2

1

a

a

a

( )
056.12

25

36.1558510.758.106
1 =

−−−
=a

( )
882.54

8

36.155056.12642.177
2 −=

−−
=a

( ) ( )
34.798

1

882.5412056.121442.279
3 −=

−−−
=a

from iteration #1

the values of ai are found:
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Gauss-Seidel Method: Example 1

Finding the absolute relative approximate error

%543.69100
056.12

6720.3056.12
1a =

−
= x

( )
%695.85100x

882.54

8510.7882.54
2

=
−

−−−
=a

( )
%540.80100

34.798

36.15534.798
3a =

−

−−−
= x

At the end of the second iteration
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54.798

882.54

056.12

3

2

1

a

a

a

The maximum absolute 

relative approximate error is 

85.695%



Iteration a1 a2 a3

1

2

3

4

5

6

3.6720

12.056

47.182

193.33

800.53

3322.6

72.767

69.543

74.447

75.595

75.850

75.906

−7.8510

−54.882

−255.51

−1093.4

−4577.2

−19049

125.47

85.695

78.521

76.632

76.112

75.972

−155.36

−798.34

−3448.9

−14440

−60072

−249580

103.22

80.540

76.852

76.116

75.963

75.931

Gauss-Seidel Method: Example 1
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0857.1

690.19

29048.0

a

a

a

3

2

1

Repeating more iterations, the following values are obtained

%
1a %

2a %
3a

Notice – The relative errors are not decreasing at any significant rate

Also, the solution is not converging to the true solution of



Gauss-Seidel Method: Pitfall

What went wrong?

Even though done correctly, the answer is not converging to the 

correct answer

This example illustrates a pitfall of the Gauss-Siedel method: not all 

systems of equations will converge.

Is there a fix?

One class of system of equations always converges: One with a diagonally 
dominant coefficient matrix.

Diagonally dominant: [A] in [A] [X] = [C] is diagonally dominant if:



=


n

j
j

ijaa

i
1

ii 

=


n

ij
j

ijii aa
1

for all ‘i’         and for at least one ‘i’ 



Gauss-Seidel Method: Pitfall

   

















=

116123

14345

3481.52

A

Diagonally dominant: The coefficient on the diagonal must be at least 

equal to the sum of the other coefficients in that row and at least one row 

with a diagonal coefficient greater than the sum of the other coefficients 

in that row.

 

















=

1293496

55323

5634124

]B[

Which coefficient matrix is diagonally dominant?

Most physical systems do result in simultaneous linear equations that 

have diagonally dominant coefficient matrices.



Gauss-Seidel Method: Example 2

Given the system of equations

15312 321   x- x  x =+

2835 321  x  x  x  =++

761373 321 =++  x  x  x
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1

0

1

3

2

1

x

x

x

With an initial guess of

The coefficient matrix is:

 














 −

=

1373

351

5312

A

Will the solution converge using the 

Gauss-Siedel method?



Gauss-Seidel Method: Example 2

 














 −

=

1373

351

5312

A

Checking if the coefficient matrix is diagonally dominant

43155 232122 =+=+== aaa

10731313 323133 =+=+== aaa

8531212 131211 =−+=+== aaa

The inequalities are all true and at least one row is strictly greater than:

Therefore: The solution should converge using the Gauss-Siedel Method



Gauss-Seidel Method: Example 2
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1

1373

351
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3

2

1

a

a

a

 

Rewriting each equation

12

531 32

1

xx
x

+−
=

5

328 31

2

xx
x

−−
=

13

7376 21

3

xx
x

−−
=

With an initial guess of
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1

0

1

3

2

1

x

x

x

( ) ( )
50000.0

12

15031
1 =

+−
=x

( ) ( )
9000.4

5

135.028
2 =

−−
=x

( ) ( )
0923.3

13

9000.4750000.0376
3 =

−−
=x



Gauss-Seidel Method: Example 2

The absolute relative approximate error

%00.100100
50000.0

0000.150000.0
1

=
−

=a

%00.100100
9000.4

09000.4
2a =

−
=

%662.67100
0923.3

0000.10923.3
3a =

−
=

The maximum absolute relative error after the first iteration is 100%



Gauss-Seidel Method: Example 2
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8118.3

7153.3

14679.0

3

2

1

x

x

x

After Iteration #1

( ) ( )
14679.0

12

0923.359000.431
1 =

+−
=x

( ) ( )
7153.3

5

0923.3314679.028
2 =

−−
=x

( ) ( )
8118.3

13

900.4714679.0376
3 =

−−
=x

Substituting the x values into the 

equations
After Iteration #2
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0923.3

9000.4

5000.0

3

2

1

x

x

x



Gauss-Seidel Method: Example 2

Iteration #2 absolute relative approximate error

%61.240100
14679.0

50000.014679.0
1a =

−
=

%889.31100
7153.3

9000.47153.3
2a =

−
=

%874.18100
8118.3

0923.38118.3
3a =

−
=

The maximum absolute relative error after the first iteration is 240.61%

This is much larger than the maximum absolute relative error obtained in 

iteration #1. Is this a problem?



Iteration a1 a2 a3

1

2

3

4

5

6

0.50000

0.14679

0.74275

0.94675

0.99177

0.99919

100.00

240.61

80.236

21.546

4.5391

0.74307

4.9000

3.7153

3.1644

3.0281

3.0034

3.0001

100.00

31.889

17.408

4.4996

0.82499

0.10856

3.0923

3.8118

3.9708

3.9971

4.0001

4.0001

67.662

18.876

4.0042

0.65772

0.074383

0.00101

Gauss-Seidel Method: Example 2

Repeating more iterations, the following values are obtained

%
1a %

2a %
3a
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1

3

2

1

x
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x

















=

















0001.4

0001.3

99919.0

3

2

1

x

x

x
The solution obtained  is close to the exact solution of                  .



Gauss-Seidel Method: Example 3

Given the system of equations

761373 321 =++ xxx

2835 321 =++ xxx

15312 321 =−+ xxx  

With an initial guess of
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1

0

1

3

2

1

x

x

x

Rewriting the equations

3

13776 32
1

xx
x

−−
=

5

328 31
2

xx
x

−−
=

5

3121 21

3

−

−−
=

xx
x



Iteration a1 A2 a3

1

2

3

4

5

6

21.000

−196.15

−1995.0

−20149

2.0364×105

−2.0579×105

95.238

110.71

109.83

109.90

109.89

109.89

0.80000

14.421

−116.02

1204.6

−12140

1.2272×105

100.00

94.453

112.43

109.63

109.92

109.89

50.680

−462.30

4718.1

−47636

4.8144×105

−4.8653×106

98.027

110.96

109.80

109.90

109.89

109.89

Gauss-Seidel Method: Example 3

Conducting six iterations, the following values are obtained

%
1a %

2a %
3a

The values are not converging.

Does this mean that the Gauss-Seidel method cannot be used?



Gauss-Seidel Method

The Gauss-Seidel Method can still be used

The coefficient matrix is not 

diagonally dominant
 

















−

=

5312

351

1373

A

But this is the same set of 

equations used in example #2, 

which did converge.
 















 −

=

1373

351

5312

A

If a system of linear equations is not diagonally dominant, check to see if 

rearranging the equations can form a diagonally dominant matrix.



Gauss-Seidel Method

Not every system of equations can be rearranged to have a 

diagonally dominant coefficient matrix.

Observe the set of equations

3321 =++ xxx

9432 321 =++ xxx

97 321 =++ xxx

Which equation(s) prevents this set of equation from having a 

diagonally dominant coefficient matrix?



• As each new x value is computed for the Gauss-Seidel method, it is immediately used in 

the next equation to determine another x value. 

• An alternative approach, called Jacobi iteration, utilizes a somewhat different tactic. 

Rather than using the latest available x’s, this technique uses guessed valued for all 

equations for 1st iteration. In second iteration, results of the computed x’s will be used 

an so on…

• Thus, as new values are generated, they are not immediately used but rather are retained 

for the next iteration.

Jacobi Iteration Method



Jacobi Method
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Rewriting each equation

12

531 32

1

xx
x

+−
=

5

328 31

2

xx
x

−−
=

13

7376 21

3

xx
x

−−
=

With an initial guess of
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3

2

1

x

x

x

( ) ( )
50000.0

12

15031
1 =

+−
=x

( ) ( )
8000.4

5

13128
x2 =

−−
=

( ) ( )
5384.5

13

071376
x3 =

−−
=


