Choose the correct answer of the following questions:

(1)	The critical numbers of the function $f(x)=x^{3}-6 x^{2}+9 x+2$ are:			
	(A) $-4,0,4$	(B) $-1,-3$	(C) 1,3	(D) $-2,0,2$

(2) The function $f(x)=x^{3}-6 x^{2}+9 x+2$ is increasing on:
(A) $(-\infty, 1) \cup(3, \infty)$
(B) $(1,3)$
(C) $(3, \infty)$
(D) $(1,2) \cup(2, \infty)$
(3) The function $f(x)=x^{3}-6 x^{2}+9 x+2$ is decreasing on:
(A) $(-\infty, 1) \cup(3, \infty)$
(B) $(1,3)$
(C) $(3, \infty)$
(D) $(1,2) \cup(2, \infty)$

(4) | The function $f(x)=x^{3}-6 x^{2}+9 x+2$ has a local maximum value at | | | | |
| :--- | :--- | :--- | :--- | :--- |
| | (A) $x=3$ | (B) $x=-1$ | (C) $x=-3$ | (D) $x=1$ |

(5)	The function $f(x)=x^{3}-6 x^{2}+9 x+2$ has a local minimum value at			
	(A) $x=-1$	(B) $x=2$	(C) $x=3$	(D) $x=-2$

(6)	The graph of the function $f(x)=x^{3}-6 x^{2}+9 x+2$ is concave upward on:			

(7)	The graph of the function $f(x)=x^{3}-6 x^{2}+9 x+2$ is concave downward on:			
	(A) $(2, \infty)$	(B) $(-2, \infty)$	(C) $(-\infty, 2)$	(D) $(0, \infty)$

| (8) | The graph of the function $f(x)=x^{3}-6 x^{2}+9 x+2$ has an inflection point at: |
| :--- | :--- | :--- | :--- | :--- |

(9)	If f has a local maximum or minimum at c , then c is a critical number of f.	
	(A) True	(B) False

