Workshop Solutions to Section 2.5 (1.5)

How to find the domain and range of the exponential function $f(x)=a^{x}$?
1- If $f(x)=c . a^{ \pm x} \pm k$ where c and k are positive constants, then

$$
D_{f}=\mathbb{R} \quad \text { and } \quad R_{f}=(\pm k, \infty)
$$

2- If $f(x)=-c . a^{ \pm x} \pm k$ where c and k are positive constants, then

$$
D_{f}=\mathbb{R} \quad \text { and } \quad R_{f}=(-\infty, \pm k)
$$

3- If $f(x)=c . e^{ \pm x} \pm k$ where c and k are positive constants, then

$$
D_{f}=\mathbb{R} \quad \text { and } \quad R_{f}=(\pm k, \infty)
$$

4- If $f(x)=-c . e^{ \pm x} \pm k$ where c and k are positive constants, then

$$
D_{f}=\mathbb{R} \quad \text { and } \quad R_{f}=(-\infty, \pm k)
$$

1) Find the domain of the function $f(x)=4^{x}$.

Solution:
From Step (1) above, we deduce that

$$
D_{f}=\mathbb{R}
$$

3) Find the domain of the function $f(x)=4^{x}-3$.

Solution:

From Step (1) above, we deduce that

$$
D_{f}=\mathbb{R}
$$

5) Find the domain of the function $f(x)=5-3^{x}$. Solution:
From Step (2) above, we deduce that

$$
D_{f}=\mathbb{R}
$$

7) Find the domain of the function $f(x)=3^{-x}+1$.

Solution:
From Step (1) above, we deduce that

$$
D_{f}=\mathbb{R}
$$

9) Find the domain of the function $f(x)=e^{x}$.

Solution:
From Step (3) above, we deduce that

$$
D_{f}=\mathbb{R}
$$

11) Find the domain of the function $f(x)=e^{x}-3$.

Solution:
From Step (3) above, we deduce that

$$
D_{f}=\mathbb{R}
$$

13) Find the domain of the function $f(x)=e^{x}+1$. Solution:
From Step (3) above, we deduce that

$$
D_{f}=\mathbb{R}
$$

2) Find the range of the function $f(x)=4^{x}$.

Solution:
From Step (1) above, we deduce that

$$
R_{f}=(0, \infty)
$$

4) Find the range of the function $f(x)=4^{x}-3$.

Solution:

From Step (1) above, we deduce that

$$
R_{f}=(-3, \infty)
$$

6) Find the range of the function $f(x)=5-3^{x}$. Solution:
From Step (2) above, we deduce that

$$
R_{f}=(-\infty, 5)
$$

8) Find the range of the function $f(x)=3^{-x}+1$.

Solution:

From Step (1) above, we deduce that

$$
R_{f}=(1, \infty)
$$

10) Find the range of the function $f(x)=e^{x}$.

Solution:

From Step (3) above, we deduce that

$$
R_{f}=(0, \infty)
$$

12) Find the range of the function $f(x)=e^{x}-3$. Solution:
From Step (3) above, we deduce that

$$
R_{f}=(-3, \infty)
$$

14) Find the domain of the function $f(x)=\frac{1}{1-e^{x}}$. Solution:
$f(x)$ is defined when $1-e^{x} \neq 0$

$$
\begin{gathered}
\Leftrightarrow e^{x} \neq 1 \quad \Leftrightarrow \ln e^{x} \neq \ln 1 \\
\Leftrightarrow \quad x \neq 0 \\
\therefore D_{f}=\mathbb{R} \backslash\{0\}
\end{gathered}
$$

15) Find the domain of the function $f(x)=\frac{1}{1+e^{x}}$.

Solution:

$f(x)$ is defined when $1+e^{x} \neq 0$.
But there is no value of x makes $1+e^{x}=0$. Therefore,

$$
D_{f}=\mathbb{R}
$$

17) If $4^{(x+1)}=8$, then $x=$

Solution:

$$
\begin{gathered}
4^{(x+1)}=8 \\
\left(2^{2}\right)^{(x+1)}=2^{3} \\
2^{2(x+1)}=2^{3} \\
2(x+1)=3 \\
2 x+2=3 \\
2 x=3-2=1 \\
\therefore x=\frac{1}{2}
\end{gathered}
$$

19) If $9^{(x+1)}=27$, then $x=$

Solution:
$9^{(x+1)}=27$
$\left(3^{2}\right)^{(x+1)}=3^{3}$
$3^{2(x+1)}=3^{3}$
$2(x+1)=3$
$2 x+2=3$
$2 x=3-2=1$
$\therefore x=\frac{1}{2}$
21) If $5^{2(x-1)}=125$, then $x=$

Solution:

$$
\begin{gathered}
5^{2(x-1)}=125 \\
5^{2(x-1)}=5^{3} \\
2(x-1)=3 \\
2 x-2=3 \\
2 x=3+2=5 \\
\therefore x=\frac{5}{2}
\end{gathered}
$$

16) Find the domain of the function $f(x)=\sqrt{1+3^{x}}$. Solution:
$f(x)$ is defined when $1+3^{x} \geq 0$.
But $1+3^{x}>0$ always. Therefore,

$$
D_{f}=\mathbb{R}
$$

18) If $4^{(x-1)}=8$, then $x=$

Solution:

$$
\begin{gathered}
4^{(x-1)}=8 \\
\left(2^{2}\right)^{(x-1)}=2^{3} \\
2^{2(x-1)}=2^{3} \\
2(x-1)=3 \\
2 x-2=3 \\
2 x=3+2=5 \\
\therefore \quad x=\frac{5}{2}
\end{gathered}
$$

20) If $9^{(x-1)}=27$, then $x=$

Solution:

$$
\begin{gathered}
9^{(x-1)}=27 \\
\left(3^{2}\right)^{(x-1)}=3^{3} \\
3^{2(x-1)}=3^{3} \\
2(x-1)=3 \\
2 x-2=3 \\
2 x=3+2=5 \\
\therefore x=\frac{5}{2}
\end{gathered}
$$

22) If $5^{2(x+1)}=125$, then $x=$

Solution:

$$
\begin{gathered}
5^{2(x+1)}=125 \\
5^{2(x+1)}=5^{3} \\
2(x+1)=3 \\
2 x+2=3 \\
2 x=3-2=1 \\
\therefore x=\frac{1}{2}
\end{gathered}
$$

