Part3

Linear Algebraic Equations

Chapters 9,10,11

Introduction to Matrices

- Properties
- Operations
- Inverse of Matrix

Operations with Matrices

Matrix:

$$
A=\left[a_{i j}\right]=\left[\begin{array}{rrrrr}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right]_{m \times n} \in M_{m \times n}
$$

(i,j)-th entry (or element): $a_{i j}$
number of rows: m
number of columns: n
size: $m \times n$
Square matrix: $m=n$

Equal matrices: two matrices are equal if they have the same size $(m \times n)$ and entries corresponding to the same position are equal

For $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{m \times n}$,
$A=B$ if and only if $a_{i j}=b_{i j}$ for $1 \leq i \leq m, 1 \leq j \leq n$

Ex 1: Equality of matrices

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

If $A=B$, then $a=1, b=2, c=3$, and $d=4$

Matrix addition:

$$
\begin{aligned}
& \text { If } A=\left[a_{i j}\right]_{m \times n}, B=\left[b_{i j}\right]_{m \times n}, \\
& \text { then } A+B=\left[a_{i j}\right]_{m \times n}+\left[b_{i j}\right]_{m \times n}=\left[a_{i j}+b_{i j}\right]_{m \times n}=\left[c_{i j}\right]_{m \times n}=C
\end{aligned}
$$

Ex 2: Matrix addition

$$
\begin{aligned}
& {\left[\begin{array}{rr}
-1 & 2 \\
0 & 1
\end{array}\right]+\left[\begin{array}{rr}
1 & 3 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{rr}
-1+1 & 2+3 \\
0-1 & 1+2
\end{array}\right]=\left[\begin{array}{rr}
0 & 5 \\
-1 & 3
\end{array}\right]} \\
& {\left[\begin{array}{r}
1 \\
-3 \\
-2
\end{array}\right]+\left[\begin{array}{r}
-1 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
1-1 \\
-3+3 \\
-2+2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Scalar multiplication:

$$
\begin{aligned}
& \text { If } A=\left[a_{i j}\right]_{m \times n} \text { and } c \text { is a constant scalar, } \\
& \text { then } c A=\left[c a_{i j}\right]_{m \times n}
\end{aligned}
$$

Matrix subtraction:

$$
A-B=A+(-1) B
$$

Ex 3: Scalar multiplication and matrix subtraction

$$
A=\left[\begin{array}{rrr}
1 & 2 & 4 \\
-3 & 0 & -1 \\
2 & 1 & 2
\end{array}\right] \quad B=\left[\begin{array}{rrr}
2 & 0 & 0 \\
1 & -4 & 3 \\
-1 & 3 & 2
\end{array}\right]
$$

Find (a) $3 A$, (b) $-B$, (c) $3 A-B$

Sol:
(a)

$$
3 A=3\left[\begin{array}{rrr}
1 & 2 & 4 \\
-3 & 0 & -1 \\
2 & 1 & 2
\end{array}\right]=\left[\begin{array}{rrr}
3(1) & 3(2) & 3(4) \\
3(-3) & 3(0) & 3(-1) \\
3(2) & 3(1) & 3(2)
\end{array}\right]=\left[\begin{array}{rrr}
3 & 6 & 12 \\
-9 & 0 & -3 \\
6 & 3 & 6
\end{array}\right]
$$

(b)

$$
-B=(-1)\left[\begin{array}{rrr}
2 & 0 & 0 \\
1 & -4 & 3 \\
-1 & 3 & 2
\end{array}\right]=\left[\begin{array}{rrr}
-2 & 0 & 0 \\
-1 & 4 & -3 \\
1 & -3 & -2
\end{array}\right]
$$

(c)

$$
3 A-B=\left[\begin{array}{rrr}
3 & 6 & 12 \\
-9 & 0 & -3 \\
6 & 3 & 6
\end{array}\right]-\left[\begin{array}{rrr}
2 & 0 & 0 \\
1 & -4 & 3 \\
-1 & 3 & 2
\end{array}\right]=\left[\begin{array}{rrr}
1 & 6 & 12 \\
-10 & 4 & -6 \\
7 & 0 & 4
\end{array}\right]
$$

Matrix multiplication:

$$
\begin{aligned}
& \text { If } A=\left[a_{i j}\right]_{m \times n} \text { and } B=\left[b_{i j}\right]_{n \times p} \text {, } \\
& \text { then } A B=\left[a_{i j}\right]_{m \times n}\left[b_{i j}\right]_{n \times p}=\left[c_{i j}\right]_{m \times p}=C \text {, } \\
& \text { where } c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}
\end{aligned}
$$

※ The entry $c_{i j}$ is obtained by calculating the sum of the entry-by-entry product between the i th row of A and the j th column of B

Ex 4: Find $A B$

$$
A=\left[\begin{array}{rr}
-1 & 3 \\
4 & -2 \\
5 & 0
\end{array}\right]_{3 \times 2} \quad B=\left[\begin{array}{ll}
-3 & 2 \\
-4 & 1
\end{array}\right]_{2 \times 2}
$$

Sol:

$$
\begin{aligned}
A B & =\left[\begin{array}{cc}
(-1)(-3)+(3)(-4) & (-1)(2)+(3)(1) \\
(4)(-3)+(-2)(-4) & (4)(2)+(-2)(1) \\
(5)(-3)+(0)(-4) & (5)(2)+(0)(1)
\end{array}\right]_{3 \times 2} \\
& =\left[\begin{array}{cc}
-9 & 1 \\
-4 & 6 \\
-15 & 10
\end{array}\right]_{3 \times 2}
\end{aligned}
$$

Note: (1) $B A$ is not multipliable
(2) Even $B A$ is multipliable, $A B \neq B A$

Matrix form of a system of linear equations in n variables:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

m linear equations

$$
\Downarrow
$$

$$
\left.\begin{array}{r}
{\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]} \\
\\
\\
\\
\\
\\
\end{array}\right]
$$

single matrix equation

$$
\underset{m \times n \times 1}{A} \mathbf{x}=\underset{m \times}{\mathbf{b}}
$$

Partitioned matrices:

$A=\left[\begin{array}{llll}\left.\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ \hdashline a_{21} & a_{22} & a_{23} & a_{24} \\ \hdashline a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right]\end{array}\right]\left[\begin{array}{l}\mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \mathbf{r}_{3}\end{array}\right]^{2}$ row vector
$\left.A=\left[\begin{array}{l:l:l:l}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right]=\left[\begin{array}{lll}\mathbf{c}_{1}\end{array}\right) \begin{array}{c}\mathbf{c}_{2} \\ \mathbf{c}_{3} \\ \mathbf{c}_{4}\end{array}\right]$
$A=\left[\begin{array}{lll:l}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ \hdashline a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right]=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right] \begin{aligned} & \text { ※ Partitioned matrices can be } \\ & \text { used to simplify equations or } \\ & \text { to obtain new interpretation of } \\ & \text { equations (see the next slide) }\end{aligned}$

A linear combination of the column vectors of matrix A :

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{c}_{1} & \mathbf{c}_{2} & \cdots & \mathbf{c}_{n}
\end{array}\right] \\
\Rightarrow A \mathbf{x}=\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}
\end{array}\right]_{m \times 1}=x_{1}\left[\begin{array}{c}
x_{11} \\
a_{21} \\
\vdots \\
x_{2} \\
\vdots \\
a_{m 1}
\end{array}\right]+x_{2}\left[\begin{array}{c}
a_{21} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right] \\
\\
\\
\\
\mathbf{c}_{1}
\end{gathered}
$$

$$
=x_{1} \mathbf{c}_{1}+x_{2} \mathbf{c}_{2}+\cdots+x_{n} \mathbf{c}_{n} \Rightarrow A \mathbf{x} \text { can be viewed as the linear combination of column }
$$ vectors of A with coefficients $x_{1}, x_{2}, \ldots, x_{n}$

$$
=\left[\begin{array}{llll}
\mathbf{c}_{1} & \mathbf{c}_{2} & \cdots & \mathbf{c}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \begin{aligned}
& \text { You can derive the same result if you perform } \\
& \text { the matrix multiplication for matrix } A \\
& \text { expressed in column vectors and } \mathbf{x} \text { directly }
\end{aligned}
$$

To practice, we need to know the trace operation and the notion of diagonal matrices

Trace operation:

$$
\text { If } A=\left[a_{i j}\right]_{n \times n} \text {, then } \operatorname{Tr}(A) \equiv a_{11}+a_{22}+\cdots+a_{n n}
$$

Diagonal matrix: a square matrix in which nonzero elements are found only in the principal diagonal

※ It is the usual notation for a diagonal matrix.

Keywords

- equality of matrices:
- matrix addition:
- scalar multiplication:
- matrix multiplication:
- partitioned matrix:
- row vector:
- column vector:
- trace:
- diagonal matrix:

Properties of Matrix Operations

Three basic matrix operators, introduced in Sec. 2.1:
(1) matrix addition
(2) scalar multiplication
(3) matrix multiplication

Zero matrix : $\quad \mathbf{0}_{m \times n}=\left[\begin{array}{cccc}0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0\end{array}\right]_{m \times n}$
Identity matrix of order $n: \quad I_{n}=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right]_{n \times n}$

Properties of matrix addition and scalar multiplication:

If $A, B, C \in M_{m \times n}$, and c, d are scalars, then (1) $A+B=B+A$ (Commutative property of addition)
(2) $A+(B+C)=(A+B)+C$ (Associative property of addition)
(3) ($c d$) $A=c(d A)$ (Associative property of scalar multiplication)
(4) $1 A=A_{\text {identity for all matrices) }}^{\text {(Multiplicaive identy, and } 1 \text { is the multiplicative }}$
(5) $c(A+B)=\mathrm{c} A+\mathrm{c} B$ (Distributive property of scalar multiplication over matrix addition)
(6) $(c+d) A=c A+d A$ (Distributive property of scalar multiplication over real-number addition)

Notes:
All above properties are very similar to the counterpart properties for real numbers

Properties of zero matrices:

If $A \in M_{m \times n}$, and c is a scalar,
then (1) $A+\mathbf{0}_{m \times n}=A$
※ So, $\mathbf{0}_{n \times n}$ is also called the additive identity for the set of all $n \times n$ matrices
(2) $A+(-A)=\mathbf{0}_{m \times n}$
※ Thus, $-A$ is called the additive inverse of A
(3) $c A=\mathbf{0}_{m \times n} \Rightarrow c=0$ or $A=\mathbf{0}_{m \times n}$

Notes:

All above properties are very similar to the counterpart properties for the real number 0

Properties of matrix multiplication:

(1) $A(B C)=(A B) C$ (Associative property of matrix multiplication)
(2) $A(B+C)=A B+A C^{\text {(Distributive property of LHS matrix multiplication }}$ over matrix addition)
(3) $(A+B) C=A C+B C \quad \begin{aligned} & \text { (Distributive property of RHS matrix multiplication } \\ & \text { over matrix addition) }\end{aligned}$
(4) $c(A B)=(c A) B=A(c B)$
※ For real numbers, the properties (2) and (3) are the same since the order for the multiplication of real numbers is irrelevant.
※ For real numbers, in addition to satisfying above properties, there is a commutative property of real-number multiplication, i.e., $c d=d c$.

Properties of the identity matrix:

$$
\begin{array}{r}
\text { If } A \in M_{m \times n} \text {, then (1) } A I_{n}=A \\
\text { (2) } I_{m} A=A
\end{array}
$$

※ For real numbers, the role of 1 is similar to the identity matrix. However, 1 is unique for real numbers and there could be many identity matrices with different sizes

Ex 3: Matrix Multiplication is Associative

Calculate $(A B) C$ and $A(B C)$ for

$$
A=\left[\begin{array}{ll}
1 & -2 \\
2 & -1
\end{array}\right], B=\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & -2 & 1
\end{array}\right] \text {, and } C=\left[\begin{array}{ll}
-1 & 0 \\
3 & 1 \\
2 & 4
\end{array}\right] \text {. }
$$

Sol:

$$
\begin{aligned}
(A B) C & =\left(\left[\begin{array}{ll}
1 & -2 \\
2 & -1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & -2 & 1
\end{array}\right]\right)\left[\begin{array}{ll}
-1 & 0 \\
3 & 1 \\
2 & 4
\end{array}\right] \\
& =\left[\begin{array}{lll}
-5 & 4 & 0 \\
-1 & 2 & 3
\end{array}\right]\left[\begin{array}{ll}
-1 & 0 \\
3 & 1 \\
2 & 4
\end{array}\right]=\left[\begin{array}{cc}
17 & 4 \\
13 & 14
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
A(B C) & =\left[\begin{array}{ll}
1 & -2 \\
2 & -1
\end{array}\right]\left(\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & -2 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
3 & 1 \\
2 & 4
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
1 & -2 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
3 & 8 \\
-7 & 2
\end{array}\right]=\left[\begin{array}{cc}
17 & 4 \\
13 & 14
\end{array}\right]
\end{aligned}
$$

Definition of A^{k} : repeated multiplication of a square matrix:

$$
A^{1}=A, A^{2}=A A, \ldots, A^{k}=\underbrace{A A \cdots A}_{k \text { matrices }}
$$

Properties for A^{k} :
(1) $A^{j} A^{k}=A^{j+k}$
(2) $\left(A^{j}\right)^{k}=A^{j k}$
where j and k are nonegative integers and A^{0} is assumed to be I

For diagonal matrices:

$$
D=\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right] \Rightarrow D^{k}=\left[\begin{array}{cccc}
d_{1}^{k} & 0 & \cdots & 0 \\
0 & d_{2}^{k} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & d_{n}^{k}
\end{array}\right]
$$

Transpose of a matrix :

$$
\begin{aligned}
& \text { If } A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \in M_{m \times n}, \\
& \text { then } A^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & \vdots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right] \in M_{n \times m}
\end{aligned}
$$

※ The transpose operation is to move the entry $a_{i j}$ (original at the position (i, j)) to the position (j, i)
※ Note that after performing the transpose operation, A^{T} is with the size $n \times m$

Ex 8: Find the transpose of the following matrix
(a) $A=\left[\begin{array}{l}2 \\ 8\end{array}\right]$
(b) $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
(c) $A=\left[\begin{array}{rr}0 & 1 \\ 2 & 4 \\ 1 & -1\end{array}\right]$

Sol: (a)

$$
A=\left[\begin{array}{l}
2 \\
8
\end{array}\right] \quad \Rightarrow A^{T}=\left[\begin{array}{ll}
2 & 8
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \Rightarrow A^{T}=\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]
$$

(c) $A=\left[\begin{array}{rr}0 & 1 \\ 2 & 4 \\ 1 & -1\end{array}\right] \Rightarrow A^{T}=\left[\begin{array}{ccc}0 & 2 & 1 \\ 1 & 4 & -1\end{array}\right]$

Properties of transposes:

(1) $\left(A^{T}\right)^{T}=A$
(2) $(A+B)^{T}=A^{T}+B^{T}$
(3) $(c A)^{T}=c\left(A^{T}\right)$
(4) $(A B)^{T}=B^{T} A^{T}$
※ Properties (2) and (4) can be generalized to the sum or product of multiple matrices. For example, $(A+B+C)^{T}=A^{T}+B^{T}+C^{T}$ and $(A B C)^{T}=$ $C^{T} B^{T} A^{T}$
※ Since a real number also can be viewed as a 1×1 matrix, the transpose of a real number is itself, that is, for $a \in R, a^{T}=a$. In other words, transpose operation has actually no function on real numbers

Ex 9: Show that $(A B)^{T}$ and $B^{T} A^{T}$ are equal

$$
A=\left[\begin{array}{rrr}
2 & 1 & -2 \\
-1 & 0 & 3 \\
0 & -2 & 1
\end{array}\right] \quad B=\left[\begin{array}{rr}
3 & 1 \\
2 & -1 \\
3 & 0
\end{array}\right]
$$

Sol:

$$
\begin{aligned}
& (A B)^{T}=\left(\left[\begin{array}{rrr}
2 & 1 & -2 \\
-1 & 0 & 3 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{rr}
3 & 1 \\
2 & -1 \\
3 & 0
\end{array}\right]\right)^{T}=\left[\begin{array}{rr}
2 & 1 \\
6 & -1 \\
-1 & 2
\end{array}\right]^{T}=\left[\begin{array}{lll}
2 & 6 & -1 \\
1 & -1 & 2
\end{array}\right] \\
& B^{T} A^{T}=\left[\begin{array}{lll}
3 & 2 & 3 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{rrr}
2 & -1 & 0 \\
1 & 0 & -2 \\
-2 & 3 & 1
\end{array}\right]=\left[\begin{array}{lll}
2 & 6 & -1 \\
1 & -1 & 2
\end{array}\right]
\end{aligned}
$$

Symmetric matrix:
A square matrix A is symmetric if $A=A^{T}$

Skew-symmetric matrix :

A square matrix A is skew-symmetric if $A^{T}=-A$
Ex:
If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ a & 4 & 5 \\ b & c & 6\end{array}\right]$ is symmetric, find a, b, c ?
Sol:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
a & 4 & 5 \\
b & c & 6
\end{array}\right] \quad A^{T}=\left[\begin{array}{lll}
1 & a & b \\
2 & 4 & c \\
3 & 5 & 6
\end{array}\right] \quad \begin{aligned}
& A=A^{T} \\
& \Rightarrow a=2, b=3, c=5
\end{aligned}
$$

Ex:

$$
\text { If } A=\left[\begin{array}{lll}
0 & 1 & 2 \\
a & 0 & 3 \\
b & c & 0
\end{array}\right] \text { is a skew-symmetric, find } a, b, c \text { ? }
$$

Sol:

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
0 & 1 & 2 \\
a & 0 & 3 \\
b & c & 0
\end{array}\right] \quad-A^{T}=\left[\begin{array}{ccc}
0 & -a & -b \\
-1 & 0 & -c \\
-2 & -3 & 0
\end{array}\right] \\
& A=-A^{T} \Rightarrow a=-1, b=-2, c=-3
\end{aligned}
$$

Note: $\quad A A^{T}$ must be symmetric $※$ The matrix A could be with any size, i.e., it is not necessary for A to be a

Pf: $\quad\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}$ square matrix.
※ In fact, $A A^{T}$ must be a square matrix.
$\therefore A A^{T}$ is symmetric

Before finishing this section, two properties will be discussed, which is held for real numbers, but not for matrices: the first is the commutative property of matrix multiplication and the second is the cancellation law

Real number:

$$
a b=b a \quad \text { (Commutative property of real-number multiplication) }
$$

Matrix:

$$
\underset{m \times n n \times p}{A B} \neq \underset{n \times p m \times n}{ } A_{i}
$$

Three situations for $B A$:
(1) If $m \neq p$, then $A B$ is defined, but $B A$ is undefined
(2) If $m=p, m \neq n$, then $A B \in M_{m \times m}, B A \in M_{n \times n}$ (Sizes are not the same)
(3) If $m=p=n$, then $A B \in M_{m \times m}, B A \in M_{m \times m}$

Ex 4:

Sow that $A B$ and $B A$ are not equal for the matrices.

$$
A=\left[\begin{array}{rr}
1 & 3 \\
2 & -1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rr}
2 & -1 \\
0 & 2
\end{array}\right]
$$

Sol:

$$
\begin{aligned}
& A B=\left[\begin{array}{rr}
1 & 3 \\
2 & -1
\end{array}\right]\left[\begin{array}{rr}
2 & -1 \\
0 & 2
\end{array}\right]=\left[\begin{array}{rr}
2 & 5 \\
4 & -4
\end{array}\right] \\
& B A=\left[\begin{array}{rr}
2 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{rr}
1 & 3 \\
2 & -1
\end{array}\right]=\left[\begin{array}{rr}
0 & 7 \\
4 & -2
\end{array}\right]
\end{aligned}
$$

$A B \neq B A$ (noncommutativity of matrix multiplication)

Notes:

(1) $A+B=B+A$ (the commutative law of matrix addition)
(2) $A B \neq B A$ (the matrix multiplication is not with the commutative law)

```
(so the order of matrix multiplication is very important)
```


※ This property is different from the property for the multiplication operations of real numbers, for which the order of multiplication is with no difference

Real number:

$$
\begin{aligned}
& a c=b c, c \neq 0 \\
& \Rightarrow a=b \quad \text { (Cancellation law for real numbers) }
\end{aligned}
$$

Matrix:

$$
A C=B C \text { and } C \neq \mathbf{0}(C \text { is not a zero matrix })
$$

(1) If C is invertible, then $A=B$
(2) If C is not invertible, then

$$
A \neq B \quad \begin{gathered}
\text { (Cancellation law is not } \\
\text { necessary to be valid })
\end{gathered}
$$

※ Here I skip to introduce the definition of "invertible" because we will study it soon in the next section

Ex 5: (An example in which cancellation is not valid) Show that $A C=B C$

$$
A=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
2 & 4 \\
2 & 3
\end{array}\right], \quad C=\left[\begin{array}{rr}
1 & -2 \\
-1 & 2
\end{array}\right]
$$

Sol:

$$
\begin{aligned}
& A C=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & -2 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right] \\
& B C=\left[\begin{array}{ll}
2 & 4 \\
2 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right]
\end{aligned}
$$

So, although $A C=B C, A \neq B$

Keywords

- zero matrix:
- identity matrix:
- commutative property:
- associative property:
- distributive property:
- cancellation law:
- transpose matrix:
- symmetric matrix:
- skew-symmetric matrix:

The Inverse of a Matrix

Inverse matrix :

Consider $A \in M_{n \times n}$,
if there exists a matrix $B \in M_{n \times n}$ such that $A B=B A=I_{n}$, then (1) A is invertible (or nonsingular)
(2) B is the inverse of A

Note:

A square matrix that does not have an inverse is called noninvertible (or singular)
※ The definition of the inverse of a matrix is similar to that of the inverse of a scalar, i.e., $c \cdot(1 / c)=1$
※ Since there is no inverse (or said multiplicative inverse) for the real number 0 , you can "imagine" that noninvertible matrices act a similar role to the real number 0 is some sense

Theorem 2.7: The inverse of a matrix is unique

If B and C are both inverses of the matrix A, then $B=C$.

$$
\text { Pf: } \begin{aligned}
A B & =I \\
C(A B) & =C I \\
(C A) B & =C \quad \leftarrow \begin{array}{l}
\text { (associative property of matrix multiplication and the property } \\
\text { for the identity matrix) }
\end{array} \\
I B & =C \\
B & =C
\end{aligned}
$$

Consequently, the inverse of a matrix is unique.

Notes:

(1) The inverse of A is denoted by A^{-1}
(2) $A A^{-1}=A^{-1} A=I$

Theorem : Properties of inverse matrices

If A is an invertible matrix, k is a positive integer, and c is a scalar, then
(1) A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$
(2) A^{k} is invertible and $\left(A^{k}\right)^{-1}=A^{-k}=\left(A^{-1}\right)^{k}$
(3) $\mathrm{c} A$ is invertible if $c \neq 0$ and $(c A)^{-1}=\frac{1}{c} A^{-1}$
(4) A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} \leftarrow^{"} T^{\prime}$ is not the number of Ex. transpose operation

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
2 & 3 \\
4 & 1
\end{array}\right] \Rightarrow A^{T}=\left[\begin{array}{ll}
2 & 4 \\
3 & 1
\end{array}\right] \Rightarrow A^{-1}=\left[\begin{array}{rr}
-0.1 & 0.3 \\
0.4 & -0.2
\end{array}\right] \\
& \left(A^{T}\right)^{-1}=\left[\begin{array}{rr}
-0.1 & 0.4 \\
0.3 & -0.2
\end{array}\right]=\left(A^{-1}\right)^{T}
\end{aligned}
$$

Theorem : The inverse of a product

If A and B are invertible matrices of order n, then $A B$ is invertible and

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

Pf:

$$
\begin{gathered}
(A B)\left(B^{-1} A^{-1}\right) \underset{\text { (associative property of matrix multiplication) }}{\overline{ }} A\left(B B^{-1}\right) A^{-1}=A(I) A^{-1} \bar{\uparrow}(A I) A^{-1}=A A^{-1}=I
\end{gathered}
$$

Thus, if $A B$ is invertible, then its inverse is $B^{-1} A^{-1}$

Note:

(1) It can be generalized to the product of multiple matrices

$$
\left(A_{1} A_{2} A_{3} \cdots A_{n}\right)^{-1}=A_{n}^{-1} \cdots A_{3}^{-1} A_{2}^{-1} A_{1}^{-1}
$$

(2) It is similar to the results of the transpose of the products of
$\left(A_{1} A_{2} A_{3} \cdots A_{n}\right)^{T}=A_{n}^{T} \cdots A_{3}^{T} A_{2}^{T} A_{1}^{T}$

Theorem : Cancellation properties for matrix multiplication
If C is an invertible matrix, then the following properties hold:
(1) If $A C=B C$, then $A=B$ (right cancellation property)
(2) If $C A=C B$, then $A=B$ (left cancellation property)

Pf:

$$
\begin{array}{rlrl}
A C & =B C & \\
(A C) C^{-1} & =(B C) C^{-1} \quad & & \left(C \text { is invertible, so } C^{-1} \text { exists }\right) \\
A\left(C C^{-1}\right) & =B\left(C C^{-1}\right) \quad \text { (Associative property of matrix multiplication) } \\
A I & =B I & \\
A & =B
\end{array}
$$

Note:
If C is not invertible, then cancellation is not valid.

Theorem : Systems of equations with a unique solution
If A is an invertible matrix, then the system of linear equations $A \mathbf{x}=\mathbf{b}$ has a unique solution given by $\mathbf{x}=A^{-1} \mathbf{b}$
Pf:

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
A^{-1} A \mathbf{x} & =A^{-1} \mathbf{b} \quad(A \text { is nonsingular }) \\
I \mathbf{x} & =A^{-1} \mathbf{b} \\
\mathbf{x} & =A^{-1} \mathbf{b}
\end{aligned}
$$

If \mathbf{x}_{1} and \mathbf{x}_{2} were two solutions of equation $A \mathbf{x}=\mathbf{b}$,
then $A \mathbf{x}_{1}=\mathbf{b}=A \mathbf{x}_{2} \Rightarrow \quad \mathbf{x}_{1}=\mathbf{x}_{2} \quad$ (left cancellation property)
This solution is unique.

Ex 8:

Use an inverse matrix to solve each system
(a)
(b)

$$
2 x+3 y+z=-1
$$

(c) $3 x+3 y+z=1$
$2 x+4 y+z=-2$
$2 x+3 y+z=0$
$3 x+3 y+z=0$
$2 x+4 y+z=0$

Sol:

$$
\Rightarrow A=\left[\begin{array}{lll}
2 & 3 & 1 \\
3 & 3 & 1 \\
2 & 4 & 1
\end{array}\right] \xrightarrow{\text { Gauss-Jordan Elimination }} A^{-1}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
6 & -2 & -3
\end{array}\right]
$$

(a)

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
6 & -2 & -3
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
-2
\end{array}\right]
$$

(b)

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
6 & -2 & -3
\end{array}\right]\left[\begin{array}{l}
4 \\
8 \\
5
\end{array}\right]=\left[\begin{array}{c}
4 \\
1 \\
-7
\end{array}\right]
$$

(c) $\quad \mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{ccc}-1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
※ This technique is very convenient when you face the problem of solving several systems with the same coefficient matrix.
※ Because once you have A^{-1}, you simply need to perform the matrix multiplication to solve the unknown variables.
※ If you only want to solve one system, the computation effort will be less for the G. E. plus the back substitution or the G. J. E.

- Notice that the system in (c) is Homogeneous System. If a homogeneous system has any nontrivial solution, this system must have infinitely many nontrivial solutions

Suppose there is a nonzero solution \mathbf{x}_{1} for this homegeneous system such that $A \mathbf{x}_{1}=\mathbf{0}$. Then it is straightforward to show that $t \mathbf{x}_{1}$ must be another solution, i.e.,

$$
A\left(t \mathbf{x}_{1}\right)=t\left(A \mathbf{x}_{1}\right)=t(\mathbf{0})=\mathbf{0}
$$

The fourth property of matrix multiplication
Finally, since t can be any real number, it can be concluded that there are infinitely many solutions for this homogeneous system

L and U Matrices

Upper triangular matrix

$$
\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

Lower triangular matrix

> Column vector $$
\mathrm{X}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]
$$

Row vector

$$
x=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]
$$

Diagonal

$$
\left[\begin{array}{ccc}
d_{11} & 0 & 0 \\
0 & d_{22} & 0 \\
0 & 0 & d_{33}
\end{array}\right]
$$

Keywords:

- inverse matrix:
- invertible:
- nonsingular:
- singular:
- Upper Triangular Matrix
- Lower Triangular Matrix

Linear Systems Solutions Methods

1-Graphical Method
 2-Computational Methods:

Direct Methods

- Gauss Elimination
- Gauss Jordan Elimination
- Inverse of Coefficients Matrix
- Determinants and Crammer's Rule
- LU Factorization
-Tridiagonal Systems

One or more of the following conditions holds:
1 - equations < 100
2- most of the coefficients are nonzero
3 - the system is not diagonally dominant
4 - the system of equations is ill conditioned

Iterative Methods

- Gauss Seidel Iteration
- Jacobi Iteration
- Accuracy and Convergence
- Successive Overrelaxation

Iterative methods are used when number of equations is large and most of the coefficients are zero (sparse matrix) .

Note: Iterative methods generally diverge unless the system is diagonally dominant

Graphical Method

- For two equations:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

- Solve both equations for x_{2} :

$$
\begin{aligned}
& x_{2}=-\left(\frac{a_{11}}{a_{12}}\right) x_{1}+\frac{b_{1}}{a_{12}} \Rightarrow x_{2}=(\text { slope }) x_{1}+\text { intercept } \\
& x_{2}=-\left(\frac{a_{21}}{a_{22}}\right) x_{1}+\frac{b_{2}}{a_{22}}
\end{aligned}
$$

- Plot x_{2} vs. x_{1} on rectilinear paper, the intersection of the lines present the solution.

Fig. 9.1

Graphical Method

- Or equate and solve for x_{1}

$$
\begin{aligned}
& x_{2}=-\left(\frac{a_{11}}{a_{12}}\right) x_{1}+\frac{b_{1}}{a_{12}}=-\left(\frac{a_{21}}{a_{22}}\right) x_{1}+\frac{b_{2}}{a_{22}} \\
& \Rightarrow\left(\frac{a_{21}}{a_{22}}-\frac{a_{11}}{a_{12}}\right) x_{1}+\frac{b_{1}}{a_{12}}-\frac{b_{2}}{a_{22}}=0 \\
& \Rightarrow x_{1}=-\frac{\left(\frac{b_{1}}{a_{12}}-\frac{b_{2}}{a_{22}}\right)}{\left(\frac{a_{21}}{a_{22}}-\frac{a_{11}}{a_{12}}\right)}=\frac{\left(\frac{b_{2}}{a_{22}}-\frac{b_{1}}{a_{12}}\right)}{\left(\frac{a_{21}}{a_{22}}-\frac{a_{11}}{a_{12}}\right)}
\end{aligned}
$$

Figure 9.2

Determinants and Cramer's Rule

- Determinant can be illustrated for a set of three equations:

$$
A x=b
$$

- Where A is the coefficient matrix:

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

- Assuming all matrices are square matrices, there is a number associated with each square matrix A called the determinant, D, of A. $(D=\operatorname{det}(A))$. If $[A]$ is order 1 , then [A] has one element:

$$
\begin{aligned}
& \mathrm{A}=\left[\mathrm{a}_{11}\right] \\
& \mathrm{D}=\mathrm{a}_{11}
\end{aligned}
$$

- For a square matrix of order $2, \mathrm{~A}=$
the determinant is $D=a_{11} a_{22}-a_{21} a_{12}$

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

- For a square matrix of order 3, the minor of an element a_{ij} is the determinant of the matrix of order 2 by deleting row i and column j of A.

$$
\begin{aligned}
& D=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& D_{11}=\left|\begin{array}{l}
a_{22} \\
a_{23} \\
a_{32} \\
a_{33}
\end{array}\right|=a_{22} a_{33}-a_{32} a_{23} \\
& D_{12}=\left|\begin{array}{l}
a_{21} a_{23} \\
a_{31}
\end{array} a_{33}\right|=a_{21} a_{33}-a_{31} a_{23} \\
& D_{13}=\left|\begin{array}{l}
a_{21} a_{22} \\
a_{31}
\end{array} a_{32}\right|=a_{21} a_{32}-a_{31} a_{22} \\
& D=a_{11}\left|\begin{array}{l}
a_{22} a_{23} \\
a_{32} \\
a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{l}
a_{21} a_{23} \\
a_{31}
\end{array} a_{33}\right|+a_{13}\left|\begin{array}{l}
a_{21} a_{22} \\
a_{31} \\
a_{32}
\end{array}\right|
\end{aligned}
$$

- Cramer's rule expresses the solution of a systems of linear equations in terms of ratios of determinants of the array of coefficients of the equations. The solution for $\mathrm{xj}(\mathrm{j}=1,2, \ldots \mathrm{n})$ is

$$
x_{j}=\frac{\operatorname{det}\left(A^{j}\right)}{\operatorname{det}(A)}
$$

Where $\mathbf{A j}$ is the $n x n$ matrix obtained by replacing column j in matrix \mathbf{A} by the column vector \mathbf{b}.

- For example, x_{1} would be computed as:

$$
x_{1}=\frac{\left|\begin{array}{lll}
b_{1} & a_{12} & a_{13} \\
b_{2} & a_{22} & a_{23} \\
b_{3} & a_{32} & a_{33}
\end{array}\right|}{D}
$$

Theorem of Determinants

- If a multiple of one row of $[A]_{n \times n}$ is added or subtracted to another row of $[A]_{n \times n}$ to result in $[B]_{n \times n}$ then $\operatorname{det}(A)=\operatorname{det}(B)$
- The determinant of an upper triangular matrix $[\mathrm{A}]_{\mathrm{nxn}}$ is given by

$$
\begin{aligned}
\operatorname{det}(\mathrm{A})=a_{11} \times a_{22} & \times \ldots \times a_{i i} \times \ldots \times a_{n n} \\
& =\prod_{i=1}^{n} a_{i i}
\end{aligned}
$$

Method of Elimination

- The basic strategy is to successively solve one of the equations of the set for one of the unknowns and to eliminate that variable from the remaining equations by substitution.
- The elimination of unknowns can be extended to systems with more than two or three equations; however, the method becomes extremely tedious to solve by hand.

Naive Gauss Elimination

- Extension of method of elimination to large sets of equations by developing a systematic scheme or algorithm to eliminate unknowns and to back substitute.
- As in the case of the solution of two equations, the technique for n equations consists of two phases:
- Forward elimination of unknowns
- Back substitution

$$
\begin{aligned}
& x_{3}=c_{3}^{\prime \prime} / a_{33}^{\prime \prime \cdots} \quad \text { Back } \\
& x_{2}=\left(c_{2}^{\prime}-a_{23}^{\prime} x_{3}\right) / a_{22}^{\prime} \quad \text { substitution } \\
& x_{1}=\left(c_{1}-a_{12} x_{2}-a_{13} x_{3}\right) / a_{11}
\end{aligned}
$$

Pitfalls of Elimination Methods

- Division by zero. It is possible that during both elimination and backsubstitution phases a division by zero can occur.
- Round-off errors.
- Ill-conditioned systems. Systems where small changes in coefficients result in large changes in the solution. Alternatively, it happens when two or more equations are nearly identical, resulting a wide ranges of answers to approximately satisfy the equations. Since round off errors can induce small changes in the coefficients, these changes can lead to large solution errors.
- Singular systems. When two equations are identical, we would loose one degree of freedom and be dealing with the impossible case of $n-1$ equations for n unknowns. For large sets of equations, it may not be obvious however. The fact that the determinant of a singular system is zero can be used and tested by computer algorithm after the elimination stage. If a zero diagonal element is created, calculation is terminated.

Techniques for Improving Solutions

- Use of more significant figures.
- Pivoting. If a pivot element is zero, normalization step leads to division by zero. The same problem may arise, when the pivot element is close to zero. Problem can be avoided:
- Partial pivoting. Switching the rows so that the largest element is the pivot element.
- Complete pivoting. Searching for the largest element in all rows and columns then switching.

Forward Elimination

The goal of forward elimination is to transform the coefficient matrix into an upper triangular matrix

Forward Elimination

A set of n equations and n unknowns

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n}=b_{2} \\
a_{n 1} x_{1}+a_{n 2} x_{2}+a_{n 3} x_{3}+\ldots+a_{n n} x_{n}=b_{n}
\end{gathered}
$$

($\mathrm{n}-1$) steps of forward elimination

Forward Elimination

Step 1

For Equation 2, divide Equation 1 by a_{11} and multiply by

$$
\begin{gathered}
a_{21} \\
{\left[\frac{a_{21}}{a_{11}}\right]\left(a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n}=b_{1}\right)} \\
a_{21} x_{1}+\frac{a_{21}}{a_{11}} a_{12} x_{2}+\ldots+\frac{a_{21}}{a_{11}} a_{1 n} x_{n}=\frac{a_{21}}{a_{11}} b_{1}
\end{gathered}
$$

Forward Elimination

Subtract the result from Equation 2.

$$
\begin{aligned}
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n}=b_{2} \\
& -a_{21} x_{1}+\frac{a_{21}}{a_{11}} a_{12} x_{2}+\ldots+\frac{a_{21}}{a_{11}} a_{1 n} x_{n}=\frac{a_{21}}{a_{11}} b_{1} \\
& \left(a_{22}-\frac{a_{21}}{a_{11}} a_{12}\right) x_{2}+\ldots+\left(a_{2 n}-\frac{a_{21}}{a_{11}} a_{1 n}\right) x_{n}=b_{2}-\frac{a_{21}}{a_{11}} b_{1} \\
& \text { or } \quad a_{22}^{\prime} x_{2}+\ldots+a_{2 n}^{\prime} x_{n}=b_{2}^{\prime}
\end{aligned}
$$

Forward Elimination

Repeat this procedure for the remaining equations to reduce the set of equations as

$$
\begin{array}{r}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{22}^{\prime} x_{2}+a_{23}^{\prime} x_{3}+\ldots+a_{2 n}^{\prime} x_{n}=b_{2}^{\prime} \\
a_{32}^{\prime} x_{2}+a_{33}^{\prime} x_{3}+\ldots+a_{3 n}^{\prime} x_{n}=b_{3}^{\prime} \\
\vdots \\
\vdots \\
a_{n 2}^{\prime} x_{2}+a_{n 3}^{\prime} x_{3}+\ldots+a_{n n}^{\prime} x_{n}=b_{n}^{\prime}
\end{array}
$$

End of Step 1

Forward Elimination

Step 2

Repeat the same procedure for the $3^{\text {rd }}$ term of Equation 3.

$$
\begin{array}{r}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{22}^{\prime} x_{2}+a_{23}^{\prime} x_{3}+\ldots+a_{2 n}^{\prime} x_{n}=b_{2}^{\prime} \\
a_{33}^{\prime \prime} x_{3}+\ldots+a_{3 n}^{\prime \prime} x_{n}=b_{3}^{\prime \prime} \\
\vdots \\
a_{n 3}^{\prime \prime} x_{3}+\ldots+a_{n n}^{\prime \prime} x_{n}=b_{n}^{\prime \prime}
\end{array}
$$

End of Step 2

Forward Elimination

At the end of ($n-1$) Forward Elimination steps, the system of equations will look like

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{22}^{\prime} x_{2}+a_{23}^{\prime} x_{3}+\ldots+a_{2 n}^{\prime} x_{n} & =b_{2}^{\prime} \\
a_{33}^{\prime \prime} x_{3}+\ldots+a_{3 n}^{\prime \prime} x_{n} & =b_{3}^{\prime \prime} \\
\vdots & \vdots \\
a_{n n}^{(n-1)} x_{n} & =b_{n}^{(n-1)}
\end{aligned}
$$

Matrix Form at End of Forward Elimination

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} & \cdots & a_{2 n}^{\prime} \\
0 & 0 & a_{33}^{\prime \prime} & \cdots & a_{3 n}^{\prime \prime} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & 0 & a_{n n}^{(n-1)}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2}^{\prime} \\
b_{3}^{\prime \prime} \\
\vdots \\
b_{n}^{(n-1)}
\end{array}\right]
$$

Back Substitution Starting Eqns

$$
\begin{array}{r}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{22}^{\prime} x_{2}+a_{23}^{\prime} x_{3}+\ldots+a_{2 n}^{\prime} x_{n}=b_{2}^{\prime} \\
a_{33}^{\prime \prime} x_{3}+\ldots+a_{n}^{\prime \prime} x_{n}=b_{3}^{\prime \prime}
\end{array}
$$

$$
a_{n n}^{(n-1)} x_{n}=b_{n}^{(n-1)}
$$

Start with the last equation because it has only one unknown

$$
x_{n}=\frac{b_{n}^{(n-1)}}{a_{n n}^{(n-1)}}
$$

Back Substitution

$$
\begin{gathered}
x_{n}=\frac{b_{n}^{(n-1)}}{a_{n n}^{(n-1)}} \\
x_{i}=\frac{b_{i}^{(i-1)}-a_{i, i+1}^{(i-1)} x_{i+1}-a_{i, i+2}^{(i-1)} x_{i+2}-\ldots-a_{i, n}^{(i-1)} x_{n}}{a_{i i}^{(i-1)}} \text { for } i=n-1, \ldots, 1 \\
x_{i}=\frac{b_{i}^{(i-1)}-\sum_{j=i+1}^{n} a_{i j}^{(i-1)} x_{j}}{a_{i i}^{(i-1)}} \text { for } i=n-1, \ldots, 1
\end{gathered}
$$

Example 1

The upward velocity of a rocket is given at three different times

Table 1 Velocity vs. time data.

Time, $t(\mathrm{~s})$	Velocity, $v(\mathrm{~m} / \mathrm{s})$
5	106.8
8	177.2
12	279.2

The velocity data is approximated by a polynomial as:

$$
v(t)=a_{1} t^{2}+a_{2} t+a_{3}, \quad 5 \leq \mathrm{t} \leq 12 .
$$

Find the velocity at $\mathrm{t}=6$ seconds .

Example 1 Cont.
 Assume

$$
v(t)=a_{1} t^{2}+a_{2} t+a_{3}, \quad 5 \leq t \leq 12 .
$$

Results in a matrix template of the form:

$$
\left[\begin{array}{lll}
t_{1}^{2} & t_{1} & 1 \\
t_{2}^{2} & t_{2} & 1 \\
t_{3}^{2} & t_{3} & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

Using data from Table 1, the matrix becomes:

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

Forward Elimination: Step 1

Augmented Matrix $\left[\begin{array}{ccccc}25 & 5 & 1 & \vdots & 106.8\end{array} \quad\right.$ Divide Equation 1 by 25 and
$\left[\begin{array}{ccccc}64 & 8 & 1 & \vdots & 177.2 \\ 144 & 12 & 1 & \vdots & 279.2\end{array}\right] \quad$ multiply it by $64, \quad \frac{.64}{25}=2.56$
$\left[\begin{array}{lllll}25 & 5 & 1 & \vdots & 106.8\end{array}\right] \times 2.56=\left[\begin{array}{lllll}64 & 12.8 & 2.56 & \vdots & 273.408\end{array}\right]$

Subtract the result from Equation 2	[64	8	1	177.2]
	- [64	12.8	2.56	273.408
		-4.8	-1.56	-96.208]
Substitute new equation for Equation 2	[25	5	1	106.8
	0	-4.8	-1.56	-96.208
	14	12	1	279.2

Forward Elimination: Step 1 (cont.)

$\left[\begin{array}{ccccc}25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 144 & 12 & 1 & \vdots & 279.2\end{array}\right]$	Divide Equation 1 by 25 and multiply it by $144, \quad \frac{144}{25}=5.76$	
$\left[\begin{array}{llllll}25 & 5 & 1 & \vdots & 106.8\end{array}\right] \times 5.76=$	$44 \quad 28.8 \quad 5.76$: 615.168]
Subtract the result from Equation 3 [1	12	279.2]
-[14	$28.8 \quad 5.76$	$615.168]$
[0	$-16.8-4.76$	-335.968]
Substitute new equation for Equation 3	$\begin{array}{ccc}5 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & -16.8 & -4.76\end{array}$	$\left.\begin{array}{c}106.8 \\ -96.208 \\ -335.968\end{array}\right]$

Forward Elimination: Step 2

\(\left[\begin{array}{ccccc}25 \& 5 \& 1 \& \vdots \& 106.8

0 \& -4.8 \& -1.56 \& \vdots \& -96.208

0 \& -16.8 \& -4.76 \& \vdots \& -335.968\end{array}\right] \quad\)| Divide Equation 2 by -4.8 |
| :--- |
| and multiply it by -16.8, |
| $\frac{-16.8}{-4.8}=3.5$ |

$\left[\begin{array}{lllll}0 & -4.8 & -1.56 & \vdots & -96.208\end{array}\right] \times 3.5=\left[\begin{array}{ccccc}0 & -16.8 & -5.46 & \vdots & -336.728\end{array}\right]$

Subtract the result from Equation 3

$$
\begin{array}{rrrlr}
{\left[\begin{array}{lrrr}
0 & -16.8 & -4.76 & \vdots \\
-\left[\begin{array}{lrrr}
0 & -16.8 & -5.46 & \vdots
\end{array}\right. & -336.728]
\end{array}\right.} \\
\hline\left[\begin{array}{llll}
0 & 0 & 0.7 & \vdots
\end{array}\right. & 0.76]
\end{array}
$$

Substitute new equation for Equation 3

$$
\left[\begin{array}{ccccc}
25 & 5 & 1 & \vdots & 106.8 \\
0 & -4.8 & -1.56 & \vdots & -96.208 \\
0 & 0 & 0.7 & \vdots & 0.76
\end{array}\right]
$$

Back Substitution

$$
\left[\begin{array}{ccccc}
25 & 5 & 1 & \vdots & 106.8 \\
0 & -4.8 & -1.56 & \vdots & -96.2 \\
0 & 0 & 0.7 & \vdots & 0.7
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
106.8 \\
-96.208 \\
0.76
\end{array}\right]
$$

Solving for a_{3}

$$
\begin{aligned}
0.7 a_{3} & =0.76 \\
a_{3} & =\frac{0.76}{0.7} \\
a_{3} & =1.08571
\end{aligned}
$$

Back Substitution (cont.)

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
106.8 \\
-96.208 \\
0.76
\end{array}\right]
$$

Solving for a_{2}

$$
\begin{aligned}
-4.8 a_{2}-1.56 a_{3} & =-96.208 \\
a_{2} & =\frac{-96.208+1.56 a_{3}}{-4.8} \\
a_{2} & =\frac{-96.208+1.56 \times 1.08571}{-4.8} \\
a_{2} & =19.6905
\end{aligned}
$$

Back Substitution (cont.)

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
106.8 \\
-96.2 \\
0.76
\end{array}\right]
$$

Solving for a_{1}

$$
\begin{aligned}
25 a_{1}+5 a_{2}+a_{3} & =106.8 \\
a_{1} & =\frac{106.8-5 a_{2}-a_{3}}{25} \\
& =\frac{106.8-5 \times 19.6905-1.08571}{25} \\
& =0.290472
\end{aligned}
$$

Naïve Gaussian Elimination Solution

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
0.290472 \\
19.6905 \\
1.08571
\end{array}\right]
$$

Example 1 Cont.

Solution
The solution vector is

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
0.290472 \\
19.6905 \\
1.08571
\end{array}\right]
$$

The polynomial that passes through the three data points is then:

$$
\begin{aligned}
v(t) & =a_{1} t^{2}+a_{2} t+a_{3} \\
& =0.290472 t^{2}+19.6905 t+1.08571, \quad 5 \leq t \leq 12 \\
v(6) & =0.290472(6)^{2}+19.6905(6)+1.08571 \\
& =129.686 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Naïve Gauss Elimination Pitfalls

Pitfall \#1. Division by zero

$$
\begin{aligned}
& 10 x_{2}-7 x_{3}=3 \\
& 6 x_{1}+2 x_{2}+3 x_{3}=11 \\
& 5 x_{1}-x_{2}+5 x_{3}=9 \\
& {\left[\begin{array}{ccc}
0 & 10 & -7 \\
6 & 2 & 3 \\
5 & -1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3 \\
11 \\
9
\end{array}\right]}
\end{aligned}
$$

Is division by zero an issue here?

$$
\begin{aligned}
& 12 x_{1}+10 x_{2}-7 x_{3}=15 \\
& 6 x_{1}+5 x_{2}+3 x_{3}=14 \\
& 5 x_{1}-x_{2}+5 x_{3}=9 \\
& {\left[\begin{array}{ccc}
12 & 10 & -7 \\
6 & 5 & 3 \\
5 & -1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
15 \\
14 \\
9
\end{array}\right]}
\end{aligned}
$$

Is division by zero an issue here? YES

$$
\begin{gathered}
12 x_{1}+10 x_{2}-7 x_{3}=15 \\
6 x_{1}+5 x_{2}+3 x_{3}=14 \\
24 x_{1}-x_{2}+5 x_{3}=28 \\
{\left[\begin{array}{ccc}
12 & 10 & -7 \\
6 & 5 & 3 \\
24 & -1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
15 \\
14 \\
28
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
12 & 10 & -7 \\
0 & 0 & 6.5 \\
12 & -21 & 19
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
15 \\
6.5 \\
-2
\end{array}\right]}
\end{gathered}
$$

Division by zero is a possibility at any step of forward elimination

Pitfall\#2. Large Round-off Errors

$$
\left[\begin{array}{ccc}
20 & 15 & 10 \\
-3 & -2.249 & 7 \\
5 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
45 \\
1.751 \\
9
\end{array}\right]
$$

Exact Solution

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Pitfall\#2. Large Round-off Errors

$$
\left[\begin{array}{ccc}
20 & 15 & 10 \\
-3 & -2.249 & 7 \\
5 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
45 \\
1.751 \\
9
\end{array}\right]
$$

Solve it on a computer using 6 significant digits with chopping

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0.9625 \\
1.05 \\
0.999995
\end{array}\right]
$$

Pitfall\#2. Large Round-off Errors

$$
\left[\begin{array}{ccc}
20 & 15 & 10 \\
-3 & -2.249 & 7 \\
5 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
45 \\
1.751 \\
9
\end{array}\right]
$$

Solve it on a computer using 5 significant digits with chopping

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0.625 \\
1.5 \\
0.99995
\end{array}\right]
$$

Is there a way to reduce the round off error?

Avoiding Pitfalls

Increase the number of significant digits

- Decreases round-off error
- Does not avoid division by zero

Gaussian Elimination with Partial Pivoting

- Avoids division by zero
- Reduces round off error

Gauss Elimination with Partial Pivoting

What is Different About Partial Pivoting?

At the beginning of the $k^{\text {th }}$ step of forward elimination, find the maximum of

$$
\left|a_{k k}\right|,\left|a_{k+1, k}\right|, \ldots \ldots \ldots \ldots \ldots,\left|a_{n k}\right|
$$

If the maximum of the values is

$$
\left|a_{p k}\right|
$$

in the $p^{\text {th }}$ row, $\quad k \leq p \leq n$, then switch rows p and k.

Example ($2^{\text {nd }}$ step of FE)

$$
\left[\begin{array}{ccccc}
6 & 14 & 5.1 & 3.7 & 6 \\
0 & -7 & 6 & 1 & 2 \\
0 & 4 & 12 & 1 & 11 \\
0 & 9 & 23 & 6 & 8 \\
0 & -17 & 12 & 11 & 43
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
5 \\
-6 \\
8 \\
9 \\
3
\end{array}\right]
$$

Which two rows would you switch?

Example (2 $2^{\text {nd }}$ step of FE)

$$
\left[\begin{array}{ccccc}
6 & 14 & 5.1 & 3.7 & 6 \\
0 & -17 & 12 & 11 & 43 \\
0 & 4 & 12 & 1 & 11 \\
0 & 9 & 23 & 6 & 8 \\
0 & -7 & 6 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
5 \\
3 \\
8 \\
9 \\
-6
\end{array}\right]
$$

Switched Rows

Gaussian Elimination with Partial Pivoting
 A method to solve simultaneous linear equations of the form $[A][X]=[C]$

Two steps

1. Forward Elimination
2. Back Substitution

Forward Elimination

Same as naïve Gauss elimination method except that we switch rows before each of the ($n-1$) steps of forward elimination.

Example: Matrix Form at Beginning of $2^{\text {nd }}$ Step of Forward Elimination

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} & \cdots & a_{2 n}^{\prime} \\
0 & a_{32}^{\prime} & a_{33}^{\prime} & \cdots & a_{3 n}^{\prime} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & a_{n 2}^{\prime} & a_{n 3}^{\prime} & a_{n 4}^{\prime} & a_{n n}^{\prime}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2}^{\prime} \\
b_{3}^{\prime} \\
\vdots \\
b_{n}^{\prime}
\end{array}\right]
$$

Matrix Form at End of Forward Elimination

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} & \cdots & a_{2 n}^{\prime} \\
0 & 0 & a_{33}^{\prime 3} & \cdots & a_{3 n}^{\prime \prime} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & 0 & a_{n n}^{(n-1)}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2}^{\prime} \\
b_{3}^{\prime \prime} \\
\vdots \\
b_{n}^{(n-1)}
\end{array}\right]
$$

Back Substitution Starting Eqns

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{22}^{\prime} x_{2}+a_{23}^{\prime} x_{3}+\ldots+a_{2 n}^{\prime} x_{n} & =b_{2}^{\prime} \\
a_{33}^{\prime \prime} x_{3}+\ldots+a_{n}^{\prime \prime} x_{n} & =b_{3}^{\prime \prime} \\
\vdots & \vdots \\
a_{n n}^{(n-1)} x_{n} & =b_{n}^{(n-1)}
\end{aligned}
$$

Back Substitution

$$
\begin{gathered}
x_{n}=\frac{b_{n}^{(n-1)}}{a_{n n}^{(n-1)}} \\
x_{i}=\frac{b_{i}^{(i-1)}-\sum_{j=i+1}^{n} a_{i j}^{(i-1)} x_{j}}{a_{i i}^{(i-1)}} \text { for } i=n-1, \ldots, 1
\end{gathered}
$$

Example 2

Solve the following set of equations by Gaussian elimination with partial pivoting

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

First we write the system in the augmented form

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
25 & 5 & 1 & \vdots & 106.8 \\
64 & 8 & 1 & \vdots & 177.2 \\
144 & 12 & 1 & \vdots & 279.2
\end{array}\right]
$$

Forward Elimination:

Number of steps of forward elimination is $(n-1)=(3-1)=2$

Step 1

- Examine absolute values of first column, first row and below.

$$
|25|,|64|,|144|
$$

- Largest absolute value is 144 and exists in row 3.
- Switch row 1 and row 3.

$$
\left[\begin{array}{ccccc}
25 & 5 & 1 & \vdots & 106.8 \\
64 & 8 & 1 & \vdots & 177.2 \\
144 & 12 & 1 & \vdots & 279.2
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
144 & 12 & 1 & \vdots & 279.2 \\
64 & 8 & 1 & \vdots & 177.2 \\
25 & 5 & 1 & \vdots & 106.8
\end{array}\right]
$$

Forward Elimination: Step 1 (cont.)

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccccc}
144 & 12 & 1 & \vdots & 279.2 \\
64 & 8 & 1 & \vdots & 177.2 \\
25 & 5 & 1 & \vdots & 106.8
\end{array}\right] \quad \begin{array}{l}
\text { Divide Equation } 1 \text { by } 144 \text { and } \\
\text { multiply it by } 64,
\end{array} \quad \frac{64}{144}=0.4444} \\
\\
{\left[\begin{array}{llllll}
144 & 12 & 1 & \vdots & 279.2
\end{array}\right] \times 0.4444=\left[\begin{array}{llll}
63.99 & 5.333 & 0.4444 & \vdots
\end{array}\right.} \\
124.1
\end{array}\right] .
$$

$\left.\begin{array}{lcrrrrl}\text { Subtract the resuilt from Equation } 2 & {[64} & 8 & 1 & \vdots & 177.2\end{array}\right]$

Substitute new equation for Equation 2
$\left[\begin{array}{ccccc}144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.667 & 0.5556 & \vdots & 53.10 \\ 25 & 5 & 1 & \vdots & 106.8\end{array}\right]$

Forward Elimination: Step 1 (cont.)

Forward Elimination: Step 2

- Examine absolute values of second column, second row and below.
|2.667|,|2.917|
- Largest absolute value is 2.917 and exists in row 3.
- Switch row 2 and row 3.
$\left[\begin{array}{ccccc}144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.667 & 0.5556 & \vdots & 53.10 \\ 0 & 2.917 & 0.8264 & \vdots & 58.33\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.917 & 0.8264 & \vdots & 58.33 \\ 0 & 2.667 & 0.5556 & \vdots & 53.10\end{array}\right]$

Forward Elimination: Step 2 (cont.)

$$
\left.\left.\left.\begin{array}{l}
{\left[\begin{array}{ccccc}
144 & 12 & 1 & \vdots & 279.2 \\
0 & 2.917 & 0.8264 & \vdots & 58.33 \\
0 & 2.667 & 0.5556 & \vdots & 53.10
\end{array}\right]}
\end{array} \begin{array}{l}
\text { Divide Equation } 2 \text { by } 2.917 \text { and } \\
\text { multiply it by } 2.667,
\end{array}\right] \begin{array}{llll}
\\
\frac{2.667}{2.917}=0.9143 .
\end{array}\right] \begin{array}{llllll}
0 & 2.917 & 0.8264 & \vdots & 58.33
\end{array}\right] \times 0.9143=\left[\begin{array}{lllll}
0 & 2.667 & 0.7556 & \vdots & 53.33
\end{array}\right]
$$

Back Substitution

$$
\left[\begin{array}{ccccc}
144 & 12 & 1 & \vdots & 279.2 \\
0 & 2.917 & 0.8264 & \vdots & 58.33 \\
0 & 0 & -0.2 & \vdots & -0.23
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
144 & 12 & 1 \\
0 & 2.917 & 0.8264 \\
0 & 0 & -0.2
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
279.2 \\
58.33 \\
-0.23
\end{array}\right]
$$

Solving for a_{3}

$$
\begin{aligned}
-0.2 a_{3} & =-0.23 \\
a_{3} & =\frac{-0.23}{-0.2} \\
& =1.15
\end{aligned}
$$

Back Substitution (cont.)

$$
\left[\begin{array}{ccc}
144 & 12 & 1 \\
0 & 2.917 & 0.8264 \\
0 & 0 & -0.2
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
279.2 \\
58.33 \\
-0.23
\end{array}\right]
$$

Solving for a_{2}

$$
2.917 a_{2}+0.8264 a_{3}=58.33
$$

$$
\begin{aligned}
a_{2} & =\frac{58.33-0.8264 a_{3}}{2.917} \\
& =\frac{58.33-0.8264 \times 1.15}{2.917} \\
& =19.67
\end{aligned}
$$

Back Substitution (cont.)

$$
\left[\begin{array}{ccc}
144 & 12 & 1 \\
0 & 2.917 & 0.8264 \\
0 & 0 & -0.2
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
279.2 \\
58.33 \\
-0.23
\end{array}\right]
$$

Solving for a_{1}

$$
\begin{aligned}
144 a_{1}+12 a_{2}+a_{3} & =279.2 \\
a_{1} & =\frac{279.2-12 a_{2}-a_{3}}{144} \\
& =\frac{279.2-12 \times 19.67-1.15}{144} \\
& =0.2917
\end{aligned}
$$

Gaussian Elimination with Partial Pivoting Solution

$$
\begin{gathered}
{\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]} \\
{\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
0.2917 \\
19.67 \\
1.15
\end{array}\right]}
\end{gathered}
$$

Gauss Elimination with Partial Pivoting Another Example

Example 3

Consider the system of equations

$$
\begin{aligned}
& 10 x_{1}-7 x_{2}=7 \\
& -3 x_{1}+2.099 x_{2}+6 x_{3}=3.901 \\
& 5 x_{1}-x_{2}+5 x_{3}=6
\end{aligned}
$$

In matrix form

$$
\left[\begin{array}{ccc}
10 & -7 & 0 \\
-3 & 2.099 & 6 \\
5 & -1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
7 \\
3.901 \\
6
\end{array}\right]
$$

Solve using Gaussian Elimination with Partial Pivoting using five significant digits with chopping

Forward Elimination: Step 1

Examining the values of the first column

$$
|10|,|-3| \text {, and }|5| \text { or } 10,3 \text {, and } 5
$$

The largest absolute value is 10 , which means, to follow the rules of Partial Pivoting, we switch row1 with row1.

$$
\begin{gathered}
\text { Performing Forward Elimination } \\
{\left[\begin{array}{ccc}
10 & -7 & 0 \\
-3 & 2.099 & 6 \\
5 & -1 & 5
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
7 \\
3.901 \\
6
\end{array}\right] \Longrightarrow\left[\begin{array}{ccc}
10 & -7 & 0 \\
0 & -0.001 & 6 \\
0 & 2.5 & 5
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
7 \\
6.001 \\
2.5
\end{array}\right]}
\end{gathered}
$$

Forward Elimination: Step 2

Examining the values of the first column
$|-0.001|$ and $|2.5|$ or 0.0001 and 2.5
The largest absolute value is 2.5 , so row 2 is switched with row 3

Performing the row swap

$$
\left[\begin{array}{ccc}
10 & -7 & 0 \\
0 & -0.001 & 6 \\
0 & 2.5 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
7 \\
6.001 \\
2.5
\end{array}\right] \Longrightarrow\left[\begin{array}{ccc}
10 & -7 & 0 \\
0 & 2.5 & 5 \\
0 & -0.001 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
7 \\
2.5 \\
6.001
\end{array}\right]
$$

Forward Elimination: Step 2

Performing the Forward Elimination results in:

$$
\left[\begin{array}{ccc}
10 & -7 & 0 \\
0 & 2.5 & 5 \\
0 & 0 & 6.002
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
7 \\
2.5 \\
6.002
\end{array}\right]
$$

Partial Pivoting: Example

Back Substitution

Solving the equations through back substitution

$$
\left[\begin{array}{ccc}
10 & -7 & 0 \\
0 & 2.5 & 5 \\
0 & 0 & 6.002
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
7 \\
2.5 \\
6.002
\end{array}\right] \quad \begin{gathered}
x_{3}=\frac{6.002}{6.002}=1 \\
x_{2}=\frac{2.5-5 x_{3}}{2.5}=-1 \\
x_{1}=\frac{7+7 x_{2}-0 x_{3}}{10}=0
\end{gathered}
$$

Partial Pivoting: Example

Compare the calculated and exact solution
The fact that they are equal is coincidence, but it does illustrate the advantage of Partial Pivoting

$$
[X]_{\text {calculuced }}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] \quad[X]_{\text {exact }}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

Example 4
Using naïve Gaussian elimination find the determinant of the following square matrix.

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]
$$

Forward Elimination: Step 1
\(\left[\begin{array}{ccc}25 \& 5 \& 1

64 \& 8 \& 1

144 \& 12 \& 1\end{array}\right] \quad\)| Divide Equation 1 by 25 and |
| :--- |
| multiply it by $64, \quad \frac{.64}{25}=2.56$ |

$\left[\begin{array}{lll}25 & 5 & 1\end{array}\right] \times 2.56=\left[\begin{array}{lll}64 & 12.8 & 2.56\end{array}\right]$

Subtract the result from Equation 2

$$
\begin{array}{ccc}
{[64} & 8 & 1]
\end{array}
$$

$$
\frac{-\left[\begin{array}{ccc}
64 & 12.8 & 2.56
\end{array}\right]}{\left[\begin{array}{lll}
0 & -4.8 & -1.56
\end{array}\right]}
$$

Substitute new equation for Equation 2

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
144 & 12 & 1
\end{array}\right]
$$

Forward Elimination: Step 1 (cont.)

\(\left[\begin{array}{ccc}25 \& 5 \& 1

0 \& -4.8 \& -1.56

144 \& 12 \& 1\end{array}\right]\)| Divide Equation 1 by 25 and |
| :--- |
| multiply it by $144, \quad \frac{144}{25}=5.76$ |

$\left[\begin{array}{lll}25 & 5 & 1\end{array}\right] \times 5.76=\left[\begin{array}{lll}144 & 28.8 & 5.76\end{array}\right]$

Subtract the result from Equation 3

$$
\frac{-\left[\begin{array}{lll}
144 & 28.8 & 5.76] \\
{[0} & -16.8 & -4.76]
\end{array}\right]}{}
$$

Substitute new equation for Equation 3

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & -16.8 & -4.76
\end{array}\right]
$$

Forward Elimination: Step 2

$$
\left.\begin{array}{lll}
{\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & -16.8 & -4.76
\end{array}\right]} \\
\left(\left[\begin{array}{lll}
0 & -4.8 & -1.56
\end{array}\right]\right) \times 3.5 & \begin{array}{l}
\text { Divide Equation } 2 \text { by }-4.8 \\
\text { and multiply it by }-16.8,
\end{array} \\
\begin{array}{ll}
\frac{-16.8}{-4.8}=3.5
\end{array} \\
\text { Subtract the result from Equation } 3 & -16.8 & -5.46
\end{array}\right]
$$

Substitute new equation for Equation 3
$\left[\begin{array}{ccc}25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7\end{array}\right]$

Finding the Determinant

After forward elimination

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right] } \rightarrow\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right] \\
& \begin{aligned}
\operatorname{det}(\mathrm{A}) & =u_{11} \times u_{22} \times u_{33} \\
& =25 \times(-4.8) \times 0.7 \\
& =-84.00
\end{aligned}
\end{aligned}
$$

GAUSS-JORDAN-Method

- The Gauss-Jordan method is a variation of Gauss elimination. The major difference is that when an unknown is eliminated in the Gauss-Jordan method, it is eliminated from all other equations rather than just the subsequent ones.
- All rows are normalized by dividing them by their pivot elements. Thus, the elimination step results in an identity matrix rather than a triangular matrix (Fig. 9.9).
- Not necessary to employ back substitution to obtain the solution.

Example (9.12)

- Use Gauss-Jordan to solve the following system:

$$
\begin{aligned}
& 3 x_{1}-0.1 x_{2}-0.2 x_{3}=7.85 \\
& 0.1 x_{1}+7 x_{2}-0.3 x_{3}=-19.3 \\
& 0.3 x_{1}-0.2 x_{2}+10 x_{3}=71.4
\end{aligned}
$$

- Express the system as an augmented matrix

$$
\left[\begin{array}{ccccc}
3 & -0.1 & -0.2 & \vdots & 7.85 \\
0.1 & 7 & -0.3 & \vdots & -19.3 \\
0.3 & -0.2 & 10 & \vdots & 71.4
\end{array}\right]
$$

- Normalize first row by dividing it by the pivot element

$$
\left[\begin{array}{ccccc}
1 & -.0333333 & -0.066667 & \vdots & 2.61667 \\
0.1 & 7 & -0.3 & \vdots & -19.3 \\
0.3 & -0.2 & 10 & \vdots & 71.4
\end{array}\right]
$$

- x1 can be eliminated from second row by subtracting 0.1 times $1^{\text {st }}$ row from $2^{\text {nd }}$ row. Similarly for 0.3 and x 1 will be eliminated From $3^{\text {rd }}$ row.

$$
\left[\begin{array}{ccccc}
1 & -.0333333 & -0.066667 & \vdots & 2.61667 \\
0 & 7.00333 & -0.29333 & \vdots & -19.5617 \\
0 & -0.190000 & 10.0200 & \vdots & 70.6150
\end{array}\right]
$$

- Normalize $2^{\text {nd }}$ row by dividing it by 7.00333

$$
\left[\begin{array}{ccccc}
1 & -.0333333 & -0.066667 & \vdots & 2.61667 \\
0 & 1 & -0.0418848 & \vdots & -2.79320 \\
0 & -0.190000 & 10.0200 & \vdots & 70.6150
\end{array}\right]
$$

- Eliminate $\mathbf{x} \mathbf{2}$ from $1^{\text {st }}$ and $3^{\text {rd }}$ rows

$$
\left[\begin{array}{ccccc}
1 & 0 & -0.0680629 & \vdots & 2.52356 \\
0 & 1 & -0.0418848 & \vdots & -2.79320 \\
0 & 0 & 10.01200 & \vdots & 70.0843
\end{array}\right]
$$

- Normalize $3^{\text {nd }}$ row by dividing it by $\mathbf{1 0 . 0 1 2 0}$

$$
\left[\begin{array}{ccccc}
1 & 0 & -0.0680629 & \vdots & 2.52356 \\
0 & 1 & -0.0418848 & \vdots & -2.79320 \\
0 & 0 & 1 & \vdots & 7.0000
\end{array}\right]
$$

- Eliminate $x 3$ from $1^{\text {st }}$ and $2^{\text {rd }}$ rows

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \vdots & 3.0000 \\
0 & 1 & 0 & \vdots & -2.5000 \\
0 & 0 & 1 & \vdots & 7.0000
\end{array}\right]
$$

Thus, the coefficient matrix has been transformed to an Identity matrix

Summary

-Forward Elimination
-Back Substitution
-Pitfalls
-Improvements
-Partial Pivoting
-Determinant of a Matrix
-Gauss-Jordan

Chapter 10

LU Decomposition

LU Decomposition

LU Decomposition is another method to solve a set of simultaneous linear equations

Which is better, Gauss Elimination or LU Decomposition?

To answer this, a closer look at LU decomposition is needed.

LU Decomposition

Method

For most non-singular matrix $[A]$ that one could conduct Naïve Gauss Elimination forward elimination steps, one can always write it as
$[A]=[L][U]$
where
$[L]=$ lower triangular matrix
$[U]=$ upper triangular matrix

How does LU Decomposition work?

$$
\begin{aligned}
\text { If solving a set of linear equations } & {[A][X]=[C] } \\
\text { If }[A]=[L][U] \text { then } & {[L][U][X]=[C] } \\
\text { Multiply by } & {[L]^{-1} } \\
\text { Which gives } & {[L]^{-1}[L][U][X]=[L]^{-1}[C] } \\
\text { Remember }[L]^{-1}[L]=[I] \text { which leads to } & {[I][U][X]=[L]^{-1}[C] } \\
\text { Now, if }[I][U]=[U] \text { then } & {[U][X]=[L]^{-1}[C] } \\
\text { Now, let } & {[L]^{-1}[C]=[Z] } \\
\text { Which ends with } & {[L][Z]=[C] } \\
\text { and } & {[U][X]=[Z] }
\end{aligned}
$$

LU Decomposition

How can this be used?

Given $[A][X]=[C]$

1. Decompose $[A]$ into $[L]$ and $[U]$
2. Solve $[L][Z]=[C]$ for $[Z]$
3. Solve $[U][X]=[Z]$ for $[X]$

Method: [A] Decompose to [L] and [U]

$$
[A]=[L \mathbb{U} U]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\ell_{21} & 1 & 0 \\
\ell_{31} & \ell_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

$[U]$ is the same as the coefficient matrix at the end of the forward elimination step.
[L] is obtained using the multipliers that were used in the forward elimination process

Finding the [U] matrix

Using the Forward Elimination Procedure of Gauss Elimination
$\left[\begin{array}{ccc}25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1\end{array}\right]$

Step 1: $\quad \frac{64}{25}=2.56 ; \quad \operatorname{Row} 2-\operatorname{Rowl}(2.56)=\left[\begin{array}{ccc}25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 144 & 12 & 1\end{array}\right]$

$$
\frac{144}{25}=5.76 ; \quad \operatorname{Row} 3-\operatorname{Row} 1(5.76)=\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & -16.8 & -4.76
\end{array}\right]
$$

Finding the [U] Matrix

$$
\begin{gathered}
\text { Matrix after Step 1: } \quad\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & -16.8 & -4.76
\end{array}\right] \\
\text { Step 2: } \frac{-16.8}{-4.8}=3.5 ; \quad \operatorname{Row} 3-\operatorname{Row} 2(3.5)=\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right] \\
{[U]=\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]}
\end{gathered}
$$

Finding the [L] matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
\ell_{21} & 1 & 0 \\
\ell_{31} & \ell_{32} & 1
\end{array}\right]
$$

Using the multipliers used during the Forward Elimination Procedure

$$
\begin{aligned}
& \begin{array}{l}
\text { From the first step } \\
\text { of forward } \\
\text { elimination }
\end{array}
\end{aligned}\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right] \quad \begin{aligned}
& \ell_{21}=\frac{a_{21}}{a_{11}}=\frac{64}{25}=2.56 \\
& \ell_{31}=\frac{a_{31}}{a_{11}}=\frac{144}{25}=5.76
\end{aligned}
$$

Finding the [L] Matrix

$\begin{aligned} & \begin{array}{l}\text { From the second } \\ \text { step of forward } \\ \text { elimination }\end{array}\end{aligned}\left[\begin{array}{ccc}25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & -16.8 & -4.76\end{array}\right] \quad \ell_{32}=\frac{a_{32}}{a_{22}}=\frac{-16.8}{-4.8}=3.5$

$$
[L]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]
$$

Does [L][U] = [A]?

$$
[L][U]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]=\text { ? }
$$

Using LU Decomposition to solve SLEs

Solve the following set of linear equations using LU Decomposition
$\left[\begin{array}{ccc}25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}106.8 \\ 177.2 \\ 279.2\end{array}\right]$

Using the procedure for finding the $[L]$ and $[U]$ matrices

$$
[A]=[L][U]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]
$$

Example

Set $[L][Z]=[C]$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

Solve for [Z]

$$
\begin{aligned}
& z_{1}=106.8 \\
& 2.56 z_{1}+z_{2}=177.2 \\
& 5.76 z_{1}+3.5 z_{2}+z_{3}=279.2
\end{aligned}
$$

Example

Complete the forward substitution to solve for [Z]

$$
\begin{aligned}
z_{1} & =106.8 \\
z_{2} & =177.2-2.56 z_{1} \\
& =177.2-2.56(106.8) \\
& =-96.2 \\
z_{3} & =279.2-5.76 z_{1}-3.5 z_{2} \\
& =279.2-5.76(106.8)-3.5(-96.21) \\
& =0.735
\end{aligned}
$$

Example

$$
\text { Set }[U][X]=[Z] \quad\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
106.8 \\
-96.21 \\
0.735
\end{array}\right]
$$

Solve for $[X]$
The 3 equations become

$$
\begin{aligned}
25 a_{1}+5 a_{2}+a_{3} & =106.8 \\
-4.8 a_{2}-1.56 a_{3} & =-96.21 \\
0.7 a_{3} & =0.735
\end{aligned}
$$

Example

From the $3^{\text {rd }}$ equation

$$
\begin{aligned}
0.7 a_{3} & =0.735 \\
a_{3} & =\frac{0.735}{0.7} \\
a_{3} & =1.050
\end{aligned}
$$

Substituting in a_{3} and using the second equation

$$
\begin{aligned}
& -4.8 a_{2}-1.56 a_{3}=-96.21 \\
& a_{2}=\frac{-96.21+1.56 a_{3}}{-4.8} \\
& a_{2}=\frac{-96.21+1.56(1.050)}{-4.8} \\
& a_{2}=19.70
\end{aligned}
$$

Example

Substituting in a_{3} and a_{2} using the first equation

$$
\begin{aligned}
& 25 a_{1}+5 a_{2}+a_{3}=106.8 \\
& a_{1}=\frac{106.8-5 a_{2}-a_{3}}{25} \\
& \quad=\frac{106.8-5(19.70)-1.050}{25} \\
& \quad=0.2900
\end{aligned}
$$

Hence the Solution Vector is:

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
0.2900 \\
19.70 \\
1.050
\end{array}\right]
$$

Finding the inverse of a square matrix

- Using LU Decomposition

Assume the first column of $[B]$ to be $\left[\begin{array}{llll}b_{11} & b_{12} & \ldots & b_{n 1}\end{array}\right]^{T}$
Using this and the definition of matrix multiplication

First column of $[B]$

Second column of $[B]$

The remaining columns in $[B]$ can be found in the same manner

Example:

Find the inverse of a square matrix $[A]$ using LU decomposition method.

$$
[A]=\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]
$$

The [L] and [U] matrices are found to be

$$
[A]=[L][U]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]
$$

Example:

Solving for the each column of $[B]$ requires two steps

1) Solve $[L][Z]=[C]$ for $[Z]$
2) Solve $[U[X]=[Z]$ for $[X]$

$$
\text { Step 1: }[L][Z]=[C] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

This generates the equations:

$$
z_{1}=1
$$

$$
2.56 z_{1}+z_{2}=0
$$

$$
5.76 z_{1}+3.5 z_{2}+z_{3}=0
$$

Example:

Solving for [$Z]$

$$
\begin{aligned}
z_{1} & =1 \\
z_{2} & =0-2.56 z_{1} \\
& =0-2.56(1) \\
& =-2.56 \\
z_{3} & =0-5.76 z_{1}-3.5 z_{2} \\
& =0-5.76(1)-3.5(-2.56) \\
& =3.2
\end{aligned}
$$

Example:

$$
\text { Solving }\left[U[X]=[Z] \text { for }[X] \quad\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]\left[\begin{array}{l}
b_{11} \\
b_{21} \\
b_{31}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2.56 \\
3.2
\end{array}\right]\right.
$$

$$
25 b_{11}+5 b_{21}+b_{31}=1
$$

$$
-4.8 b_{21}-1.56 b_{31}=-2.56
$$

$$
0.7 b_{31}=3.2
$$

Example:

Using Backward Substitution

$$
\begin{aligned}
b_{31} & =\frac{3.2}{0.7}=4.571 \\
b_{21} & =\frac{-2.56+1.560 b_{31}}{-4.8} \\
& =\frac{-2.56+1.560(4.571)}{-4.8}=-0.9524 \\
b_{11} & =\frac{1-5 b_{21}-b_{31}}{25} \\
& =\frac{1-5(-0.9524)-4.571}{25}=0.04762
\end{aligned}
$$

So the first column of the inverse of $[A]$ is:

$$
\left[\begin{array}{l}
b_{11} \\
b_{21} \\
b_{31}
\end{array}\right]=\left[\begin{array}{c}
0.04762 \\
-0.9524 \\
4.571
\end{array}\right]
$$

Example: Inverse of a Matrix

Repeating for the second and third columns of the inverse

Second Column

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
b_{12} \\
b_{22} \\
b_{32}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{l}
b_{12} \\
b_{22} \\
b_{32}
\end{array}\right]=\left[\begin{array}{c}
-0.08333 \\
1.417 \\
-5.000
\end{array}\right]}
\end{aligned}
$$

Third Column

$$
\begin{gathered}
{\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
b_{13} \\
b_{23} \\
b_{33}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
{\left[\begin{array}{l}
b_{13} \\
b_{23} \\
b_{33}
\end{array}\right]=\left[\begin{array}{c}
0.03571 \\
-0.4643 \\
1.429
\end{array}\right]}
\end{gathered}
$$

Example:

The inverse of $[A]$ is

$$
[A]^{-1}=\left[\begin{array}{ccc}
0.04762 & -0.08333 & 0.03571 \\
-0.9524 & 1.417 & -0.4643 \\
4.571 & -5.000 & 1.429
\end{array}\right]
$$

To check your work do the following operation

$$
[A][A]^{-1}=\left[I=[A]^{-1}[A]\right.
$$

- Find the inverse of a matrix by the Gauss-Jordan Elimination:

$$
\left[\begin{array}{l|l}
A & \mid
\end{array}\right] \xrightarrow{\text { Causs-rotand Eiminimion }} \text { [}\left[\begin{array}{lll}
I & \mid & A^{-1}
\end{array}\right]
$$

Ex 2: Find the inverse of the matrix A

$$
A=\left[\begin{array}{rr}
1 & 4 \\
-1 & -3
\end{array}\right]
$$

Sol:

$$
\begin{aligned}
& A X=I \\
& {\left[\begin{array}{rr}
1 & 4 \\
-1 & -3
\end{array}\right]\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rr}
x_{11}+4 x_{21} & x_{12}+4 x_{22} \\
-x_{11}-3 x_{21} & -x_{12}-3 x_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}
\end{aligned}
$$

by equating corresponding entries

$$
\begin{align*}
& \Rightarrow \begin{aligned}
x_{11}+4 x_{21} & =1 \\
-x_{11}-3 x_{21} & =0
\end{aligned} \tag{1}\\
& x_{12}+4 x_{22}=0 \\
& -x_{12}-3 x_{22}=1 \\
& \text { This two systems of linear } \\
& \text { equations have the same } \\
& \text { coefficient matrix, which } \\
& \text { is exactly the matrix } A \text {. } \tag{2}\\
& \text { (1) } \Rightarrow\left[\begin{array}{rrcc}
1 & 4 & \vdots & 1 \\
-1 & -3 & \vdots & 0
\end{array}\right] \xrightarrow{A_{1,2}^{(1)}, A_{2,1}^{(-4)}}\left[\begin{array}{rrrr}
1 & 0 & \vdots & -3 \\
0 & 1 & \vdots & 1
\end{array}\right] \Rightarrow x_{11}=-3, x_{21}=1 \\
& \text { (2) } \Rightarrow\left[\begin{array}{rrcr}
1 & 4 & \vdots & 0 \\
-1 & -3 & \vdots & 1
\end{array}\right] \xrightarrow{A_{1,2}^{(1)}, A_{2,2}^{(-4)}}\left[\begin{array}{rrrr}
1 & 0 & \vdots & -4 \\
0 & 1 & \vdots & 1
\end{array}\right] \Rightarrow x_{12}=-4, x_{22}=1 \\
& \text { Thus } \\
& X=A^{-1}=\left[\begin{array}{cc}
-3 & -4 \\
1 & 1
\end{array}\right] \\
& \text { Perform the Gauss- } \\
& \text { Jordan elimination on } \\
& \text { the matrix } A \text { with the } \\
& \text { same row operations }
\end{align*}
$$

Note:

Rather than solve the two systems separately, you can solve them simultaneously by adjoining (appending) the identity matrix to the right of the coefficient matrix

※ If A cannot be row reduced to I, then A is singular

Ex 3: Find the inverse of the following matrix

$$
A=\left[\begin{array}{rrr}
1 & -1 & 0 \\
1 & 0 & -1 \\
-6 & 2 & 3
\end{array}\right]
$$

Sol:

$$
\begin{gathered}
{[A \vdots I]=\left[\begin{array}{rrr:rrr}
1 & -1 & 0 & \vdots & 1 & 0 \\
1 & 0 & -1 & 0 & 0 & 1 \\
-6 & 2 & 3 & \vdots & 0 & 0 \\
1
\end{array}\right]} \\
\xrightarrow{A_{1.2}^{(-1)}}\left[\begin{array}{rrrrrrr}
1 & -1 & 0 & \vdots & 1 & 0 & 0 \\
0 & 1 & -1 & \vdots & -1 & 1 & 0 \\
-6 & 2 & 3 & \vdots & 0 & 0 & 1
\end{array}\right] \xrightarrow{A_{13}^{(0)}}\left[\begin{array}{rrrrrrr}
1 & -1 & 0 & \vdots & 1 & 0 & 0 \\
0 & 1 & -1 & \vdots & -1 & 1 & 0 \\
0 & -4 & 3 & \vdots & 6 & 0 & 1
\end{array}\right] \\
\xrightarrow{A_{23}^{(4)}}\left[\begin{array}{rrrrrrr}
1 & -1 & 0 & \vdots & 1 & 0 & 0 \\
0 & 1 & -1 & \vdots & -1 & 1 & 0 \\
0 & 0 & -1 & \vdots & 2 & 4 & 1
\end{array}\right] \xrightarrow{M_{3}^{(-1)}}\left[\begin{array}{rrrrrrr}
1 & -1 & 0 & \vdots & 1 & 0 & 0 \\
0 & 1 & -1 & \vdots & -1 & 1 & 0 \\
0 & 0 & 1 & \vdots & -2 & -4 & -1
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& \xrightarrow{A_{3,2}^{(1)}}\left[\begin{array}{rrrrrrr}
1 & -1 & 0 & \vdots & 1 & 0 & 0 \\
0 & 1 & 0 & \vdots & -3 & -3 & -1 \\
0 & 0 & 1 & \vdots & -2 & -4 & -1
\end{array}\right] \xrightarrow{A_{2,1}^{(1)}}\left[\begin{array}{rrrllll}
1 & 0 & 0 & \vdots & -2 & -3 & -1 \\
0 & 1 & 0 & \vdots & -3 & -3 & -1 \\
0 & 0 & 1 & \vdots & -1 & -4 & -1
\end{array}\right] \\
& =\left[I \vdots A^{-1}\right]
\end{aligned}
$$

So the matrix A is invertible, and its inverse is

$$
A^{-1}=\left[\begin{array}{lll}
-2 & -3 & -1 \\
-3 & -3 & -1 \\
-2 & -4 & -1
\end{array}\right]
$$

Check it by yourselves:

$$
A A^{-1}=A^{-1} A=I
$$

When is LU Decomposition better than Gaussian Elimination?

$$
\text { To solve }[A][X]=[B]
$$

Table. Time taken by methods

Gaussian Elimination	LU Decomposition
$T\left(\frac{8 n^{3}}{3}+12 n^{2}+\frac{4 n}{3}\right)$	$T\left(\frac{8 n^{3}}{3}+12 n^{2}+\frac{4 n}{3}\right)$

where T = clock cycle time and $\mathrm{n}=$ size of the matrix

So both methods are equally efficient.

To find inverse of $[A]$

Time taken by Gaussian Elimination

$$
\begin{aligned}
& =n\left(\left.C T\right|_{F E}+\left.C T\right|_{B S}\right) \\
& =T\left(\frac{8 n^{4}}{3}+12 n^{3}+\frac{4 n^{2}}{3}\right)
\end{aligned}
$$

Time taken by LU Decomposition

$$
\begin{aligned}
& =\left.C T\right|_{L U}+n \times\left. C T\right|_{F S}+n \times\left. C T\right|_{B S} \\
& =T\left(\frac{32 n^{3}}{3}+12 n^{2}+\frac{20 n}{3}\right)
\end{aligned}
$$

Table 1 Comparing computational times of finding inverse of a matrix using LU decomposition and Gaussian elimination.

n	10	100	1000	10000
$\left.\mathrm{CT}\right\|_{\text {inverse GE }} /\left.\mathrm{CT}\right\|_{\text {inverse LU }}$	3.28	25.83	250.8	2501

Iterative Methods

Chap 11

- Gauss-Seidel Method
- Jacobi Method

Gauss-Seidel Method

An iterative method.

Basic Procedure:
-Algebraically solve each linear equation for x_{i}
-Assume an initial guess solution array
-Solve for each x_{i} and repeat
-Use absolute relative approximate error after each iteration to check if error is within a pre-specified tolerance.

Gauss-Seidel Method

Why?

The Gauss-Seidel Method allows the user to control round-off error.

Elimination methods such as Gaussian Elimination and LU Decomposition are prone to prone to round-off error.

Also: If the physics of the problem are understood, a close initial guess can be made, decreasing the number of iterations needed.

Gauss-Seidel Method

Algorithm

A set of n equations and n unknowns:

$$
\begin{array}{cl}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n}=b_{1} & \begin{array}{l}
\text { If: the diagonal elements are } \\
\text { non-zero }
\end{array} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n}=b_{2} & \text { Rewrite each equation solving } \\
\vdots & \vdots \\
\text { for the corresponding unknown } & \begin{array}{l}
\text { ex: } \\
a_{n 1} x_{1}+a_{n 2} x_{2}+a_{n 3} x_{3}+\ldots+a_{n n} x_{n}=b_{n} \\
\\
\\
\\
\\
\text { First equation, solve for } \mathrm{x}_{1} \\
\text { Second equation, solve for } \mathrm{x}_{2}
\end{array}
\end{array}
$$

Gauss-Seidel Method

Algorithm

Rewriting each equation

$$
\begin{array}{ll}
x_{1}=\frac{c_{1}-a_{12} x_{2}-a_{13} x_{3} \ldots \ldots-a_{1 n} x_{n}}{a_{11}} \longleftarrow & \text { From Equation } 1 \\
x_{2}=\frac{c_{2}-a_{21} x_{1}-a_{23} x_{3} \ldots \ldots-a_{2 n} x_{n}}{a_{22}} \longleftarrow & \text { From equation } 2 \\
\vdots & \vdots \\
x_{n-1}=\frac{c_{n-1}-a_{n-1,1} x_{1}-a_{n-1,2} x_{2} \ldots \ldots-a_{n-1, n-2} x_{n-2}-a_{n-1, n} x_{n}}{a_{n-1, n-1}} \longleftarrow & \text { From equation } \mathrm{n}-1 \\
x_{n}=\frac{c_{n}-a_{n 1} x_{1}-a_{n 2} x_{2}-\ldots \ldots-a_{n, n-1} x_{n-1}}{a_{n n}} \longleftarrow & \text { From equation } \mathrm{n}
\end{array}
$$

Gauss-Seidel Method

Algorithm
General Form of each equation

$$
\begin{gathered}
x_{1}=\frac{c_{1}-\sum_{\substack{j=1 \\
j \neq 1}}^{n} a_{1 j} x_{j}}{a_{11}} \\
c_{2}-\sum_{\substack{j=1 \\
j \neq 2}}^{n} a_{2 j} x_{j}=\frac{c_{n-1}-\sum_{\substack{j=1 \\
j \neq n-1}}^{n} a_{n-1, j} x_{j}}{a_{22}} \\
x_{2-1, n-1} \\
x_{n}=\frac{c_{n}-\sum_{\substack{j=1 \\
j \neq n}}^{n} a_{n j} x_{j}}{a_{n n}}
\end{gathered}
$$

Gauss-Seidel Method

$$
\begin{gathered}
\text { Algorithm } \\
\text { General Form for any row 'i' } \\
x_{i}=\frac{c_{i}-\sum_{\substack{j=1 \\
j \neq i}}^{n} a_{i j} x_{j}}{a_{i i}}, i=1,2, \ldots, n .
\end{gathered}
$$

How or where can this equation be used?

Gauss-Seidel Method

Solve for the unknowns

Assume an initial guess for [X]
$\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n}\end{array}\right]$

Use rewritten equations to solve for each value of x_{i}.

Important: Remember to use the most recent value of x_{i}. Which means to apply values calculated to the calculations remaining in the current iteration.

Gauss-Seidel Method

Calculate the Absolute Relative Approximate Error

$$
\left|\epsilon_{a}\right|_{i}=\left|\frac{x_{i}^{\text {new }}-x_{i}^{\text {old }}}{x_{i}^{\text {new }}}\right| \times 100
$$

So when has the answer been found?

The iterations are stopped when the absolute relative approximate error is less than a prespecified tolerance for all unknowns.

Gauss-Seidel Method:

Example 1

The upward velocity of a rocket is given at three different times
Table 1 Velocity vs. Time data.

Time, $t(\mathrm{~s})$	Velocity $v(\mathrm{~m} / \mathrm{s})$
5	106.8
8	177.2
12	279.2

The velocity data is approximated by a polynomial as:

$$
v(t)=a_{1} t^{2}+a_{2} t+a_{3}, 5 \leq \mathrm{t} \leq 12
$$

Gauss-Seidel Method: Example 1

Using a Matrix template of the form	$\left[\begin{array}{lll}t_{1}^{2} & t_{1} & 1 \\ t_{2}^{2} & t_{2} & 1 \\ t_{3}^{2} & t_{3} & 1\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$
The system of equations becomes	$\left[\begin{array}{ccc}25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{l}106.8 \\ 177.2 \\ 279.2\end{array}\right]$
Initial Guess: Assume an initial guess of $\quad\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 5\end{array}\right]$	

Gauss-Seidel Method: Example 1

Rewriting each equation

$$
a_{1}=\frac{106.8-5 a_{2}-a_{3}}{25}
$$

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right] \quad a_{2}=\frac{177.2-64 a_{1}-a_{3}}{8}
$$

$$
a_{3}=\frac{279.2-144 a_{1}-12 a_{2}}{1}
$$

Gauss-Seidel Method: Example 1

Applying the initial guess and solving for a_{i}

$$
\begin{aligned}
& {\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right]}
\end{aligned} \quad \begin{aligned}
& \mathrm{a}_{1}=\frac{106.8-5(2)-(5)}{25}=3.6720 \\
& \text { Initial Guess }
\end{aligned} \begin{aligned}
& \mathrm{a}_{2}=\frac{177.2-64(3.6720)-(5)}{8}=-7.8510 \\
& \\
& \mathrm{a}_{3}=\frac{279.2-144(3.6720)-12(-7.8510)}{1}=-155.36
\end{aligned}
$$

When solving for a_{2}, how many of the initial guess values were used?

Gauss-Seidel Method: Example 1

Finding the absolute relative approximate error

$$
\begin{array}{ll}
\left|\epsilon_{a}\right|_{i}=\left|\frac{x_{i}^{\text {new }}-x_{i}^{\text {old }}}{x_{i}^{\text {new }}}\right| \times 100 & \text { At the end of the first iteration } \\
\left|\epsilon_{\mathfrak{a}}\right|_{1}=\left|\frac{3.6720-1.0000}{3.6720}\right| x 100=72.76 \% & {\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
3.6720 \\
-7.8510 \\
-155.36
\end{array}\right]} \\
\left|\epsilon_{\mathbf{a}}\right|_{2}=\left|\frac{-7.8510-2.0000}{-7.8510}\right| x 100=125.47 \% & \begin{array}{l}
\text { The maximum absolute } \\
\text { relative approximate error is } \\
125.47 \%
\end{array} \\
\left|\epsilon_{\mathbf{a}}\right|_{3}=\left|\frac{-155.36-5.0000}{-155.36}\right| x 100=103.22 \% &
\end{array}
$$

Gauss-Seidel Method: Example 1

Iteration \#2
Using
$\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{c}3.6720 \\ -7.8510 \\ -155.36\end{array}\right]$
the values of a_{i} are found:
$a_{1}=\frac{106.8-5(-7.8510)-155.36}{25}=12.056$
from iteration \#1

$$
a_{2}=\frac{177.2-64(12.056)-155.36}{8}=-54.882
$$

$$
a_{3}=\frac{279.2-144(12.056)-12(-54.882)}{1}=-798.34
$$

Gauss-Seidel Method: Example 1

Finding the absolute relative approximate error

$$
\begin{aligned}
& \left|\epsilon_{\mathrm{a}}\right|_{1}=\left|\frac{12.056-3.6720}{12.056}\right| x 100=69.543 \%
\end{aligned} \begin{aligned}
& \text { At the end of the second iteration } \\
& \left.\left\lvert\, \begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right.\right]=\left[\begin{array}{c}
12.056 \\
-54.882 \\
-798.54
\end{array}\right] \\
& \left|\epsilon_{a}\right|_{2}=\left|\frac{-54.882-(-7.8510)}{-54.882}\right| \times 100=85.695 \%
\end{aligned} \begin{aligned}
& \text { The maximum absolute } \\
& \text { relative approximate error is }
\end{aligned}
$$

Gauss-Seidel Method: Example 1

Repeating more iterations, the following values are obtained

Iteration	a_{1}	$\left\|\in_{a}\right\|_{1} \%$	a_{2}	$\left\|\epsilon_{a}\right\|_{2} \%$	a_{3}	$\left\|\in_{a}\right\|_{3} \%$
1	3.6720	72.767	-7.8510	125.47	-155.36	103.22
2	12.056	69.543	-54.882	85.695	-798.34	80.540
3	47.182	74.447	-255.51	78.521	-3448.9	76.852
4	193.33	75.595	-1093.4	76.632	-14440	76.116
5	800.53	75.850	-4577.2	76.112	-60072	75.963
6	3322.6	75.906	-19049	75.972	-249580	75.931

Notice - The relative errors are not decreasing at any significant rate
Also, the solution is not converging to the true solution of $\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{c}0.29048 \\ 19.690 \\ 1.0857\end{array}\right]$

Gauss-Seidel Method: Pitfall

What went wrong?
Even though done correctly, the answer is not converging to the correct answer

This example illustrates a pitfall of the Gauss-Siedel method: not all systems of equations will converge.

Is there a fix?
One class of system of equations always converges: One with a diagonally dominant coefficient matrix.

Diagonally dominant: $[A]$ in $[A][X]=[C]$ is diagonally dominant if:

$$
\left|a_{\mathrm{ii}}\right| \geq \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right| \quad \text { for all 'i' } \quad \text { and }\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right| \text { for at least one ' } \mathrm{i} \text { ' }
$$

Gauss-Seidel Method: Pitfall

Diagonally dominant: The coefficient on the diagonal must be at least equal to the sum of the other coefficients in that row and at least one row with a diagonal coefficient greater than the sum of the other coefficients in that row.

Which coefficient matrix is diagonally dominant?

$$
[\mathrm{A}]=\left[\begin{array}{ccc}
2 & 5.81 & 34 \\
45 & 43 & 1 \\
123 & 16 & 1
\end{array}\right]
$$

$$
[\mathrm{B}]=\left[\begin{array}{ccc}
124 & 34 & 56 \\
23 & 53 & 5 \\
96 & 34 & 129
\end{array}\right]
$$

Most physical systems do result in simultaneous linear equations that have diagonally dominant coefficient matrices.

Gauss-Seidel Method: Example 2

Given the system of equations

$$
\begin{aligned}
12 x_{1}+3 x_{2}-5 x_{3} & =1 \\
x_{1}+5 x_{2}+3 x_{3} & =28 \\
3 x_{1}+7 x_{2}+13 x_{3} & =76
\end{aligned}
$$

With an initial guess of

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

The coefficient matrix is:

$$
[A]=\left[\begin{array}{ccc}
12 & 3 & -5 \\
1 & 5 & 3 \\
3 & 7 & 13
\end{array}\right]
$$

Will the solution converge using the Gauss-Siedel method?

Gauss-Seidel Method: Example 2

Checking if the coefficient matrix is diagonally dominant

$$
[A]=\left[\begin{array}{ccc}
12 & 3 & -5 \\
1 & 5 & 3 \\
3 & 7 & 13
\end{array}\right] \quad \begin{array}{ll}
\left|a_{11}\right|=|12|=12 \geq\left|a_{12}\right|+\left|a_{13}\right|=|3|+|-5|=8 \\
& \left|a_{22}\right|=|5|=5 \geq\left|a_{21}\right|+\left|a_{23}\right|=|1|+|3|=4 \\
& \left|a_{33}\right|=|13|=13 \geq\left|a_{31}\right|+\left|a_{32}\right|=|3|+|7|=10
\end{array}
$$

The inequalities are all true and at least one row is strictly greater than:
Therefore: The solution should converge using the Gauss-Siedel Method

Gauss-Seidel Method: Example 2

Rewriting each equation

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
12 & 3 & -5 \\
1 & 5 & 3 \\
3 & 7 & 13
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
28 \\
76
\end{array}\right]} \\
& x_{1}=\frac{1-3 x_{2}+5 x_{3}}{12} \\
& x_{2}=\frac{28-x_{1}-3 x_{3}}{5} \\
& x_{3}=\frac{76-3 x_{1}-7 x_{2}}{13}
\end{aligned}
$$

With an initial guess of

$$
\begin{gathered}
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]} \\
x_{1}=\frac{1-3(0)+5(1)}{12}=0.50000 \\
x_{2}=\frac{28-(0.5)-3(1)}{5}=4.9000 \\
x_{3}=\frac{76-3(0.50000)-7(4.9000)}{13}=3.0923
\end{gathered}
$$

Gauss-Seidel Method: Example 2

The absolute relative approximate error

$$
\begin{aligned}
& \left|\epsilon_{a}\right|_{1}=\left|\frac{0.50000-1.0000}{0.50000}\right| \times 100=100.00 \% \\
& \left|\epsilon_{\mathrm{a}}\right|_{2}=\left|\frac{4.9000-0}{4.9000}\right| \times 100=100.00 \% \\
& \left|\epsilon_{\mathrm{a}}\right|_{3}=\left|\frac{3.0923-1.0000}{3.0923}\right| \times 100=67.662 \%
\end{aligned}
$$

The maximum absolute relative error after the first iteration is 100%

Gauss-Seidel Method: Example 2

After Iteration \#1

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0.5000 \\
4.9000 \\
3.0923
\end{array}\right]
$$

Substituting the x values into the equations

$$
\begin{aligned}
& x_{1}=\frac{1-3(4.9000)+5(3.0923)}{12}=0.14679 \\
& x_{2}=\frac{28-(0.14679)-3(3.0923)}{5}=3.7153 \\
& x_{3}=\frac{76-3(0.14679)-7(4.900)}{13}=3.8118
\end{aligned}
$$

After Iteration \#2

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0.14679 \\
3.7153 \\
3.8118
\end{array}\right]
$$

Gauss-Seidel Method: Example 2

Iteration \#2 absolute relative approximate error

$$
\begin{aligned}
& \left|\epsilon_{\mathrm{a}}\right|_{1}=\left|\frac{0.14679-0.50000}{0.14679}\right| \times 100=240.61 \% \\
& \left|\epsilon_{\mathrm{a}}\right|_{2}=\left|\frac{3.7153-4.9000}{3.7153}\right| \times 100=31.889 \% \\
& \left|\epsilon_{\mathrm{a}}\right|_{3}=\left|\frac{3.8118-3.0923}{3.8118}\right| \times 100=18.874 \%
\end{aligned}
$$

The maximum absolute relative error after the first iteration is 240.61%

This is much larger than the maximum absolute relative error obtained in iteration \#1. Is this a problem?

Gauss-Seidel Method: Example 2

Repeating more iterations, the following values are obtained

Iteration	a_{1}	$\left\|\in_{a}\right\|_{1} \%$	a_{2}	$\left\|\in_{a}\right\|_{2} \%$	a_{3}	$\left\|\in_{a}\right\|_{3} \%$
1	0.50000	100.00	4.9000	100.00	3.0923	67.662
2	0.14679	240.61	3.7153	31.889	3.8118	18.876
3	0.74275	80.236	3.1644	17.408	3.9708	4.0042
4	0.94675	21.546	3.0281	4.4996	3.9971	0.65772
5	0.99177	4.5391	3.0034	0.82499	4.0001	0.074383
6	0.99919	0.74307	3.0001	0.10856	4.0001	0.00101

The solution obtained $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}0.99919 \\ 3.0001 \\ 4.0001\end{array}\right]$ is close to the exact solution of $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]$.

Gauss-Seidel Method: Example 3

Given the system of equations

$$
\begin{aligned}
3 x_{1}+7 x_{2}+13 x_{3} & =76 \\
x_{1}+5 x_{2}+3 x_{3} & =28 \\
12 x_{1}+3 x_{2}-5 x_{3} & =1
\end{aligned}
$$

Rewriting the equations

$$
x_{1}=\frac{76-7 x_{2}-13 x_{3}}{3}
$$

With an initial guess of

$$
x_{2}=\frac{28-x_{1}-3 x_{3}}{5}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

$$
x_{3}=\frac{1-12 x_{1}-3 x_{2}}{-5}
$$

Gauss-Seidel Method: Example 3

Conducting six iterations, the following values are obtained

Iteration	a_{1}	$\left\|\epsilon_{a}\right\|_{1} \%$	A_{2}	$\left\|\epsilon_{a}\right\|_{2} \%$	a_{3}	$\left\|\epsilon_{a}\right\|_{3} \%$
1	21.000	95.238	0.80000	100.00	50.680	98.027
2	-196.15	110.71	14.421	94.453	-462.30	110.96
3	-1995.0	109.83	-116.02	112.43	4718.1	109.80
4	-20149	109.90	1204.6	109.63	-47636	109.90
5	2.0364×10^{5}	109.89	-12140	109.92	4.8144×10^{5}	109.89
6	-2.0579×10^{5}	109.89	1.2272×10^{5}	109.89	-4.8653×10^{6}	109.89

The values are not converging.
Does this mean that the Gauss-Seidel method cannot be used?

Gauss-Seidel Method

The Gauss-Seidel Method can still be used
$\begin{aligned} & \text { The coefficient matrix is not } \\ & \text { diagonally dominant }\end{aligned} \quad[A]=\left[\begin{array}{ccc}3 & 7 & 13 \\ 1 & 5 & 3 \\ 12 & 3 & -5\end{array}\right]$
But this is the same set of equations used in example \#2, which did converge.

$$
[A]=\left[\begin{array}{ccc}
12 & 3 & -5 \\
1 & 5 & 3 \\
3 & 7 & 13
\end{array}\right]
$$

If a system of linear equations is not diagonally dominant, check to see if rearranging the equations can form a diagonally dominant matrix.

Gauss-Seidel Method

Not every system of equations can be rearranged to have a diagonally dominant coefficient matrix.
Observe the set of equations

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=3 \\
2 x_{1}+3 x_{2}+4 x_{3}=9 \\
x_{1}+7 x_{2}+x_{3}=9
\end{array}
$$

Which equation(s) prevents this set of equation from having a diagonally dominant coefficient matrix?

Jacobi Iteration Method

- As each new x value is computed for the Gauss-Seidel method, it is immediately used in the next equation to determine another x value.
- An alternative approach, called Jacobi iteration, utilizes a somewhat different tactic. Rather than using the latest available x 's, this technique uses guessed valued for all equations for $1^{\text {st }}$ iteration. In second iteration, results of the computed x's will be used an so on...
- Thus, as new values are generated, they are not immediately used but rather are retained for the next iteration.

Jacobi Method

Rewriting each equation
With an initial guess of

$$
\begin{gathered}
{\left[\begin{array}{ccc}
12 & 3 & -5 \\
1 & 5 & 3 \\
3 & 7 & 13
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
28 \\
76
\end{array}\right]} \\
x_{1}=\frac{1-3 x_{2}+5 x_{3}}{12} \\
x_{2}=\frac{28-x_{1}-3 x_{3}}{5} \\
x_{3}=\frac{76-3 x_{1}-7 x_{2}}{13}
\end{gathered}
$$

$$
\begin{gathered}
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]} \\
x_{1}=\frac{1-3(0)+5(1)}{12}=0.50000 \\
\mathrm{x}_{2}=\frac{28-(1)-3(1)}{5}=4.8000 \\
\mathrm{x}_{3}=\frac{76-3(1)-7(0)}{13}=5.5384
\end{gathered}
$$

