CHAPTER 5

Moments and
Generating Functions

3.1 INTRODUCTION

The study of the probability distributions of a random variape ;

the study of some numerical characteristics associated witlf ﬁ:e““tiau},
so-called parameters of the distribution play a key role in €. Theg,
statistics. In Section 2 we introduce some of these Pgrameﬁ:alhcmamﬂ
moments and order parameters, and investigate their properties rSI namff-ly,
3 the idea of generating functions is introduced. In Pﬂrficu]a;r n Sectioy

probability generating functions and moment generating fuﬂﬂtinngwes Study
4 deals with some moment inequalities. " (Section

3.2 MOMENTS OF A DISTRIBUTION FUNCTION

In this section we investigate some numerical characteristics, called parg.
meters, associated with the distribution of an rv X. These parameters are

(a) moments and their functions and (b) order parameters. We will concen-
trate mainly on moments and their properties.

Let X be a random variable of the discrete type with probability mass
function p, = P{X = x3}, k = 1, 2, --. If :

(1) éhM<m

we say that the expected value (or the mean or the mathematical expectation)
of X exists and write

2 = X:m -
(2) p=E EIJ-}P#
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N e we st £ ot m . Zo
:;gmp]ﬂ 1. Let X have the pmf given by
p_l—_P{X={-1Y']3;}-_ _i‘ PR
Then

ﬁlllxj|p:'_ Er 2: = ':.f_.,I
F .1'1J

d EX does not exist, although the series

and £
T xp; = 5 (=1y" 2
=1 y=1 1

is convergent.

If X is of the cnnlinuf:u-s type and has pdf f, we say that EX exists and
equals | x f(x) dx, provided that

5 x| f(x) dx < co.

gimilar definition is given for the mean of any Borel-measurable func-
tion h(X) of X.

We emphasize that the condition { |x| f(x) dx < o0 must be checked
before it can be concluded that EX exists and equals | x f(x) dx. Moreover,
t is worthwhile to recall at this point that the integral [*_ ¢(x) dx exists,
provided that the limit lim§=3 |%, ¢(x) dx exists. It is quite possible for the
limit limyco %, @(x) dx to exist without the existence of [~ ¢(x) dx. As
an example consider the Cauchy pdf:

f(x) = Lﬁ, -1:1—1;2—1 - ® < X < w.
Clearly

I S"i L __geeq
a8 IS ¥

However, EX does not exist since the integral (1/x) {7, |x| /(1 + x) dx
diverges.

Remark 1. Let X(w) = I(w) for some A€ %. Then EX = P(4).

Remark 2. 1f we write h(X) = | X|, we see that EX exists if and only if E\x|
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BOD
does.
Remark 3. We sa that an rv X is ; if either of i
emar y symmetric about a poing o JI o the Scnscn:;ii’;;clf;; !‘-:eri ;:;Z;v;:‘l u;;m; ;ﬂ::':;ﬁﬂ absolutely, so does
= X i ther, 8 = e continuous U with
EoE R I %} for all x, Il t;l:f} let h(¥) pe the pdf of ¥ = g(X). Then, according to Th:nt::np?i. :
S g(x) fx) dx = S y hiy) dy,

F of X, this means that, if
| o

In terms of df

Pfu*l’ided that Eigixﬂ
Let X be discrete, and suppose that P{X e A} = 1.

holds for all xf‘E 4, we say that the df F (or the rv X) is symmey |
as the center of symmetry. If @ =0, then f etric w; ,
34 ¥y or every x With . proof © T}fgorem 1. :
F(—x)= 1 = F(x) + P{X = x} t fy= g(x) 18 a one-to-one Mapping of A onto some set B, then
i - - = g
In particular, if X is an rv of the continuous type, X is g : P{Y =7) PX =5 O YED:
the pdf f of X satisfies ymmetric yiy
w¢ hﬂ.‘fﬂ
¥ g PX=x} =LY P{Y = y}.
xe= A yo B

center « if and only if

fla — x)=fla+ x) for all x.
: and g satisfies the conditions of

continuous type with pdf f

If @ = 0, we will say simply
As an immediate consequence ¢ is
etric with a as the center of symmetry
Examples of symmetric df's are easy 1o co
many such dis ‘butions in this book..

s g(x) f(x) dx = Sirﬂs"{ﬂ] | 75‘; g '(\dy

gl

Remark 4. If a and b arc co!

then E|aX + b] < oo and Ef
— 0, a fact that should not con

Remark 5. If X is bounded, t
EX exists. -

Remark 6. IEE{X S OIS

Let Y = gl'l’)-. Then
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Clearly moments of all order exist:
. l MOMENTS 83
Er:Elk.'jﬁ‘=%i' | | < P{|x < 1} + E|X| < co.
EX: = g k= ';;r“ = N+ Do ] | A similar proof can be given when X is a discrete rv.
= 2 X be an rv on a probability space (2, %, P). Let E|X|" < w

Theorem 3. Let
for some k = 0. Then

n'P{|X|>n} -0 as n— oo

Example 3. Let X be an rv with pdf

-
ﬁ:x)=l?'“ vEk

0, ¥ o0 . Proof. We provide the proof for the case in which X is of the continuous
; type with density f. We have

o0 > j |x|* f(x) dx = IE S |x* fx) dx.

Ixl=n

Then

w 2
E.r=j' A
1; o 2

X

It follows that

But
lim ! |x* fix)dx -0 as n— .
G

order moments dn

Example 4. Two players, A and B, pln;ra coin ,'
dollar if a head turns up; otherwise, B '
‘that the coin shows a head is p, find the g £

Let X denote the expected gain of A.f ur en
P{X = 1} = P{Tails} = 1 —*ﬁ

and

Pkl

0<s<t enst
Proof. Let X be of the cont ,,

E|X =

]-'

5By
N an|¥
1 y
.jl o

.
|
J:'i-
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v P{X > n} =

4 1
r:j n X log x PR A (og ) . MOMENTS 85

EX =tim |" x f(x) dx = lim ! [l — F(x)) dx

and nP{X > n} — 0 as n — o0. (Here and EuleEquenﬂy i
ang

ratio of two sides — 1 as n — o0.) But tha 5, = r[l — F(x)] dx.
EX = Zm_ﬂ_:‘:ﬂl HI?[I_F{x}}dx{{ﬂ,thEﬂ
In fact, we need | l r-r.f{x} dx < r [l — F(x)ldx < E“ = F(x)ids,
-8 _ .
n** P{X| >n} >0 = as n— o | and it follows that E|X| < c.

If, on the other hand, X is a discrete rv, let us write P{X = x;} = p,;.

for some & > 0 to ensure that E|X|* < . A condition <. .

called a moment condition.

For the proof we need the following lemma.
Lemma 1. LetXheaMﬁv&
£ ex = (T~

EX = ixjp_;.

in the sense that, if either side
equal. -
Proof. If X is of the contin

rv o _ '
= h;ﬁ* 3

- ‘
o= e '_ _.'-'I d i
On integr by p

But

T e
8 ] Tl Tt et :
- - 4 2 -kl | R T I
- n T T n)l e=n

.Mﬂﬂ—liférﬁ#ﬁ ""_#P{X} }

1
XPi=—

E.l'='EI u—l}fn{:;%l‘fn
1
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Similarly we can show that for every positive integer »
=Ry .k
n

Thus we have

1 oo
EXY — = .fn [1 — F(x)] dx < E¥Y + !1?

for every positive integer n. Taking the limit as n — o we see (h
? € Lhat

EX = _[:[1 — P .

Corollary. For any rv X, E|X| < oo if and only if the integrals
J_oP{X < x} dx and |7 P{X > x} dx both converge, and in that case

EX = I:P{X > x} dx — J.:P{X < x} dx,

Actually we can get a little more out of Lemma 1 than the above corollary
In fact, -

E|x| = [TP{XF > 5} dx = o [ 7 PX] > %) 4

and we see that an rv X possesses an absolute moment of order a > 0 if and
and only if |x|*-1 P{|X| > x} is integrable over (0, 0).

A simple application of the integral test (see Apostol [3], 361) leads to
the following moments lemma.

Lemma 2.

{6} .EIX'H < oo <> ﬁlp{l,‘rl - n”a} < 90.

In Section 6.4 we will construct another proof of (6). Note that an imme-

. to prove
diate consequence of Lemma 2 is Theorem 3. We are now ready to P

the following result.

. =0
Theorem 4. Let X be anrv witha distribution satisfying n* P {|X| =0

as n — oo for some a > 0. ThenE|I|ﬂ{ oo for0 < § < a
t
Proof. Given ¢ > 0, we can choose an N = N(¢) such tha

P{|X| > n} < —:T forall n=N.
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1t follows that for 0 < § < a

1 -~ -'\I J § = A
E|X|'? =3 j.ﬂ £l P{|.1I’i > x} odx 4 ,E 1 P{kljf| > x} dx
: N
< NP+ Be | X ldx
=
< 00,

Remark 10. Using Theorems 3 and 4, we demonstrate the existence of
random variables for which moments of any order do not exist, that is, for
which E]Xf’ = oo for every a > 0. For such an rv n* P{lx| >n} =0 as
n— oo for any a > 0. Consider, for example, the rv X with pdf

1
f(x) = { 2|x| (log |x|)
1] otherwise.
The df of X is given by

for |x| > e

1

2 og i ] if x< —e
F(x) = % if—e<x<e,
1 .
l_m if x=e

Then for x > e
P{|X| > x} = 1 — F(x) + F(=x)
1
~ 2logx’

and x* P{|X| > x} - o as x - » for any a > 0. If follows
that E|X|* = co for every @ >0. In this example we sec that
P{|X| > ex}/P{|X| > x} — 1as x — oo for every ¢ > 0. A positive function
L( - ) defined on (0, o) is said to be a function of slow variation if and only
if L(ex)/L(x)— 1 as x — oo for every ¢ > 0. For such a function x* L(x) - «©
for every a > 0 (see Feller [29], 275-279). It follows that, if P{|X| > x} is
slowly varying, E|X|* = oo for every a > 0. Functions of slow variation
play an important role in the theory of probability. We again refer the
reader to Feller [29].

Random variables for which P{|X| > x} is slowly varying are clearly
excluded from the domain of the following result.

Theorem 5. Let X be an rv satisfying

(7 P{|X| > ak}

41 forel] Bl SR as k- o forall a>1;
P{X1}k}
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then X possesses moments of all orders. (Note that :
(7) is 1, whereas if « < 1, at, if o =

the limit will not
1 =0 i
P{|X| > k}.) SL S e &y

» the ;.. .
|X| ‘;-“n” in

ak)
Proof. Let ¢ > 0 (we will choose ¢ later), choose Ky s0 ] )
50 large
(8) P{|X| > ak} . i
HGEE T s e
and choose K, so large that
(9) P{|X| >k} <e¢ forall k> k,,
Let N = max (K;, K;). We have, for a fixed positive integer
r1-
(10) PX| >k} _f BlX|>atk) _
P{X[>k} 1 P{X]|>a’ %} ~°
for k > N. Thus for k = N we have, in view of (9),
(11) P{|X| > o'k} < €.
Next note that, for any fixed positive integer n,
E|X|]" = nj.:] x"! P{|X| > x} dx
.|'\I" =]
B 3y -1
(12) —an" P{|X| > x} ““‘”L"” P{X| > ) ax.

Since the first integral in (12) is finite, we need only show that the second
integral is also finite. We have

[Cxrtp(lx] > ) dx = 5 (" 1 P{x| > x} dx

r=1d o= 1N
< El (@N)Y ¢ - 2N
= 2N" 3 (e’
= 2N* _ea” — < 00,
1 —&a
provided that we choose ¢ such that ea” < 1. It f-:_'.-llmnfs that E}X "< ®
for n = 1, 2, ---. Actually we have shown that (7) implies E|X|p < o for
all 6 > 0.
i f anrv X and
Theorem 6. If Ay, hgy =5 Hn 8T Borel-measurable _func._unns 0 !
Eh(X) exists for i = 1,2, =5 M then E{X 1., h(X)} exists and equals it
Eh(X)-

—

MOMENTS %9

proof- The proof is simple.

pefinition 1. Let k be a positive integer, and ¢ be a constant. If E(X — ¢}’

exists, W€ call it the moment of order k about the point ¢. If we take
. ¥ o P sy iate e -.x."* . T ] ol f

= EX = which exists since E|X|* < oo, we call E(X — )" the central mo-
ment of order k or the moment of order k about the mean. We shall write

u, = E{X — pl’.
If we know my, Mg, *== My, WE CAN COMPULe 1y, (e, *ry My and conversely.
we have
- B (k" S LY
(13) = E{X — pu} =m, — I:l],ﬁ.'-“m* | + {2]”; Myeg— === 4 (=1
and

(14) my=EX—p+ wt =t G) iy @) 4 e+ gt
The case k = 215 of special importance.
Definition 2. If EX? exists, we call E{X — u}* the variance of X, and we
write a° = var (X) = E(X - u}?. The quantity ¢ is called the standard
deviation (5D) of X.
From Theorem 6 we see that
(15) & = i = EX* — (EX)".
Variance has some important properties.
Theorem 7. Var (X) = 0 if and only if X is degenerate.
Theorem 8. Var (X) < E(X — ¢)° forany ¢ # EX.
Proof. We have
var (X) = E{X — .u}?' = E[X — c‘;g +(c — ;_ﬂf.
Note that
var (aX + b) = a” var(X).

Let E|X|* < oo. Then we define
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(16) Z = I_h EX e
s var(X) T MOMENTS 91
and see that EZ = 0 and var (Z) = 1. We call Z 4 i if P{X =x} =0, as is the case—in particular, if X is of the continuous
ﬂdﬂ?’fﬁzed . a quantile of order p is a solution of the equati -
Example 5. Let X be an rv with binomi ik ) Juation
tnomial pmf |
(19) F{x) = p.

if Fis strictly increasing, (19) has a unique solution. Otherwise there may

PIX =k} = ")P*{l ANk "
L i ] (k PJ ¥ k = EI:, ].,_‘ 2! ex s

Then » O< P < be many (even uncountably many) solutions of (19), each one of which is
1 then called a quantile of order p. :
Y = = f ] g §i— 3
E Eﬂ k (ﬁ.‘:) pi(l —p)" " Definition 4. Let X be an rv with df F. A number x satisfying
= n— 1Y - L
”PE(k_l)F (1 —py* 20) 5 < F) < & + P{X = x)
] ﬂp; -
or. equivalently,
EXZ= E{X(X — 1} + X} :
= n _, P{X < x} = d ke
=12 ”(ﬁ:) P =Py 4 mp &) Es =g e fSeEg
= n(n — l}p2 + np; is called a median of X(or F).
var (X) = n(n — 1 + np — n°p’ :
) = np(l — igz P — NP Again we note that there may be many values that satisfy (20) or (21).
; Thus a median is not necessarily unique.
EX? = E{X(X — D (X —2) +3XX = D+ X} If f:[lrsl asy:;}mm__fic d_‘f, the center of ﬁ?rmmetry is clearly the median of the
—nn—1)(n—2 34 3ntn — 1 : df F. The median is an important centering constant especially in cases where
'1 )P ( )P+ s the mean of the distribution does not exist.
3 = mg — 3umy + 2
= ﬂ(ﬂ'—- 1} I:H-Z} p3+3ﬂ(."l— 1}F2+ HFH_",HP {H(ﬂ-—lj PE'I'H.P]*'IHEPI Example 6. Let X be an rv with Cauchy pﬂf
= np(1 — p) (1 — 2p). | Lol
ﬂx}=El+xf' — 00 < X < 0.
We have seen that for some distributions even the mean does not exist. ) : :
We next consider some parameters, called order parameters, which always Then E|X| is not finite. The median of the rv X'is clearly x = 0.
exist. Example 7. Let X be an rv with pmf
N P{X=-2} = P{X=0} = &, P{X=1} =1; PiX=2)= 1.
Definition 3. A number x satisfying _. - . x=1; =1 (X=2]
: en
(17) Pix<x}zp PlX2zxpz21-0 0<p<l P{X<0) =} and P{X20}=1>4%.
In fact, if x is any number such that 0 < x < 1, then

percentile] for the rv X (or for
r the rv X.
of order p fo P(X<x} = P(X=-2} + P{X=0} = }

5 and
df F, then P{X=x} = P{X=1} + P{X=2} = },

is called a quantile of order p [or ( 100p)th
the df F of X). We write 3,(X) for a quantile

If x is a quantile of order p for an rv X with
(18) p < F(x) < p+ P{X=x}.
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and it follows that every x, 0 < x < |

- . 15 A media
Ifp = .2 n of the

the quantile of order pis x = v X,

= 2 :i.inc,;-

e l
PlA<-—-2 = R 4 and fad i e T [ |

~ p.
PROBLEMS 3.2

1. Find the expected number of throws of a fair die until a6 ixon
15 Obtain
ed,

2. From ﬂlhm: containing N identical tickets numbered 1| throu

are drawn with replacement. Let X be the largest number Jtawm FE:':hd-l"-', M tickeis
L "1 . ]FI E

3. Let X be an rv with pdl J:’,

s e

j{-‘::} o {i +IE::|F1 8 -0 X =
where ¢ = .‘;’[m}f [(1/2) (m—1/2)]
What is EX™"if 2r < 2m — 17

4. Let X be an rv with pdf

s mz1,

. Show that EX™ exists if and only if 2r < 3, 1

o - i 1 520
0 otherwise (a > 0).
Show that E|X|" < oo for @ < k. Find the quantile of order p for the rv X,
5. Let X be an rv such that E|X| < co. Show that E|X-c| 15 minimized if we choose
¢ equal to the median of the distribution of X.

6. Pareto’s distribution with parameters & and 3 (both o and 3 positive) is defined
by the pdf

P :
fix) = {%:5--,- S g
0 if x<a.

Show that the moment of order n exists if and only if n < §. Let § > 2. Find the
mean and the variance of the distribution.

7. For an rv X with pdf

x if 0<sx<1,
Caft B if 1<x=2
3-x) if 2<x<3
show that moments of all order exist. Find the mean and the variance of X.
8. For the pmf of Example 5 show that i
EX* = np + Tn(n — 1)p? + 6n(n — Dn = 2)p° + n(n — 1)n — 2)n

and

GEMNERATING FUNCTIONS
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ty = Mnpg¥ + npg(l — 6pg),
where 0 = P = l,g=1-—p.

g, For the Poisson rv X with pmf

Ix

ow that EX = & EX? = A+ B, EX*= 2+ 38 + &, EX* = 2+ T8 + 6% + X
and frz = K3 = Aoy = A+ 345

10. For any rv Y with E|X|* < oo define

Y |
ey = {.: -|,1.' hy = ':,L .
) £

Here a5 is known as the coefficient of skewness and 15 sometimes used as a measure

of asymmetry, and a, is known as kurrosis and is used to measure the peakedness
(**flatness of the top'") of a distribution,

Compute oy and o, for the pmf's of Problems 8 and 9.

11. Fora positive v X define the negative moment of order n by EX-", where
n = 0 is an integer. Find E{1 /(X % 1)} for the pmf*s of Example 5 and Problem
9,

12. Prove Theorem f.
13. Prove Theorem T

3.3 GENERATING FUNCTIONS

In this section we consider some functions that generate probabilities or

moments of an rv. The simplest type of generating function in probability
theory is the one associated with integer-valued rv's. Let X be an rv, and let

py= P{X=K}, k=012
With E?-‘ﬂ Pi = 1.

Definition 1. The function defined by

(1) P(s) = T s’
k=0

which surely converges for [s[ < 1, is called the probability generating function
(pef) of X.

Example 1. Consider the Poisson rv

il i

PIX=K) = e 11
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We have
Gnition 2, Let X be an rv defined on (@, &°, P). The function
. y : De
P(s) = X (sA) = = e = g M- , M(s) = E¢&*
= k! sl =1, 2) ing functi ¢ if
e ; Ei . : » b i e _ i —T the nm?num Igcntrulmg Lill’]til.#:‘r!'l. (gt ) of the v X if the
Example 2. Let X be an rv with geometric distribution, that s jer 1= kcﬂ:::m-mn on the right side of (2) exists in some neighborhood of the
i ' - 2 1x L.
P(X=k} =pg", k=0,1,2- 0<p<i g, ;r?gin-
=1~
Then £ L mple 4. Let X have the pmf
X
o [ A 1
P(s) =X s'pq"=p : | : Jlars T k=12,
) k=0 P4 'E}—.ic;1 |3-51~ f{kj=“l]r: k
L 0, otherwise.
g“",‘k"ﬂ is infinite for every 5 > 0. We see that the mgf of

pen (1/2°) Bk i
Tlfdm*:fr ot exist. In fact, EX = oo.

Remark 1. Since P(1) = 1, series (1) is uniformly and ﬂhsf’lululy i
rﬁrggnt
5, Let X have the pdf

in ls] = 1 and the pgf P is a continuous function of s, :
r J . It determines the

pgf: u.niqmrl;-,-', since P(s) can be represented in a unique manner g5 g Power Is
SEries. Examp
| % o m'E’ v = '::l',
Remark 2. The moments of the rv X, if they exist, can be determineq b f(x) = [l 0 b
the derivative at the point s = 1 of the function P(s). Thus ! :
P'(s) = E kp.s* - so that P'(1) = EX if EX < ¢ Then
i=1 : M(s) = T S*Ec;—um; o
P"(s) = ﬁ k(k—1)pes* %, sothat P'(1) = E{X(X=1)} if EX* < o, 2 l“ 1
- - 5 =,
1-13s 2
and so on.
Example 6. Let X have pmf
Example 3. In Example 1 we found that P(s) = eV sl < 1 fora AR s o
Poisson rv. Thus P{X =k} = ] |
P'(s) = ;{E-A:I 1) 0, otherwise.
Ps) = e N Then
] a8 k
- _a2 = EX® —(EX)' =¥ L M
Also, EX = A E{XA_X}-A* so that var (X) = E (54 M(s) = E¢ —Ei:-‘-';-:ﬂﬁ’ Kl
o e— jIE = A. | = 3_1{1_"3 for all s.
= = that
2 we computed P(s) = pl(1 — sq), SO _ : _
In Example P 24" : The following result will be quite useful in what follows.
P'(s) = A and P(s) = A _q.j':‘-_' : :
(1 — sq) ( Theorem 1. The mef uniquely determines a df and, conversely, if the mgf
exists, it is unique.

Thus . .
4 4= For the proof we refer the reader to Widder [137], page 460, or Curtiss
[20]. See also P.2.14. Theorem 2 explains why we call M(s) an mef.

_ 4 EXr=2t
EX p’ o 0 |
gr;n:rating function. |

: : e
Next we consider the important concept of a momen
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Thenrcql 1'. If the mgf M(s) of an rv X exists for s in (
?he derivatives of all order exist at s — 0 and can b
integral sign, that js, :

(3) M‘”{.s]h o = EX* for positive integral k

For the proof of Theorem 2 we refer to W;
- idder [1 Ao
also P.2.14 and Problem 9. er [137], pages 446-447, g,

Remark 3. Alternatively, if the mgf M(s) exists for sin (~ 50, %) sa
one can express M(s) (uniquely) in a Maclaurin series t:xpan’sj.;n- Yi% > 0,

@) M(s) = M(©) + Y110 54 MO 2,

so that EX" is the coefficient of s*/k! in expansion (4).

Example 7. Let X be an rv with pdf f(x) = (1/2)¢ ** x > 0. Fron
Example 5, M(s) = 1/(1 — 2s) for s < 1/2. Thus

e

o W T el _
M'(s) = - and M) = "o $<

(1 — 2s)
It follows that
EX = 2, EX*® = 8, and var (X) = 4.

Example 8. Let X be an rv with pdf f(x) = 1,0 < x < 1, and = 0 other-
wise. Then

M(s) =J" I e T ;1 i
0

e-5s— (e —1)1 :

B o —
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we next consider the problem of characterizing a distribution from its

mﬂ,n]{rﬂ[,'i, Let .-Y' be an rv “'l”.h "'lgr ,"1.'f|:-,'5':|‘ Sincc i"]‘:{"“ = |.'!|'Ii_" fﬂr B0
ntegral, we see that E|X|" < oo for any n. Given the mgf M(s5), we can
determine EX" for any n (positive integer) with the help of Theorem 2.

guppose now that moments of all orders exist for an rv X. It does not follow
that the mgf exists.

gxample 9. Let X be an rv with pdf

¥ —r ] |'1:H -

a constant determined from

€ .r e "% dx = 1.

where ¢ 15

Let s = 0. Then

il
r efex dx = reﬂ*-f“"‘rdx
0 0

and since a — 1 <0, o € e dx is not finite for any s > 0. Hence the
mgf does not exist. But

E|X|" = cr |x| e ¥ dx = 2¢ j::-r" e ™ dx <o  for eachn,

as is easily checked by substituting y = x°.

Theorem 3. Let {m,} be the moment sequence of an rv X. If the series

&) L T
converges absolutely for some s > 0, then {m,} uniquely determines the
df F of X.

:s much too complicated to be included here, and

M'(s) =
= s The proof of this result o
. s’ —¢e + 1 1 we refer the reader to original papers by Hamburger [46). It should be no
EX = M'(0) = hﬂ; o= L that condition (5) is not necessary (see Dharmadhikari [251).
: In particular if for some constant ¢
: ‘ot its utility ' k <
Remark 4. Since there exist rv’s for which the mgf may ﬂ*_:'tth‘*:}';il'ﬂ:;m o Img < ¢!, k=12
is somewhat limited. Itis much more convenient Lo work wi J {': 1), the then

- = e E Eil'x ! wherﬂ i= e :
istic function of an rv X, which is jefhvicr 22 x(J :xi)sts for every d‘““h;fzi
ce we

" - - : 1 1 l]l.lII!hﬂL ET‘E“ 4

imaginary unit, ;and SLE g sctbution of rv X. Since ¥

Moseole “mqeduﬂge }rfdﬂeml“:i'sartihﬁ:li;sgﬂzﬁis book, we will deal with onl¥ and the df of X is uniquely determined.
assume a kﬂﬂw:l (8] mmp €

mgf’s whenever they exist.

il ¥ ) = {Cs}l_ 5 \
Eljk_:'[ §F < ?—k! <¢ for s > 0
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It not all the m
oments of an rv X exijst 1
o ot 15t, there is no ch
. of .-'-:' The df of X is surely not determined yn; i
that do exist. “Sangy b

of dﬂtl‘!rminin
¥ the mnm,_,mf‘

Example 10. Let X be an rv with pmf

-3 2
P{X—-—-kz}:-j}, k=112!“
Then
EX=3 % <o d 2 _ 5 2.3
=5 A g = .

Let ¥ be an rv with pmf

P(Y =0} =L T
{ =3 and ;,:2‘}‘?.1:? k=12 ..
Then

S

EY = = _

El T < % and EX = EY.

But
2 i Bl
EY'= 20

and X and ¥ do not have the same distribution.

Finally we mention some sufficient conditions for a moment sequence to

determine a unique df.

(i) The range of the rv is finite. :
(i) (Carleman) X7, (mﬁ)'”z"’ = oo when the range of tl1+a' v is
(—oo, c0). If the range is (0, o0), a sufficient condition 1s
oo =172k
L’:l () = 00, : .
(iii) 1im,_. {(mg,)'”*"[2n} is finite.

PROBLEMS 3.3
1. Find the pgf of the rv’s with the following pmf’s:

E)P‘*{l ‘_F}‘-l, k ﬂ.ﬂl 1,2’ ey n;ﬂ SPE 1.

i & =1’2..”;l}ﬂ.
@ k=120 ),

N+1yv-1 k=0, 1, & % \

pgfﬁsj,l.etﬂﬂll
of Y.

@ Px=4k =(
(b) PX =k} =[]
(c) P(X =k =pg(l -

2. Let X be an integer-valued rv with gt
integers, and write ¥ = aX + b. Find the pef

v—*

GENERATING FUNCTIONS 05

3, Let X be an integer-valued rv with pef P(s5), and suppose that the mgf M s
exists for s€(— % foh o }ﬂ Hn“' are M(s) and P(s) related? Using et
M) gm0 = EX" for positive integral k, find EX* in terms of the derivatives of
p(s) for values of k = 1,2, 3, 4. P
4. For the Cauchy pdf

1

1
flx) = = T+ — 00 < X < 00,

does the mgf exist ?
g Let Xbeanrv with pmf
P[I=I} =-p_.l-' -r-={]1 1121"".
et PIX >jl =a; =01, 1? -+s, Clearly §j = Pjsy + Piya + =+, j = 0. Write
0(s) = L..4;5". Then the series for Q(s) converges in || < 1. Show that

O(s) = —T—ﬂﬂ for |s| < 1,

where P(s) is the pgf of X, Find the mean and the variance of X (when they exist)
:n terms of @ and its derivatives.

6. For the pmf
F
PIX=j) = % T e

where a; = 0 and f{(f) = L7, a,t/, find the pgf and the mgf in terms of [,
7. For the Laplace pdf

g le=nlid —~co<x <o}, A>0, —oco<p<oo,

1
fx) = 57
show that the mgf exists and equals
M) = (1 = Be2yled, < %

8. For any integer-valued rv X, show that
S PX < n) = (1 — ) P(s),

where P is the pgf of X.
9. Let X be an rv with mgf M(r), which exists for 1 € (=1, fo), o> 0. Show that

E|X|* < n! s"[M(s) + M(~ 5)]
for any fixed s, 0 < 5 < fy,, and for each integer n 2 1. Expanding €¥ in a
power series, show that, for ¢t €(— 5, §), 0 < 5 < I,

=a EXH
hﬂ:f} = Euf' ?-‘IT "

i : : - ithi i of
(Since a power series can be differentiated term by term within the interval
convergence, it follows that for |¢| < 5,
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SOME MOMENT INEQUALITIES

100 GENERATING FUNCTIONS
M®(1)];.g = EX*
1.
gxample
PIX=0)=1-— %

) K = 1, constant,

for each integer k = 1.)
(Roy,
> LePage, ang Moore (106} 1
=T ]l =
PIX=%F1} s
EX=0, EX*= _;:f, 0=t

3.4 SOME MOMENT INEQUALITIES

In this section we derive some inequalities for moments of ap The

result of this section is Theorem 1 (and its corollary), which bt '

for tail probability in terms of some moment of the random "E;:‘ﬂ:hla boung
e,

P{|X| = Ko} = P{|X| = 1} =—,

o that gquality is achieved.
Let X be distributed with pdf f(x) = 1if0 <x < 1,and =0

Theorem 1. Let h(X) be a nonnegative B-Dl'ﬂl—mﬂsu :
X. If Eh(X) exists, then, for every ¢ > 0, rable function of g, & gxample 2: s
| therwise-
(1) P{H(X) > ¢} < ﬂgﬁ R e e~
i) 1 1
PIR‘ Hﬂﬂi} P4 ey T I R A j=1

imiuahnr

k=1,2, . Then

: Eﬁ;ﬂ«hx}ﬂﬁ{!{ﬂz&f+c§*}
E +  foralle>0,x>0
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Since EX =0, EX® = ¢°, and the right side of (6) j5 . .
¢ = g-/x. We have h Minimyp,

2

(I L
PiX=>x; = — =y X>=0
g 4+ x :

Similar proof holds for (3).
Remark 1. Inequalities (4) and (3) cannot be improved (Pr
e : foblem 3),
Theorem 2. Let E|X|" < oo, and let EX = 0, EX® — 2 T
= 0. The
(7) P{|X| =z Ka} = fy — @ .
i = 4 -
wy + oK' — 2K%g* for K ~ 1,

where gy = EX .
Proof. For the proof let us substitute (X° — %) / (K2 a
take x = 1 in (4). Then ) for x and
72 < v (X = aKe? — 2
1.+ var {(X* - ¢ (K =
4 a’);
0= Neoall
a¥(K* — 1)° + t— a*
s — o
# Ko

= _P‘ e E?IK'E o szﬂ'“

F{Xz_ﬂzz KEJE_

as asserted.
Remark 2. Bound (7) is better than bound (3) if K* > /0" and worse it

1< K%< ,m;’a' (Problem 3).
Example 3. Let X have the uniform density

1 if0<x<l,
f&x) = {ﬂ otherwise.

Then
ExX=4  va®=h wm=EX-3'=b
and
b-di 4
.P”X ’lez"/giﬂév{--:ﬁ-ﬁ— ﬁ 4
that is

PlX—4|=2vH) 24 =%

SOME MOMENT INEQUALITIES
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h better than the bound given by Chebychev's inequalit
¥ Lhebychev's inequality

which i miuc
(E cample 2).
Thg[‘l[’{'m 3 (Lyapunov Inequality).
t‘af\ Kk, = = k = n, Wt have

Let 5, = E\XI" < . Then for arbi-

a1 /k—1 otk
L= -
=1 = Py e

(%)
proof. Consider the quadratic form:
ERS T e S B o s b
0 M = 7™ 124 w02 1) ax,
where wWe have assumed that X is continuous with pdf f. We have
QL""‘ 'I."]- - II"J:.li--:"t-L o lu"'_-:ln “+ :i&-!.'l-'i

early @ = 0 for all u, v real. It follows (see P. 2.4) that

Cl
| Pe P+ |
implying that
Bk < B B
Thus
£ <pfs s fB o B s ELET
where 8o = 1- Multiplying successive k — 1 of these, we have
13*_1 < -1r =1 or -'-‘l \k 1) < ﬁ‘:..u_

1t follows that
Br<pyt < BB

The equality holds if and only if
Uk - gD fork =1,2, -,

k
that is, {}*} is a constant sequence of numbers, which happens if and only

it |X|is degenerate.

PROBLEMS 3.4

1. For the rv with pdf
it x>0,

- €
RasAyei=—r=,

where 1 > 0 is an integer, show that
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PD< X <2li+ 1) = jr E
1 :

2. Let X be any rv, and suppose that the mgf of X, M(r) —
¢ > 0. Then for any r = 0 = Eplx
0y

PlX = 52 + loghM(1)) = e-52

3. Construct an example to show that ““-"[”““““-‘*‘HJ'mdm;
= : ¥ = - cann .

Let #.) be a function satisfying g(x) > 0 for x > 0, gfx); 0t be Imp,
s £(x) increasip : Oveg

HE lop ;

X n

4.
=Tikk

and g(| X|) < co. Show that
Es(| X
P{lX|>¢) = #(X)

glz)

for every ¢ > ¢

Let X be an rv with EX = 0, var (X) = %, and EXx+
= = . Ly
K h': ij;kb.

5l
positive real number. Show that
J I r if K2 <1,
Pl X| = Ko} <{ K* ifl < K2 < M
fty — o e
% + K — 2K =,

In other words, show that bound (7) is better than bound (3) if k:
worse if 1 < K? < p,/ot. Construct an example to show that the Iast:_; Halat ang

cannot be improved.
6. (a)Let X be an rv with df F, and letg be a strictly convex functio
T On the

range of F. Let p be a Borel-measurable function. Suppose that EX, E
Eg(X) all exist, and write EX = ¢. Let 1(x) = g(z) + K(x — 1) be el .;f:z and
for g at x = p. Also, let h(x) = g(x) — 1(x). Then for every ¢ > 0 we have i
Elo(X up |o()] + (01
l(X)] = r‘s_#?{rlgv{ ) [i sup H(x) 1 ER(X).
s inequality is due to M. Riesz; see, for example, Lukacs [76]. See P.2.3 for
ons and line of support.)

(Thi
definitions of strictly convex fi uncti

(b) Derive Markov’s inequality from Riesz’s inequality. (¢) Show that fora > 0

ande > 0
P(IX — p| > ¢} S Me o [Ee*X — e},

where M = {e-®* — 1 + ae} -
(Hine : Take g(x) = e, o(x) = 0if [x - gl <e and =1 if |[x = p| 2 &

Ix) = et [ess — 1 — alx = 1)

7. For any rv X, show that
P{X = 0} < inf {(0): 1 = 0) <1,

where ¢(1) = Ee'X, 0 < g(1) < 2.

cH

A pTER 4

Random Vectors

41 INTRODUCTION
Jany experiments an u'lf::u:n':uinn is expressible, not as a single numer-
ty, but as a family of several separate numerical quantities. Thus
e, if a pair of distinguishable dice is tossed, the outcome sx.. a pmr
(X, ¥), where X dtnn'_lt.‘:s1 the face value on the first die, and y, the face value
on the second die. Similarly, to record the height and weight of every person

ina certain community we need a pair (x, y), where the components repre-
cent, respectively, the height and the weight of a particular individual. To

be able to describe such experiments mathematically we must study the multi-
dimensional random variables or random vectors.

In Section 2 we introduce the basic notions involved and study joint, mar-
conditional distributions. In Section 3 we examine independent
bles and investigate some consequences of independence. Sec-
with functions of random vectors and their induced dis-
6 and 7 consider moments and their generating functions,
the functional relationship between two dependent

In o ;
ical qu:mh
for exampl

ginal, and
random varia
tions 4 and 5 deal
tributions. Sections
and in Section § we study

random variables.

42 RANDOM VECTORS

In this section we study multidimensional o's. Let (Q, &, P) be 2 fixed
but otherwise arbitrary probability space.
X,) defined on (@, &, P) into

wad

Definition 1. The collection X = (X, Xy,
®, by

X(0) = (Xy(), X4o), = X)) ©F Q,

105
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