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From the Fourier Series to the Fourier Transform

Aperiodic signal x(t) can be thought of as periodic signal x(t) with infinite fundamental
period. From Fourier series of X(t) and limiting process we obtain Fourier transform pair

NOEEEE ()

x(t) is transformed into X(€2) in the frequency—domain by the

Fourier transform: X(Q2) / x(t)e I dt

o

while X(Q) is transformed into x(t) in the time—domain by the

1 [~ :
Inverse Fourier Transform: x(t) / X(Q)etdQ

:E .
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Existence of the Fourier Transform

e For X(Q) to exist, x(t) must be absolutely integrable

1X(Q2)] < /OO x(t)e 7 |dt = /OO x(t)|dt < o0

© ] — 00

e ROC of X(s) = L[x(t)] contains the jQ-axis then

o9

FUc(e)] = Lh(elen = [ x(0)e et
— X(5) oo

e Duality between time and frequency allows computation of Fourier transforms
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Example: Fourier transform from Laplace transform

1
(a) xu(t) = u(t), Xi(s)=-, ROC: o >0, jQ-axis not included
s

X(£2) cannot be obtained

1

= e "'u(t), Xo(s)=—=, ROC:0 > —2
(b) x(t) =e “"u(t), Xus) pt oC:o0 >
1 1
X,(Q) — g =
2(SY) s+2’ /0 J+ 2
1 1
_ it — ROC : —1 1
(c) x3(t)=¢e"", X;(s) 5+1—|—_5+1, oC <0<
2 2

T 1-(jQ2 1+
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Inverse proportionality of time and frequency

Support of X(£2) is inversely proportional to the support of x(t)

If x(t) has a Fourier transform X(£2) and a: # 0 is a real number, then x(at)
e is a contracted signal when o > 1;
e is a contracted and reflected signal when (a < —1);
e is an expanded signal when 0 < o < 1;
e is a reflected and expanded signal when —1 < a < 0; or
e is a reflected signal when @ = —1

x(at) <& iX (9>

o]\

and
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®

Fourier transform of pulses x1(t) = u(t + 0.5) — u(t — 0.5), (left) and x3(t) = u(t + 2) — u(t — 2)
(right). Notice the wider the pulse the more concentrated in frequency its Fourier transform
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Example: x(t) = u(t) — u(t — 1) vs x1(t) = x(2t)

1r T
<, —xO |
; 0.5 - - -x(0 !
0 ‘ : _____________
0 0.2 0.4 ¢ 0.6 0.8 1
1
g
< — X@
= 05 Sox@I P
—050 i ) 0 - 50
Q
l1—e*
X(s) = , ROC : whole s-plane
s
e S22 — e72)  sin(Q/2) _,
X(Q) = = e 2 infinite support
() 2iQ/2 Q/2 RIS SHPP

x1(t) = x(2t) = u(2t) — u(2t — 1) = u(t) — u(t — 0.5)
e YV — e YY) 1sin(Q/8) g
i) = i “5 ¢ =

%X(Q /2)
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Duality

Example:

A & 21AN(—Q) =21AI(Q)
Example:

0(t — po) + 0(t +po) < e 4 &M =2 cos(peQ)
2cos(pot) & 27[6(Q2 + po) + 6(Q — po)]

x(t) =cos(Qt) <&  X(Q)=7[6(Q+ Qo) + 6(Q— Q)]
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Duality to find Fourier transform of x(t) = 10sinc(0.5t)
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e Frequency shift:

x(t)
x(t)e/*ot

=

X(92)
= X(Q—Qo)

e Modulation:

modulated signal x(t) cos(£t)

& 0.5[X(Q — Qo) + X(Q+ Q)]

Iv,@|
© o oo
ON A O X
<Y1(Q)
N o [

0o

Modulated signal y;(t) = e~1l cos(10t), its magnitude and phase spectra
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Fourier transform of periodic signals

Represent periodic signal x(t), of period Ty, by its Fourier series:

x(t) =) Xt e X(Q) =) 2wX8(Q — k)

Example: Periodic x(t) with period x1(t) = r(t) — 2r(t — 0.5) 4+ r(t — 1), fundamental
frequency €y = 27

Xl(S) _ i (1 . 26_0'55 + e—s) _ e_O'SS (60'55 24 6_0'55>
52 52
Fourier coefficients : ,
1 ysin(mk/2)
Xk — ?Oxl(s)‘s:jQﬂ'k — (_1) 242 ) k 7& O) XO =0.5
X(Q)=2rX0(Q) + Y 27Xk(Q — 2k)
k=—00,#0
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Parseval’s energy relation

For aperiodic signal x(t) with energy E, < oo:

e Energy conservation in time and frequency

e~ |

x(t)dt =

1 ©.@)

2T ) _ o

X (Q)7dQ

e | X(Q)|? energy density: energy at each of the frequencies . Plot | X ()

’ 2

vs 0 is

called the energy spectrum of x(t), and displays how the energy of the signal is

distributed over frequency

Example: Impulse x(t) = d(t) is not finite energy signal
X(Q) = Flo(t)] =1

E, =

1 ©.9)

21 )
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Symmetry of spectral representations

e x(t) real-valued signal

e Spectra

X(Q) = Flx(t)] = [X (@)X = Re[X(Q)] + Zm[X(Q)]
IX(Q2)| = | X(—Q)|, Re[X(Q)] =Re[X(—2)] (even functions of Q)

/X(Q) = —2/X(=Q),  ImX(Q)] = —Zm[X(-Q)] (odd functions of Q)

| X(2)] vs Magnitude Spectrum
ZX(Q) vs Q Phase Spectrum
IX(Q)|* vs Q Energy/Power Spectrum.
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Example:

(b) xo(t) =e fu(t), Xo(Q) =

(a) xi(t) = u(t) —u(t—1), let z(t) = xi(t + 0.5)

_ sin(Q/2)

[ X1(Q)] =

Q/2
/X(Q) = £Z(Q) — 0.5Q = {

sin(Q/2)|

—0.50 Z(Q2)>0
+7—05Q Z(Q) <0
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Pulse x1(t) = u(t) — u(t — 1) and its magnitude and phase spectra.
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Convolution and filtering

e Input x(t) (periodic or aperiodic) of stable LTI system has Fourier transform X(2)
system has frequency response H(jQ2) = F[h(t)], h(t) impulse response
output is convolution integral y(t) = (x * h)(t), with Fourier transform

Y(Q) = X(Q) H(Q)

e If input x(t) is periodic the output is also periodic of the same fundamental period,
and with Fourier transform

Y(Q) = f: 21 X H(jk Q0)8(Q — k)

k=—00

where {X\} are the Fourier series coefficients of x(t) and € its fundamental
frequency.
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Example: Windowing

rectangular window w(t) = u(t + A) —u(t —A), A >0
windowed signal y(t) = w(t)x(t)

Y@= [ XA = = [ Xew - e
y(t) = x(t)w(t) < %convolution of X(£2) and W(Q2) = 25in§(2QA)
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Ideal filtering

Filtering: to pass desired frequency component and to attenuate undesirable components

|H£p<]Q)| |pr(jQ)|
A A
1 1
—p- () >
Ql Ql QQ
[Hiy G o7
A A
1 1 1
— ) —P ()
Q oF Qo

Ideal filters: (top-left clockwise) low-pass, band-pass, band-eliminating and high-pass
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Issues with ideal filters:
e Non—causal
e Paley-Wiener integral condition causal and stable filter with frequency response H(jQ) should

satisfy small
* |log(H(j$2))]
/_OO Y dQ) < oo

Example: Gibb's phenomenon
Passing x(t) through ideal low-pass filter

. 1 -0, <Q<Q, NQ<Q < (N+1)Q
H(J):{ ’ (N +1)0%

0 otherwise
X(Q) =) 27Xd(Q — k)
k=—00

The output of the filter with 2N + 1 Fourier coefficients

xv(t) = FUXQHGQI=F 1| > 27Xed(Q — ko)
= [xxh](t),  h(t) sinc furﬁ:t_igln

Convolution around the discontinuities of x(t) causes ringing before and after them, independent of
the value of N
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Example: RLC circuit, R=1€Q,L =1 H, and C=1F, and IC zero

+ vr(t)— L
— W —m
R +or(t)—

v; (t) +<> ¢ zK_UC "

V(s 1
low—pass: output v(t), Hp(s) = VC((S)) . +s+1
| Vi(s s°
high—pass: output VL(t), th(S) — \/L((s)) — 24+ s+ 1
V
band—pass: output vg(t), Hpp(s) = VR(SS)) =2 +i+ 1
L(S) S2 +1

band-stop: output v (t), Hps(s) =




Frequency Response from Poles and Zeros

s — :
G(s) =K Z, zero z, pole p, gain K # 0
s—p
s-plane
78
P($o) Z ()
e S >
P z

Frequency response of G(s) at frequency Qg

G(_jQ()) _ K{(QO) |K| 4K|Z( )|ej(42(90)—4ﬁ(90)).
P(S) P(Q0)]

1Z(%0)
o)
Phase response  ZG(jS) = £ZK + £Z(Q) — ZLP()

Magnitude response |G(j$2)| = |K|—=
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Example: Frequency response of high-pass filter

Vi(s) s
Hls) = Vi(s) s+1
. i Z2(Q)
U =110 = By

vector Z() from s =0 to jQ
vector P(Q) from s = —1 to j{

Q  Z(Q) PR H(Q) =Z(Q)/P(Q)

0 0e&7/2 1e/0 0e/7/2
1 172 \2em/A 0.707¢&/7/4
00 00 &2 g elT/? 1e/0
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Spectrum analyzer

—>| LPE [—| Fower | o p(0)

measurement
Power
BPF measurement > Px(Ql)
z(t)
) ; Power
BPFN measurement > P"”(QN)

Bank-of-filter spectrum analyzer: the frequency response of the bank—of-filters is that of an all-pass
filter covering the desired range of frequencies
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Basic Properties of the Fourier Transform

Expansion/contraction
Reflection

Parseval’s

Duality

Differentiation

Integration

Shifting
Modulation

Periodic

Symmetry

Convolution

x(at), a #0
x(—t)
E, :/_ x(1)2dt

0.9]

()

X(—9Q)
E.= — / X(Q)|?dQ
27x(—

U€2)"X(Q)

X(€2)

j—Q + WX(O)(S(Q)

e 72X(Q), X(Q — Qo)
0.5[X(Q — Qc) + X (2 + Q)]
Q) =) 27X5(Q — k)



Fourier Transform Pairs

o(t), o(t—r1)
u(t), u(-t)
sgn(t) = 2[u(t) — 0.5]
A, Ae?u(t), a>0

Ate ?"u(t), a >0

—alt|

e " a>0
cos(Qt), —oo <t <0
sin(Qot), —oo<t<

p(t) = Alu(t +7) — ut — 7],
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1 e—jQT
i

1 —1

o) + 7m0(Q), Fol + m6(Q)
2

jQ

21 AN (),

A
Q2+ a)
2a
m[6(Q2 — Qo) + (Q + Q)]

A
JQ+a

— Jjm[0(Q2 — Qo) — 5(2 + Q)]

sin(€27)
Qr
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