

Chapter 3

VECTORS

By Dr.Wajood Diery

3-1 VECTORS AND THEIR COMPONENTS

Vectors and Scalars

Vectors

Adding Vectors

Geometrically

- Adding vectors.
- Commutative Law.
- Associative Law.
- Vector Subtraction.

By Components

- resolving a vector.
- unit vectors.
- Adding vectors.

Multiplying Vectors

By scalar By a vector

Scalar Product

vector Product

Adding Vectors Geometrically

- Draw the first vector.
- From the end of the first vector draw the second vector.
- And so on.
- Draw a line from the start point to the end point and this will be the Sum or resultant.

Vector equation

$$\overrightarrow{s} = \overrightarrow{a} + \overrightarrow{b},$$

Commutative Law

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

Associative Law

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

Vector Subtraction

$$\vec{b} + (-\vec{b}) = 0.$$

$$\vec{d} = \vec{a} - \vec{b} = \vec{a} + (-\vec{b})$$

Components of Vectors

• Resolving the vector is the process of finding the components

• Component is the projection of the vector on an axis

8

$$a_x = a\cos\theta$$
 and $a_y = a\sin\theta$

$$a_x = a \sin \alpha$$
 and $a_y = a \cos \alpha$

• Writing a vector in magnitude- angle notation

$$\vec{a}$$
: a_x and a_y

Magnitude

$$|a, a| = \sqrt{a_x^2 + a_y^2}$$

Direction (angle)

$$\theta = \tan^{-1}(\frac{a_y}{a_x})$$

The angle is measured from positive X-axis.

North of east

West of south

Sample Problem 3.02

A small airplane leaves an airport on an overcast day and is later sighted 215 km away, in a direction making an angle of 22° east of due north. How far east and north is the airplane from the airport when sighted?

3-2 UNIT VECTORS, ADDING VECTORS BY COMPONENT

Unit Vectors

 Unit vector is a vector of magnitude 1 and points in a particular direction

Writing a vector in Unit vector notation

Adding vectors by Components

$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k}$$

$$\vec{b} = b_x \hat{\imath} + b_y \hat{\jmath} + b_z \hat{k}$$

$$\vec{r} = \vec{a} + \vec{b}$$

$$\vec{r} = r_x \hat{\imath} + r_y \hat{\jmath} + r_z \hat{k}$$

$$r_x = a_x + b_x \qquad r_y = a_y + b_y \qquad r_z = a_z + b_z$$

Sample Problem 3.04

Figure 3-17a shows the following three vectors:

$$\vec{a} = (4.2 \text{ m})\hat{i} - (1.5 \text{ m})\hat{j},$$

$$\vec{b} = (-1.6 \text{ m})\hat{i} + (2.9 \text{ m})\hat{j},$$
and
$$\vec{c} = (-3.7 \text{ m})\hat{j}.$$

What is their vector sum \vec{r} which is also shown?

Rem : The angle θ must be measured from positive X-axis, if θ -ve if then move clockwise and if θ +ve move counterclockwise.

3-3 MULTIPLYING VECTORS

Multiplying vectors

Scalar (or Dot product)

If the two vectors are given in magnitude and the angle between them

$$\vec{a} \cdot \vec{b} = ab \cos \phi$$

If the two vectors are given in unit vector notation

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$

$$\vec{b} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k}$$

$$\vec{a} \cdot \vec{b} = a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}$$

$$\vec{a} \cdot \vec{b} = ab \cos \phi$$

- \P If the two vectors are parallel $\Longrightarrow \theta = 0 \Rightarrow \vec{a} \cdot \vec{b} = ab$
- \P If the two vectors are perpendicular $\theta = 90 \Rightarrow \vec{a} \cdot \vec{b} = 0$
- Multiplying Unit vectors

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = (1)(1)\cos 0 = 1$$
 $\longrightarrow \hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = (1)(1)\cos 90 = 0 \implies \hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{i}} = 0$$

The scalar product is commutative

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

the angle between two vectors can be found

$$\vec{a} \cdot \vec{b} = ab \cos \theta$$

Properties
Of the scalar
product

any two similar unit vectors

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$$

any two different unit vectors

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{i}} = 0$$

If
$$\theta = 0 \Rightarrow \vec{a} \cdot \vec{b} = ab$$
 vectors are parallel

$$\theta = 180 \Rightarrow \vec{a} \cdot \vec{b} = -ab$$
 vectors are anti parallel

$$heta=90 \Rightarrow \vec{a} \, . \, \vec{b}=0 \quad \Longrightarrow$$
 vectors are perpendicular

Sample Problem 3.05

What is the angle ϕ between $\vec{a} = 3.0\hat{i} - 4.0\hat{j}$ and $\vec{b} = -2.0\hat{i} + 3.0\hat{k}$?

Vector (or Cross product)

If the two vectors are given in magnitude and angle between them

The direction of the result vector

If the two vectors are given in unit vector notation

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$

$$\vec{b} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$= \hat{\mathbf{i}} \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \hat{\mathbf{j}} \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} + \hat{\mathbf{k}} \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}$$

$$= (a_y b_z - b_y a_z) \hat{\mathbf{i}} + (a_z b_x - b_z a_x) \hat{\mathbf{j}}$$

$$+ (a_x b_y - b_x a_y) \hat{\mathbf{k}}$$

$$|\vec{a} \times \vec{b}| = |c| = ab \sin \phi$$

$$\Diamond$$
 The scalar product is Anti-commutative \implies $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$

$$\Diamond$$
 If the two vectors are parallel $\implies \phi = 0 \Rightarrow \vec{a} \times \vec{b} = 0$ \longrightarrow

$$\Diamond$$
 If the two vectors are perpendicular $\phi = 90 \Rightarrow |\vec{a} \times \vec{b}| = a b$

$$\Diamond$$
 If the two vectors are Anti-parallel $\implies \phi = 180 \Rightarrow \vec{a} \times \vec{b} = 0$

♦ Multiplying Unit vectors

$$\begin{vmatrix} \hat{\mathbf{i}} \cdot \hat{\mathbf{i}} \end{vmatrix} = (1)(1)\sin 0 = 0 \implies \hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = 0$$

$$\begin{vmatrix} \hat{\mathbf{i}} \cdot \hat{\mathbf{j}} \end{vmatrix} = (1)(1)\sin 90 = 1 \implies \hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}}$$

$$\hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}}, \qquad \hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}}, \qquad \hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}$$

$$\hat{\mathbf{j}} \cdot \hat{\mathbf{i}} = -\hat{\mathbf{k}} \qquad \hat{\mathbf{k}} \cdot \hat{\mathbf{j}} = -\hat{\mathbf{i}} \qquad \hat{\mathbf{i}} \cdot \hat{\mathbf{k}} = -\hat{\mathbf{j}}$$

any two different unit vectors

$$\hat{i} \times \hat{j} = \hat{k}, \quad \hat{j} \times \hat{k} = \hat{i},$$

$$\hat{k} \times \hat{i} = \hat{j}$$

Anti-commutative

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

The small angle between the two vectors must be used because the odd property of the sin function

$$|\vec{a} \times \vec{b}| = |c| = ab \sin \phi$$

Properties of the Vector product

any two similar unit vectors

$$\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = 0$$

If $\phi = 0 \Rightarrow \vec{a} \times \vec{b} = 0$ vectors are parallel

$$\phi = 180 \Rightarrow \vec{a} \times \vec{b} = 0$$
 vectors are anti parallel

$$\phi = 90 \Rightarrow |\vec{a} \times \vec{b}| = ab$$
 vectors are perpendicular

Sample Problem 3.07

If $\vec{a} = 3\hat{i} - 4\hat{j}$ and $\vec{b} = -2\hat{i} + 3\hat{k}$, what is $\vec{c} = \vec{a} \times \vec{b}$?

