SIGNALS AND SYSTEMS USING MATLAB

Chapter 5- Frequency Analysis: The Fourier Transform

Luis F. Chaparro

From the Fourier Series to the Fourier Transform

Aperiodic signal $x(t)$ can be thought of as periodic signal $\tilde{x}(t)$ with infinite fundamental period. From Fourier series of $\tilde{x}(t)$ and limiting process we obtain Fourier transform pair

$$
x(t) \quad \Leftrightarrow \quad X(\Omega)
$$

$x(t)$ is transformed into $X(\Omega)$ in the frequency-domain by the

$$
\text { Fourier transform: } \quad X(\Omega)=\int_{-\infty}^{\infty} x(t) e^{-j \Omega t} d t
$$

while $X(\Omega)$ is transformed into $x(t)$ in the time-domain by the

$$
\text { Inverse Fourier Transform: } \quad x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\Omega) e^{j \Omega t} d \Omega
$$

Existence of the Fourier Transform

- For $X(\Omega)$ to exist, $x(t)$ must be absolutely integrable

$$
|X(\Omega)| \leq \int_{-\infty}^{\infty}\left|x(t) e^{-j \Omega t}\right| d t=\int_{-\infty}^{\infty}|x(t)| d t<\infty
$$

- ROC of $X(s)=\mathcal{L}[x(t)]$ contains the $j \Omega$-axis then

$$
\begin{aligned}
\mathcal{F}[x(t)] & =\left.\mathcal{L}[x(t)]\right|_{s=j \Omega}=\int_{-\infty}^{\infty} x(t) e^{-j \Omega t} d t \\
& =\left.X(s)\right|_{s=j \Omega}
\end{aligned}
$$

- Duality between time and frequency allows computation of Fourier transforms

Example: Fourier transform from Laplace transform
(a) $x_{1}(t)=u(t), \quad X_{1}(s)=\frac{1}{s}, R O C: \sigma>0, j \Omega$-axis not included $X(\Omega)$ cannot be obtained
(b) $x_{2}(t)=e^{-2 t} u(t), \quad X_{2}(s)=\frac{1}{s+2}, R O C: \sigma>-2$
$X_{2}(\Omega)=\left.\frac{1}{s+2}\right|_{s=j \Omega}=\frac{1}{j \Omega+2}$
(c) $\begin{gathered}X_{3}(t)=e^{-|t|}, \quad X_{3}(s)=\frac{1}{s+1}+\frac{1}{-s+1}, R O C:-1<\sigma<1 \\ X_{3}(\Omega)=\left.X_{3}(s)\right|_{s=j \Omega}=\frac{2}{1-(j \Omega)^{2}}=\frac{2}{1+\Omega^{2}}\end{gathered}$

Inverse proportionality of time and frequency

Support of $X(\Omega)$ is inversely proportional to the support of $x(t)$
If $x(t)$ has a Fourier transform $X(\Omega)$ and $\alpha \neq 0$ is a real number, then $x(\alpha t)$

- is a contracted signal when $\alpha>1$;
- is a contracted and reflected signal when ($\alpha<-1$);
- is an expanded signal when $0<\alpha<1$;
- is a reflected and expanded signal when $-1<\alpha<0$; or
- is a reflected signal when $\alpha=-1$
and

$$
x(\alpha t) \quad \Leftrightarrow \quad \frac{1}{|\alpha|} \times\left(\frac{\Omega}{\alpha}\right)
$$

$5 / 25$

Fourier transform of pulses $x_{1}(t)=u(t+0.5)-u(t-0.5)$, (left) and $x_{2}(t)=u(t+2)-u(t-2)$ (right). Notice the wider the pulse the more concentrated in frequency its Fourier transform

Example: $x(t)=u(t)-u(t-1)$ vs $x_{1}(t)=x(2 t)$

$$
\begin{aligned}
& X(s)=\frac{1-e^{-s}}{s}, \quad R O C: \text { whole s-plane } \\
& X(\Omega)=\frac{e^{-j \Omega / 2}\left(e^{j \Omega / 2}-e^{-j \Omega / 2}\right)}{2 j \Omega / 2}=\frac{\sin (\Omega / 2)}{\Omega / 2} e^{-j \Omega / 2} \text { infinite support }
\end{aligned}
$$

$$
x_{1}(t)=x(2 t)=u(2 t)-u(2 t-1)=u(t)-u(t-0.5)
$$

$$
X_{1}(\Omega)=\frac{e^{-j \Omega / 4}\left(e^{j \Omega / 4}-e^{-j \Omega / 4}\right)}{j \Omega}=\frac{1}{2} \frac{\sin (\Omega / 4)}{\Omega / 4} e^{-j \Omega / 4}=\frac{1}{2} X(\Omega / 2)
$$

Duality

$$
\begin{array}{|rrr|}
\hline x(t) & \Leftrightarrow & x(\Omega) \\
x(t) & \Leftrightarrow & 2 \pi x(-\Omega) \\
\hline
\end{array}
$$

Example:

$$
\begin{aligned}
A \delta(t) & \Leftrightarrow \quad A \\
A & \Leftrightarrow \quad 2 \pi A \delta(-\Omega)=2 \pi A \delta(\Omega)
\end{aligned}
$$

Example:

$$
\begin{aligned}
\delta\left(t-\rho_{0}\right)+\delta\left(t+\rho_{0}\right) & \Leftrightarrow e^{-j \rho_{0} \Omega}+e^{j \rho_{0} \Omega}=2 \cos \left(\rho_{0} \Omega\right) \\
2 \cos \left(\rho_{0} t\right) & \Leftrightarrow \\
& 2 \pi\left[\delta\left(\Omega+\rho_{0}\right)+\delta\left(\Omega-\rho_{0}\right)\right] \\
x(t)=\cos \left(\Omega_{0} t\right) & \Leftrightarrow \quad X(\Omega)=\pi\left[\delta\left(\Omega+\Omega_{0}\right)+\delta\left(\Omega-\Omega_{0}\right)\right]
\end{aligned}
$$

$8 / 25$

Duality to find Fourier transform of $x(t)=10 \operatorname{sinc}(0.5 t)$

Modulation

- Frequency shift:

$$
\begin{array}{rlrr|}
\hline x(t) & \Leftrightarrow & X(\Omega) \\
x(t) e^{j \Omega_{0} t} & \Leftrightarrow & X\left(\Omega-\Omega_{0}\right) \\
\hline
\end{array}
$$

- Modulation:

$$
\text { modulated signal } x(t) \cos \left(\Omega_{0} t\right) \Leftrightarrow 0.5\left[X\left(\Omega-\Omega_{0}\right)+X\left(\Omega+\Omega_{0}\right)\right]
$$

Modulated signal $y_{1}(t)=e^{-|t|} \cos (10 t)$, its magnitude and phase spectra

$$
10 / 25
$$

Fourier transform of periodic signals

Represent periodic signal $x(t)$, of period T_{0}, by its Fourier series:

$$
x(t)=\sum_{k} X_{k} e^{j k \Omega_{0} t} \quad \Leftrightarrow \quad X(\Omega)=\sum_{k} 2 \pi X_{k} \delta\left(\Omega-k \Omega_{0}\right)
$$

Example: Periodic $x(t)$ with period $x_{1}(t)=r(t)-2 r(t-0.5)+r(t-1)$, fundamental frequency $\Omega_{0}=2 \pi$

$$
X_{1}(s)=\frac{1}{s^{2}}\left(1-2 e^{-0.5 s}+e^{-s}\right)=\frac{e^{-0.5 s}}{s^{2}}\left(e^{0.5 s}-2+e^{-0.5 s}\right)
$$

Fourier coefficients :

$$
\begin{aligned}
& X_{k}=\left.\frac{1}{T_{0}} X_{1}(s)\right|_{s=j 2 \pi k}=(-1)^{k} \frac{\sin ^{2}(\pi k / 2)}{\pi^{2} k^{2}}, k \neq 0, X_{0}=0.5 \\
& X(\Omega)=2 \pi X_{0} \delta(\Omega)+\sum_{k=-\infty, \neq 0}^{\infty} 2 \pi X_{k} \delta(\Omega-2 k \pi)
\end{aligned}
$$

Parseval's energy relation

For aperiodic signal $x(t)$ with energy $E_{x}<\infty$:

- Energy conservation in time and frequency

$$
E_{X}=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\Omega)|^{2} d \Omega
$$

- $|X(\Omega)|^{2}$ energy density: energy at each of the frequencies Ω. Plot $|X(\Omega)|^{2}$ vs Ω is called the energy spectrum of $x(t)$, and displays how the energy of the signal is distributed over frequency

Example: Impulse $x(t)=\delta(t)$ is not finite energy signal

$$
\begin{aligned}
& X(\Omega)=\mathcal{F}[\delta(t)]=1 \\
& E_{X}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\Omega)|^{2} d \Omega \rightarrow \infty
\end{aligned}
$$

Symmetry of spectral representations

- $x(t)$ real-valued signal

$$
\begin{aligned}
& X(\Omega)=\mathcal{F}[x(t)]=|X(\Omega)| e^{j \angle X(\Omega)}=\operatorname{Re}[X(\Omega)]+j \operatorname{Im}[X(\Omega)] \\
& |X(\Omega)|=|X(-\Omega)|, \quad \mathcal{R e}[X(\Omega)]=\operatorname{Re}[X(-\Omega)] \quad \text { (even functions of } \Omega \text {) } \\
& \angle X(\Omega)=-\angle X(-\Omega), \quad \operatorname{Im}[X(\Omega)]=-\operatorname{Im}[X(-\Omega)] \text { (odd functions of } \Omega \text {) }
\end{aligned}
$$

- Spectra

$$
\begin{array}{ll}
|X(\Omega)| \text { vs } \Omega & \text { Magnitude Spectrum } \\
\angle X(\Omega) \text { vs } \Omega & \text { Phase Spectrum } \\
|X(\Omega)|^{2} \text { vs } \Omega & \text { Energy/Power Spectrum. }
\end{array}
$$

Example:

$$
\text { (a) } \begin{aligned}
& x_{1}(t)=u(t)-u(t-1), \quad \text { let } z(t)=x_{1}(t+0.5) \\
& Z(\Omega)=\frac{\sin (\Omega / 2)}{\Omega / 2}(\text { real }) \\
& X_{1}(\Omega)=e^{-j 0.5 \Omega} Z(\Omega) \\
&\left|X_{1}(\Omega)\right|=\left|\frac{\sin (\Omega / 2)}{\Omega / 2}\right| \\
& \angle X_{1}(\Omega)=\angle Z(\Omega)-0.5 \Omega= \begin{cases}-0.5 \Omega & Z(\Omega) \geq 0 \\
\pm \pi-0.5 \Omega & Z(\Omega)<0\end{cases} \\
& \text { (b) } \quad x_{2}(t)=e^{-t} u(t), \quad X_{2}(\Omega)=\frac{1}{1+j \Omega} \\
&\left|X_{2}(\Omega)\right|=\frac{1}{\sqrt{1+\Omega^{2}}}, \angle\left(X_{2}(\Omega)\right)=-\tan ^{-1} \Omega,
\end{aligned}
$$

Pulse $x_{1}(t)=u(t)-u(t-1)$ and its magnitude and phase spectra.

Convolution and filtering

- Input $x(t)$ (periodic or aperiodic) of stable LTI system has Fourier transform $X(\Omega)$ system has frequency response $H(j \Omega)=\mathcal{F}[h(t)], h(t)$ impulse response output is convolution integral $y(t)=(x * h)(t)$, with Fourier transform

$$
Y(\Omega)=X(\Omega) H(j \Omega)
$$

- If input $x(t)$ is periodic the output is also periodic of the same fundamental period, and with Fourier transform

$$
Y(\Omega)=\sum_{k=-\infty}^{\infty} 2 \pi X_{k} H\left(j k \Omega_{0}\right) \delta\left(\Omega-k \Omega_{0}\right)
$$

where $\left\{X_{k}\right\}$ are the Fourier series coefficients of $x(t)$ and Ω_{0} its fundamental frequency.

Example: Windowing

$$
\begin{aligned}
& \text { rectangular window } \mathrm{w}(t)=u(t+\Delta)-u(t-\Delta), \Delta>0 \\
& \text { windowed signal } y(t)=\mathrm{w}(t) x(t)
\end{aligned}
$$

$$
\begin{aligned}
& y(t)=\mathrm{w}(t) \underbrace{\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\rho) e^{j \rho t} d \rho}_{x(t)}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\rho) \mathrm{w}(t) e^{j \rho t} d \rho \\
& Y(\Omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\rho) \mathcal{F}\left[\mathrm{w}(t) e^{j \rho t}\right] d \rho=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\rho) \mathrm{W}(\Omega-\rho) d \rho \\
& y(t)=x(t) \mathrm{w}(t) \Leftrightarrow \frac{1}{2 \pi} \text { convolution of } X(\Omega) \text { and } W(\Omega)=\frac{2 \sin (\Omega \Delta)}{\Omega}
\end{aligned}
$$

Ideal filtering

Filtering: to pass desired frequency component and to attenuate undesirable components

Ideal filters: (top-left clockwise) low-pass, band-pass, band-eliminating and high-pass

Issues with ideal filters:

- Non-causal
- Paley-Wiener integral condition causal and stable filter with frequency response $H(j \Omega)$ should satisfy small

$$
\int_{-\infty}^{\infty} \frac{|\log (H(j \Omega))|}{1+\Omega^{2}} d \Omega<\infty
$$

Example: Gibb's phenomenon
Passing $x(t)$ through ideal low-pass filter

$$
\begin{aligned}
& H(j \Omega)= \begin{cases}1 & -\Omega_{c} \leq \Omega \leq \Omega_{c}, \quad N \Omega_{0}<\Omega_{c}<(N+1) \Omega_{0} \\
0 & \text { otherwise }\end{cases} \\
& X(\Omega)=\sum_{k=-\infty}^{\infty} 2 \pi X_{k} \delta\left(\Omega-k \Omega_{0}\right)
\end{aligned}
$$

The output of the filter with $2 N+1$ Fourier coefficients

$$
\begin{aligned}
x_{N}(t) & =\mathcal{F}^{-1}[X(\Omega) H(j \Omega)]=\mathcal{F}^{-1}\left[\sum_{k=-N}^{N} 2 \pi X_{k} \delta\left(\Omega-k \Omega_{0}\right)\right] \\
& =[x * h](t), \quad h(t) \text { sinc function }
\end{aligned}
$$

Convolution around the discontinuities of $x(t)$ causes ringing before and after them, independent of the value of N

$$
19 / 25
$$

Example: RLC circuit, $R=1 \Omega, L=1 H$, and $C=1 \mathrm{~F}$, and IC zero

low-pass: output $v_{c}(t), \quad H_{l p}(s)=\frac{V_{C}(s)}{V_{i}(s)}=\frac{1}{s^{2}+s+1}$
high-pass: output $v_{L}(t), \quad H_{h p}(s)=\frac{V_{L}(s)}{V_{i}(s)}=\frac{s^{2}}{s^{2}+s+1}$
band-pass: output $v_{R}(t), \quad H_{b p}(s)=\frac{V_{R}(s)}{V_{i}(s)}=\frac{s}{s^{2}+s+1}$
band-stop: output $v_{c L}(t), \quad H_{b s}(s)=\frac{V_{c L}(s)}{V_{i}(s)} \frac{s^{2}+1}{s^{2}+s+1}$

Frequency Response from Poles and Zeros

$$
G(s)=K \frac{s-z}{s-p}, \quad \text { zero } z, \text { pole } p, \text { gain } K \neq 0
$$

Frequency response of $G(s)$ at frequency Ω_{0}

$$
\begin{aligned}
& G\left(j \Omega_{0}\right)=K \frac{\vec{Z}\left(\Omega_{0}\right)}{\vec{P}\left(\Omega_{0}\right)}=|K| e^{j \angle K} \frac{\left|\vec{Z}\left(\Omega_{0}\right)\right|}{\left|\vec{P}\left(\Omega_{0}\right)\right|} e^{j\left(\angle \vec{Z}\left(\Omega_{0}\right)-\angle \vec{P}\left(\Omega_{0}\right)\right)} . \\
& \text { Magnitude response }\left|G\left(j \Omega_{0}\right)\right|=|K| \frac{\left|\vec{Z}\left(\Omega_{0}\right)\right|}{\left|\vec{P}\left(\Omega_{0}\right)\right|} \\
& \text { Phase response } \angle G\left(j \Omega_{0}\right)=\angle K+\angle \vec{Z}\left(\Omega_{0}\right)-\angle \vec{P}\left(\Omega_{0}\right)
\end{aligned}
$$

Example: Frequency response of high-pass filter

$$
\begin{aligned}
& H(s)=\frac{V_{r}(s)}{V_{s}(s)}=\frac{s}{s+1} \\
& H(j \Omega)=\frac{j \Omega}{1+j \Omega}=\frac{\vec{Z}(\Omega)}{\vec{P}(\Omega)} \\
& \text { vector } \vec{Z}(\Omega) \text { from } s=0 \text { to } j \Omega \\
& \text { vector } \vec{P}(\Omega) \text { from } s=-1 \text { to } j \Omega \\
& \Omega \quad \vec{Z}(\Omega) \quad \vec{P}(\Omega) \quad H(j \Omega)=\vec{Z}(\Omega) / \vec{P}(\Omega) \\
& 0 \quad 0 e^{j \pi / 2} \quad 1 e^{j 0} \quad 0 e^{j \pi / 2} \\
& 1 \quad 1 e^{j \pi / 2} \quad \sqrt{2} e^{j \pi / 4} \quad 0.707 e^{j \pi / 4} \\
& \infty \infty e^{j \pi / 2} \infty e^{j \pi / 2} \quad 1 e^{j 0}
\end{aligned}
$$

Spectrum analyzer

Bank-of-filter spectrum analyzer: the frequency response of the bank-of-filters is that of an all-pass filter covering the desired range of frequencies

Basic Properties of the Fourier Transform

Expansion/contraction
Reflection
Parseval's

$$
x(\alpha t), \alpha \neq 0
$$

$$
x(-t)
$$

$E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t$
Duality
Differentiation

$$
(j \Omega)^{n} X(\Omega)
$$

Integration

$$
\frac{X(\Omega)}{j \Omega}+\pi X(0) \delta(\Omega)
$$

Shifting
Modulation

$$
X(t)
$$

$\frac{1}{|\alpha|} \times\left(\frac{\Omega}{\alpha}\right)$
$X(-\Omega)$
$E_{X}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\Omega)|^{2} d \Omega$
$2 \pi x(-\Omega)$

$$
e^{-j \alpha \Omega} X(\Omega), X\left(\Omega-\Omega_{0}\right)
$$

$$
0.5\left[X\left(\Omega-\Omega_{c}\right)+X\left(\Omega+\Omega_{c}\right)\right]
$$

Periodic

$$
X(\Omega)=\sum_{k} 2 \pi X_{k} \delta\left(\Omega-k \Omega_{0}\right)
$$

Symmetry

$$
|X(\Omega)|=|X(-\Omega)|
$$

$$
\angle X(\Omega)=-\angle X(-\Omega)
$$

Convolution

$$
z(t)=[x * y](t)
$$

$$
Z(\Omega)=X(\Omega) Y(\Omega)
$$

Fourier Transform Pairs

$$
\begin{array}{ll}
\delta(t), \quad \delta(t-\tau) & \frac{1, ~ e}{} e^{-j \Omega \tau} \\
u(t), \quad u(-t) & \frac{1}{j \Omega}+\pi \delta(\Omega), \frac{-1}{j \Omega}+\pi \delta(\Omega) \\
\operatorname{sgn}(t)=2[u(t)-0.5] & \frac{2}{j \Omega} \\
A, \quad A e^{-a t} u(t), a>0 & 2 \pi A \delta(\Omega), \frac{A}{j \Omega+a} \\
A t e^{-a t} u(t), a>0 & \frac{A}{(j \Omega+a)^{2}} \\
e^{-a|t|}, a>0 & \frac{2 a}{a^{2}+\Omega^{2}} \\
\cos \left(\Omega_{0} t\right), \quad-\infty<t<\infty & \pi\left[\delta\left(\Omega-\Omega_{0}\right)+\delta\left(\Omega+\Omega_{0}\right)\right] \\
\sin \left(\Omega_{0} t\right), \quad-\infty<t<\infty & -j \pi\left[\delta\left(\Omega-\Omega_{0}\right)-\delta\left(\Omega+\Omega_{0}\right)\right] \\
p(t)=A[u(t+\tau)-u(t-\tau)], & 2 A \tau \frac{\sin (\Omega \tau)}{\Omega \tau}
\end{array}
$$

