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Digital signal processing

• 1948 – birth of digital technologies

• Transistor (Bell Labs)
• Stored–program computer (Manchester University, UK)
• Publications
• Shannon’s digital communications
• Hamming’s error correcting codes
• Wiener’s Cybernetics

• Moore’s Law, DSPs and FPGs

• 1965 — Moore (Intel): number of transistors in a chip would double every 2 years
• Digital Signal Processors (DSPs): optimized microprocessors for real–time

processing
• Field Programmable Gate Array (FPGA): device with programmable blocks and

interconnects
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Compact disc (CD) and compact disc player
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When playing a CD, the CD player follows tracks in the disc, focus laser beam on them,
as CD is spun. Light is reflected by pits and bumps on the surface of disc (corresponding
to the coded digital signal from acoustic signal). Sensor detects reflected light and
converts it into a digital signal and converted into an analog signal by DAC. Amplified
and fed to speakers signal sounds like original recorded acoustic signal.
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Software–defined radio (SDR)
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Voice SDR mobile two-way radio
Transmitter: voice signal inputted using microphone, amplified by an audio amplifier,
converted into a digital signal by ADC, modulated using software, converted by DAC into
analog signal which is amplified and radiated by antenna
Receiver: analog signal received by antenna is processed by a superheterodyne, converted
by ADC, demodulated using software , converted by DAC, amplified and fed to speaker
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Computer–control system
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Computer control system for an analog plant (e.g., cruise control for a car)
Reference signal r(t) (e.g., desired speed) and output y(t) (e.g., car speed)
Signals v(t) and w(t): disturbances or noise in plant and sensor (e.g., electronic noise in
the sensor and undesirable vibration in the car)
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Continuous and discrete representations

Sampling continuous–time signal x(t) into discrete–time signal x(nTs) or discrete
sequence x [n]:

x [n] = x(nTs) = x(t)|t=nTs

Ts : sampling period depends on frequency content of x(t)
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Sampling x(t) = 2 cos(2πt), 0 ≤ t ≤ 10, with Ts1 = 0.1 (top) and Ts2 = 1 (bottom)
giving x1(0.1n) = x1[n] and x2(n) = x2[n]
Notice similarity between x1[n] and x(t) and loss of information when Ts2 = 1
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Inherent discrete–time signal
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ACM Closings, Jan. 2006− Dec. 2009

Weekly closings of ACM stock for 160 weeks in 2006 to 2009. ACM is the trading name
of the stock of the imaginary company ACME Inc. makers of everything you can imagine.
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Infinitesimal and finite calculus

• Derivative and forward– difference

Derivative: rate of change of x(t)

D[x(t)] =
dx(t)

dt
= lim

h→0

x(t + h)− x(t)

h

Forward–difference: difference between x((n + 1)Ts) and x(nTs)

∆[x(nTs)] = x((n + 1)Ts)− x(nTs)

• Integral and summation

Integral and derivative

I (t) =

∫ t

t0

x(τ )dτ, x(t) =
dI (t)

dt

Integral and summation

I (t) ≈
∑

n

x(nTs)p(n), p(n) pulses of width Ts
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Approximation of integral

Area of x(t) = t, 0 ≤ t ≤ 10, and 0 otherwise

I (t) =

∫ 10

0

t dt =
t2

2

∣∣10
t=0 = 50

approximate x(t) by aggregation of pulses p[n] of width Ts = 1

and height nTs = n

I (t) ≈
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Differential and difference equations

Solve d.e. from series RC circuit with a constant voltage source vi(t) as input and R = 1
Ω, C = 1 F (huge plates!)

vi(t) = vc(t) +
dvc(t)

dt
t ≥ 0

with initial voltage vc(0) across capacitor

• Use integrators

vi(t) vi(t)
vc(t) vc(t)

dvc(t)

dt

dvc(t)

dt

d(.)

dt

�
(.)dt

+ +− −

vc(0)

Block diagram for d.e. using differentiators (left) and integrators (right).
Differentiators increase noise, integrators smooth out noise
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• Approximate integral

vc(t) =

∫ t

0

[vi(τ )− vc(τ )]dτ + vc(0) t ≥ 0

vc(t0)
vc(t1)

t1t0
t

∆t

Trapezoidal approximation of area

• Difference equation

vc(nT ) =
T

2 + T
[vi(nT ) + vi((n − 1)T )] +

2− T

2 + T
vc((n − 1)T ), vc(0) = 0, n ≥ 1

can be solved iteratively
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Complex or real?

• Damping and frequency of signals represented by complex variable

• Complex numbers and functions
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(a) z = x + jy as vector ; (b) addition of complex numbers; (c) multiplication of
complex numbers; (d) complex conjugation of z.
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Complex numbers

• Representations

z = x + jy rectangular

= |z |e j∠z polar

• Operations z = x + jy = |z |e j∠(z), v = u + jw = |v |e j∠(v)

Addition/subtraction: z + v = (x + u) + j(y + w) rectangular

Multiplication/division: zv = |z ||v |e j(∠(z)+∠(v)) polar

Conjugation z∗ = x − jy = |z |e−j∠z
• Rectangular to polar conversion

z = 3 + j4 = 5ej0.93 u = −3 + j =
√

10 ej2.82

w = −4 − 3j = 5 ej3.79
v = 1 − j =

√
2 e−jπ/4

3

4

−3

1

1

−1

−4

−3

Re[z]

Im[z]

Re[z]

Re[z] Re[z]

Im[z]

Im[z]Im[z]
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Euler’s identity

e jθ = cos(θ) + j sin(θ)

cos(θ) = Re[e jθ] =
e jθ + e−jθ

2

sin(θ) = Im[e jθ] =
e jθ − e−jθ

2j
.

• Polar to rectangular conversion

z =
√

2e jπ/4 =
√

2 cos(π/4) + j
√

2 sin(π/4) = 1 + j , (first quadrant)

u =
√

2e−jπ/4 =
√

2 cos(−π/4) + j
√

2 sin(−π/4) =
√

2 cos(π/4)− j
√

2 sin(π/4)

= 1− j , (fourth quadrant)

w = 5e j190o = 5e j180oe j10o = −5 cos(10o)− j5 sin(10o)

= −4.92− j0.87, (third quadrant)
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• Roots and powers of j

z3 + 1 = 0 ⇒ z3
k = −1 = e j(2k+1)π, k = 0, 1, 2

zk = e j(2k+1)π/3, k = 0, 1, 2

z0 = e jπ/3, z1 = e jπ = −1, z2 = e j(6−1)π/3 = e j2πe−jπ/3 = e−jπ/3
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Left: roots of z3 + 1 = 0. Right: integer powers of j , periodic of period 4, with period
of {1, j , − 1, − j}
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• Trigonometric identities

sin(−θ) =
e−jθ − e jθ

2j
= − sin(θ)

cos(π + θ) = e jπ
e jθ + e−jθ

2
= − cos(θ)

cos2(θ) =

[
e jθ + e−jθ

2

]2

=
1

4
[2 + e j2θ + e−j2θ] =

1

2
+

1

2
cos(2θ)

sin(θ) cos(θ) =
e jθ − e−jθ

2j

e jθ + e−jθ

2
=

e j2θ − e−j2θ

4j
=

1

2
sin(2θ).
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Phasors

• Sinusoids and phasors

x(t) = A cos(Ω0t + ψ) −∞ < t <∞
A amplitude, Ω0 = 2πf0 frequency (rad/sec), ψ phase (rad)

Phasor : X = Ae jψ, x(t) = Re[Xe jΩ0t]

cos

− cos

− sin

sin

Ω0

Generation of sinusoids from phasors of a frequency Ω0 shown at initial position
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Sum of phasors I1 = 10e j0 and I2 = 20e jπ/4 with the result in the top left and the
corresponding sinusoid (right bottom).
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Phasors and systems

• Eigenfunction property of LTI systems

Input: x(t) = Re[Xe jΩ0t], input phasor X = Ae jθ

Output: y(t) = Re[Ye jΩ0t], output phasor Y = XH(jΩ0)

• Steady–state response

Linear time-invariant
system

Input Output

x(t) = A cos(Ω0t + θ) yss(t) = A|H(jΩ0)| cos(Ω0t + θ + ∠H(jΩ0))

H(jΩ0) = |H(jΩ0)|ej∠H(jΩ0)

Frequency response of system
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