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From the Fourier Series to the Fourier Transform

Aperiodic signal x(t) can be thought of as periodic signal x̃(t) with infinite fundamental
period. From Fourier series of x̃(t) and limiting process we obtain Fourier transform pair

x(t) ⇔ X (Ω)

x(t) is transformed into X (Ω) in the frequency–domain by the

Fourier transform: X (Ω) =

∫ ∞
−∞

x(t)e−jΩtdt

while X (Ω) is transformed into x(t) in the time–domain by the

Inverse Fourier Transform: x(t) =
1

2π

∫ ∞
−∞

X (Ω)e jΩtdΩ
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Existence of the Fourier Transform

• For X (Ω) to exist, x(t) must be absolutely integrable

|X (Ω)| ≤
∫ ∞
−∞
|x(t)e−jΩt|dt =

∫ ∞
−∞
|x(t)|dt <∞

• ROC of X (s) = L[x(t)] contains the jΩ-axis then

F [x(t)] = L[x(t)]|s=jΩ =

∫ ∞
−∞

x(t)e−jΩtdt

= X (s) |s=jΩ

• Duality between time and frequency allows computation of Fourier transforms
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Example: Fourier transform from Laplace transform

(a) x1(t) = u(t), X1(s) =
1

s
, ROC : σ > 0, jΩ-axis not included

X (Ω) cannot be obtained

(b) x2(t) = e−2tu(t), X2(s) =
1

s + 2
, ROC : σ > −2

X2(Ω) =
1

s + 2
|s=jΩ =

1

jΩ + 2

(c) x3(t) = e−|t|, X3(s) =
1

s + 1
+

1

−s + 1
, ROC : −1 < σ < 1

X3(Ω) = X3(s)|s=jΩ =
2

1− (jΩ)2
=

2

1 + Ω2
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Inverse proportionality of time and frequency

Support of X (Ω) is inversely proportional to the support of x(t)

If x(t) has a Fourier transform X (Ω) and α 6= 0 is a real number, then x(αt)

• is a contracted signal when α > 1;

• is a contracted and reflected signal when (α < −1);

• is an expanded signal when 0 < α < 1;

• is a reflected and expanded signal when −1 < α < 0; or

• is a reflected signal when α = −1

and

x(αt) ⇔ 1

|α|
X

(
Ω

α

)
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Fourier transform of pulses x1(t) = u(t + 0.5)− u(t − 0.5), (left) and x2(t) = u(t + 2)− u(t − 2)

(right). Notice the wider the pulse the more concentrated in frequency its Fourier transform
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Example: x(t) = u(t)− u(t − 1) vs x1(t) = x(2t)
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X (s) =
1− e−s

s
, ROC : whole s-plane

X (Ω) =
e−jΩ/2(e jΩ/2 − e−jΩ/2)

2jΩ/2
=

sin(Ω/2)

Ω/2
e−jΩ/2 infinite support

x1(t) = x(2t) = u(2t)− u(2t − 1) = u(t)− u(t − 0.5)

X1(Ω) =
e−jΩ/4(e jΩ/4 − e−jΩ/4)

jΩ
=

1

2

sin(Ω/4)

Ω/4
e−jΩ/4 =

1

2
X (Ω/2)
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Duality

x(t) ⇔ X (Ω)

X (t) ⇔ 2πx(−Ω)

Example:

Aδ(t) ⇔ A

A ⇔ 2πAδ(−Ω) = 2πAδ(Ω)

Example:

δ(t − ρ0) + δ(t + ρ0) ⇔ e−jρ0Ω + e jρ0Ω = 2 cos(ρ0Ω)

2 cos(ρ0t) ⇔ 2π[δ(Ω + ρ0) + δ(Ω− ρ0)]

x(t) = cos(Ω0t) ⇔ X (Ω) = π[δ(Ω + Ω0) + δ(Ω− Ω0)]
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Modulation

• Frequency shift:

x(t) ⇔ X (Ω)

x(t)e jΩ0t ⇔ X (Ω− Ω0)

• Modulation:

modulated signal x(t) cos(Ω0t) ⇔ 0.5 [X (Ω− Ω0) + X (Ω + Ω0)]
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Modulated signal y1(t) = e−|t| cos(10t), its magnitude and phase spectra
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Fourier transform of periodic signals

Represent periodic signal x(t), of period T0, by its Fourier series:

x(t) =
∑

k

Xke
jkΩ0t ⇔ X (Ω) =

∑
k

2πXkδ(Ω− kΩ0)

Example: Periodic x(t) with period x1(t) = r(t)− 2r(t − 0.5) + r(t − 1), fundamental
frequency Ω0 = 2π

X1(s) =
1

s2

(
1− 2e−0.5s + e−s

)
=

e−0.5s

s2

(
e0.5s − 2 + e−0.5s

)
Fourier coefficients :

Xk =
1

T0
X1(s)|s=j2πk = (−1)k sin2(πk/2)

π2k2
, k 6= 0, X0 = 0.5

X (Ω) = 2πX0δ(Ω) +
∞∑

k=−∞,6=0

2πXkδ(Ω− 2kπ)

11 / 25



Parseval’s energy relation

For aperiodic signal x(t) with energy Ex <∞:

• Energy conservation in time and frequency

Ex =

∫ ∞
−∞
|x(t)|2dt =

1

2π

∫ ∞
−∞
|X (Ω)|2dΩ

• |X (Ω)|2 energy density: energy at each of the frequencies Ω. Plot |X (Ω)|2 vs Ω is
called the energy spectrum of x(t), and displays how the energy of the signal is
distributed over frequency

Example: Impulse x(t) = δ(t) is not finite energy signal

X (Ω) = F [δ(t)] = 1

Ex =
1

2π

∫ ∞
−∞
|X (Ω)|2dΩ→∞
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Symmetry of spectral representations

• x(t) real–valued signal

X (Ω) = F [x(t)] = |X (Ω)|e j∠X (Ω) = Re[X (Ω)] + jIm[X (Ω)]

|X (Ω)| = |X (−Ω)|, Re[X (Ω)] = Re[X (−Ω)] (even functions of Ω)

∠X (Ω) = −∠X (−Ω), Im[X (Ω)] = −Im[X (−Ω)] (odd functions of Ω)

• Spectra

|X (Ω)| vs Ω Magnitude Spectrum

∠X (Ω) vs Ω Phase Spectrum

|X (Ω)|2 vs Ω Energy/Power Spectrum.
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Example:

(a) x1(t) = u(t)− u(t − 1), let z(t) = x1(t + 0.5)

Z (Ω) =
sin(Ω/2)

Ω/2
(real)

X1(Ω) = e−j0.5ΩZ (Ω)

|X1(Ω)| =

∣∣∣∣sin(Ω/2)

Ω/2

∣∣∣∣
∠X1(Ω) = ∠Z (Ω)− 0.5Ω =

{
−0.5Ω Z (Ω) ≥ 0
±π − 0.5Ω Z (Ω) < 0

(b) x2(t) = e−tu(t), X2(Ω) =
1

1 + jΩ

|X2(Ω)| = 1√
1+Ω2

, ∠(X2(Ω)) = − tan−1 Ω,
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Pulse x1(t) = u(t)− u(t − 1) and its magnitude and phase spectra.
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Convolution and filtering

• Input x(t) (periodic or aperiodic) of stable LTI system has Fourier transform X (Ω)
system has frequency response H(jΩ) = F [h(t)], h(t) impulse response
output is convolution integral y(t) = (x ∗ h)(t), with Fourier transform

Y (Ω) = X (Ω) H(jΩ)

• If input x(t) is periodic the output is also periodic of the same fundamental period,
and with Fourier transform

Y (Ω) =
∞∑

k=−∞

2π Xk H(jk Ω0)δ(Ω− kΩ0)

where {Xk} are the Fourier series coefficients of x(t) and Ω0 its fundamental
frequency.
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Example: Windowing

rectangular window w(t) = u(t + ∆)− u(t −∆), ∆ > 0

windowed signal y(t) = w(t)x(t)

y(t) = w(t)
1

2π

∫ ∞
−∞

X (ρ)e jρtdρ︸ ︷︷ ︸
x(t)

=
1

2π

∫ ∞
−∞

X (ρ)w(t)e jρtdρ

Y (Ω) =
1

2π

∫ ∞
−∞

X (ρ)F [w(t)e jρt]dρ =
1

2π

∫ ∞
−∞

X (ρ)W(Ω− ρ)dρ

y(t) = x(t)w(t) ⇔ 1

2π
convolution of X (Ω) and W (Ω) =

2 sin(Ω∆)

Ω
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Ideal filtering

Filtering: to pass desired frequency component and to attenuate undesirable components

Ideal filters: (top-left clockwise) low-pass, band-pass, band-eliminating and high-pass
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Issues with ideal filters:

• Non–causal

• Paley-Wiener integral condition causal and stable filter with frequency response H(jΩ) should
satisfy small ∫ ∞

−∞

| log(H(jΩ))|
1 + Ω2

dΩ <∞

Example: Gibb’s phenomenon
Passing x(t) through ideal low-pass filter

H(jΩ) =

{
1 −Ωc ≤ Ω ≤ Ωc , NΩ0 < Ωc < (N + 1)Ω0

0 otherwise

X (Ω) =
∞∑

k=−∞

2πXkδ(Ω− kΩ0)

The output of the filter with 2N + 1 Fourier coefficients

xN(t) = F−1[X (Ω)H(jΩ)] = F−1

[
N∑

k=−N

2πXkδ(Ω− kΩ0)

]
= [x ∗ h](t), h(t) sinc function

Convolution around the discontinuities of x(t) causes ringing before and after them, independent of
the value of N
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Example: RLC circuit, R = 1 Ω, L = 1 H , and C= 1 F, and IC zero

−

+
R

L

C
vi(t)

vR(t)

vL(t)

vC(t)

+ −

+
+

−

−

low–pass: output vc(t), Hlp(s) =
VC (s)

Vi (s)
=

1

s2 + s + 1

high–pass: output vL(t), Hhp(s) =
VL(s)

Vi (s)
=

s2

s2 + s + 1

band–pass: output vR(t), Hbp(s) =
VR(s)

Vi (s)
=

s

s2 + s + 1

band–stop: output vcL(t), Hbs(s) =
VcL(s)

Vi (s)

s2 + 1

s2 + s + 1
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Frequency Response from Poles and Zeros

G (s) = K
s − z

s − p
, zero z , pole p, gain K 6= 0

×

!P (Ω0) !Z(Ω0)

jΩ0

p z

s-plane

Frequency response of G (s) at frequency Ω0

G (jΩ0) = K
~Z (Ω0)

~P(Ω0)
= |K |e j∠K |~Z (Ω0)|

|~P(Ω0)|
e j(∠~Z (Ω0)−∠~P(Ω0)).

Magnitude response |G (jΩ0)| = |K ||
~Z (Ω0)|
|~P(Ω0)|

Phase response ∠G (jΩ0) = ∠K + ∠~Z (Ω0)− ∠~P(Ω0)
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Example: Frequency response of high-pass filter

H(s) =
Vr (s)

Vs(s)
=

s

s + 1

H(jΩ) =
jΩ

1 + jΩ
=
~Z (Ω)

~P(Ω)

vector ~Z (Ω) from s = 0 to jΩ

vector ~P(Ω) from s = −1 to jΩ

Ω ~Z (Ω) ~P(Ω) H(jΩ) = ~Z (Ω)/~P(Ω)

0 0e jπ/2 1e j0 0e jπ/2

1 1e jπ/2
√

2e jπ/4 0.707e jπ/4

∞ ∞ e jπ/2 ∞ e jπ/2 1e j0
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Spectrum analyzer

...

x(t)

Power
measurementLPF

BPF1

BPFN

Px(0)

Px(Ω1)

Px(ΩN )

...

Power
measurement

Power
measurement

Bank-of-filter spectrum analyzer: the frequency response of the bank–of–filters is that of an all–pass

filter covering the desired range of frequencies
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Basic Properties of the Fourier Transform

Expansion/contraction x(αt), α 6= 0
1

|α|
X

(
Ω

α

)
Reflection x(−t) X (−Ω)

Parseval’s Ex =

∫ ∞
−∞
|x(t)|2dt Ex =

1

2π

∫ ∞
−∞
|X (Ω)|2dΩ

Duality X (t) 2πx(−Ω)

Differentiation
dnx(t)

dtn
, n ≥ 1 (jΩ)nX (Ω)

Integration

∫ t

−∞
x(t ′)dt ′

X (Ω)

jΩ
+ πX (0)δ(Ω)

Shifting x(t − α), e jΩ0tx(t) e−jαΩX (Ω),X (Ω− Ω0)

Modulation x(t) cos(Ωct) 0.5[X (Ω− Ωc) + X (Ω + Ωc)]

Periodic x(t) =
∑
k

Xke jkΩ0t X (Ω) =
∑
k

2πXkδ(Ω− kΩ0)

Symmetry x(t) real |X (Ω)| = |X (−Ω)|,
∠X (Ω) = −∠X (−Ω)

Convolution z(t) = [x ∗ y ](t) Z (Ω) = X (Ω)Y (Ω)
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Fourier Transform Pairs

δ(t), δ(t − τ) 1, e−jΩτ

u(t), u(−t)
1

jΩ
+ πδ(Ω),

−1

jΩ
+ πδ(Ω)

sgn(t) = 2[u(t)− 0.5]
2

jΩ

A, Ae−atu(t), a > 0 2πAδ(Ω),
A

jΩ + a

Ate−atu(t), a > 0
A

(jΩ + a)2

e−a|t|, a > 0
2a

a2 + Ω2

cos(Ω0t), −∞ < t <∞ π[δ(Ω− Ω0) + δ(Ω + Ω0)]

sin(Ω0t), −∞ < t <∞ − jπ[δ(Ω− Ω0)− δ(Ω + Ω0)]

p(t) = A[u(t + τ)− u(t − τ)], 2Aτ
sin(Ωτ)

Ωτ
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