CHAPTER 2

Random Variables
and Their
Probability Distributions

2.1 INTRODUCTION

In Chapter 1 we dealt essentially with random experiments which
described by finite sample spaces. We studied the assignment and comp
tion of probabilities of events. In practice, one observes a function

on the space of outcomes. Thus, if a coin is tossed n times, one js 1

ested in knowing which of the 2" n-tuples in the sample space has geey
Rather, one would like to know the number of heads in n tosses,
of chance one is interested in the net gain or loss of a certain pla' -
ly in Chapter 1 we were concerned with such functions without def
term random variable. Here we study the notion of a random
examine some of its properties.

In Section 2 we define a random variable, while in Section
notion of probability distribution of a random variable. Secti
some special types of random variables, and Section 5 ¢
of a random variable and their induced distributions. :

The fundamental difference between a random variable ang
function of a real variable is the associated notion of a pr
tion. Nevertheless our knowledge of advanced calculus

basic tool in the study of random variables and their pr
tions.

2.2 RANDOM VARIABLES

In Chapter 1 we studied properties of a set function P
52
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space (@, &). Since P is a set function, it is not very easy to handle. More-
over, i practice one frequently c:-bstn:es some function of elementary events.
When a coin is tossed repeatedly, which replication resulted in heads is not
of much interest. Rather one 1s interested in the number of heads, and con-

sequently the number of tails, that appear in, say, n tossings of the coin. It
is therefore desirable to introduce a point function on the sample space.
We can then use our knowledge of advanced calculus.

Definition 1. Let ({2, &) be a sample space. A finite, single-valued function
which maps 2 into 2 is called a random variable (rv) if the inverse images
under X of all Borel sets in # are events, that is, if

(1) X Y(B) = {w: X(w)e Bjes  forall BeB.

Let x € %, and consider the semiclosed interval (— oo, x]. Since (— oo, x]
¢ %, it follows that if X is an rv, then X' (-, x] = {X(w) < x} is an
event in . Also, if B is a Borel set in 4, then B can be obtained by a
countable number of operations of unions, intersections, and differences of
semiclosed intervals. The following result is obtained, using the properties
of inverse images under X (see P. 2. 16).

Theorem 1. X is an v if and only if for each x e &
(2) {w:X(w)<sx}={X<x}e&.

Remark 1. Note that the notion of probability does not enter into the de-
finition of an rv.

Remark 2. 1f X is an rv, the sets {X = x}, {a < X < b}, (X < x},
{a < X < b}, {a < X <b}, {a< X< b} are all events. Indeed, we
could have defined an v in the following equivalent manner: X is an rv
if and only if i
(3)

We have

4

and

()
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T.f.:ljl‘ﬂrl‘m 2. Let X be an rv defined on (12,

), -
Then aX + b is also an rv on ({4, 7). Mg g b b
e Cap,
Proof. fa,,h
{w:aX(w) + b < x} = {ax %
’-
If a = 0, then

faX < x — b} = {,1[’ < X — b
If a < 0, then

lraXi:-‘-' = b]l_ == {X s "?’11 -

a
If a = 0, then

{aX < x — b} = {r"
@
The proof is complete.

Example 1. For any set A = (, define

0, :
Li(w) = { w¢ 4,
lr we A4,
I4(w) is called the

indicator function of set A. I, is a :
. n
Ade . ’ TV and oy

Example 2. Let @ = {H, T}, and & be the class of all

Define X by X(H) = 1, X(T) = 0. Then Subsets of

fo) if. x=p
X"'[‘—m,x]= {T} it i< =1

{H, T} it 1<=x,
and we see that X is an rv.
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S5
rch, -~
| prree
|{TT, HT, TH}, {=
|['_|_r‘

Thus Y is an rv.
Remark 3. Let (Q, &) be a discrete sample space; that is, let Q be a count-

ple set of points, and & be the class of all subsets of 0. Then EVEry nu-
ﬂ:wﬂ;gl valued function defined on (0, %) is an v.
I

gxample 4. Let 2 =10, 1Jand & = B n[0, 1], be the g-field of Borel sets
on [0, 1] Define X on O by

I{m_‘] = )y e U‘,i.. 1].

Clearly X is an rv. Any Borel subset of Q is an event.

Remark 4. Let X bean rv. Then X*is an rv and 1/X is also an TV, pro-

vided that X = 0} = ¢. For IX* < x} =¢if x < 0and if x = 0, then
(X° < x} = {—4/x = X £ 4/x} € #. Similarly,

1 1 . 1 _\i
{;{5"‘]}5{:{Ex‘xqﬂ}+{x“—:"‘x}ﬁ}+U{‘i-"‘*}‘—“

={xX=1} N {X<0} + {xX =1} n {X >0}

{X < 0} if x =0,

E{J{E;i}ﬂ{X{B}+{X::--];—Hﬂ{X‘}{]} if x> 0,
{J{g%}n{x-{{}}+§l’5-5ﬂ{x::»u} if x < 0.
For a general result see Theorem 2.5.1.

PROBLEMS 2.2

L.

Let X be the number of heads in three tosses of a coin. What is 07 What

are the values that X assigns to points of Q ? What are the events (X < 2.15),

Eﬁample 3. Let 0 ={HH N EESHT TH}, and % be the class of all (5< X< 1727

subsets of Q. Define X by

2. A die is tossed two times. Let X be the sum of face values on the jcwn tOSSES,
and Y be the absolute value of the difference in face values, What is 07 What

values do X and Yassign to points of Q7 Check to see whether X and Y are random
variables,

X(w) = number of H's in w.
Then X(HH) = 2, X(HT) = X(TH) = 1, and X(TT) = 0.
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3. Let X beanrv.
Falso an rv?
® Qn
d five times. Let X be the sum of f: ; "eray
i e Valugs, bag, F(—o0) =0
> 29]. Tite i
the alled & distribution function (df).
js cA
From our knowledge of calculus (see P.2. 10) we see that

= ‘,E! Iso an v ..:I If X is |
I. | als 1S an ry l-h._:[ te
5 On
I5 I

and Fl+m) =1

values, i5 /X

4. A die is rolle
(Y = 4], {X = 6], {X = 30},

5. Let @ = [0,1], and & be the Borel g-field of subsets of
follows: Xw) = @ if0 < w = ]'2 and Xaw)=m — 12 i II-."' Eﬁng
rv? If so, what is the event [ew: X(ew) € (174, 1/2)) 9 2<q < g ke 1- _ . : _
Sl Rer.s a nondecreasing function on 4, then F(x —) = lim,,, F(1),
it ‘1‘_(}4'} _ lim,, 5 F(1) exist and are finite. Also, F(+ =) and F(— o) exist
2.3 PROBABILITY DISTRIBUTION OF A RANDOMN VﬁRl& g5 limyt 4o F(r) and him,, .. F(1), respectively. In general,
BLE F(x—) < F(x) < F(x+),
»ction 2.2 we introduced the concept of ; : .

ity Seciton 2 : ; an rv and Noted that 4 xisad jump point of F if and only if F{x+)and F(x—) exist but are

! |. Thus a nondecreasing function F has only jump discontinuities. 1f

cept of probability on the sample space was not involved jn .. " the o
N thig deﬁ“- 0. anequad
for all x,

Let (2, &, P) bea probability space, and let X be
{ an rv dﬂﬁned on e ]tll:jn‘ L5 dﬁﬁﬂf’
F¥(x) = F(x+)

ability space.
Theorem 1. The rv X defined on the probabilit

Y Space (0, Z, P) indy cee that F* is nondecreasing and right continuous on &. Thus in De-

o v he nondecreasing part is very important. Some authors demand

a probability space (%, B, Q) by means of the correspondenge
g 1 T_
ii;:-;t:;ﬂc.nminuity in the definition of a df instead of right continuity.

(1) 0(B) = P{X(B)} = Plw: X(w)e B}  forall Bey
/Tﬁﬁl rema 2. The set of discontinuity points of a df F 1s at most countable.

We write @ = PX ! and call @ or PX ! the (probability) distribution .
0
b] be a finite interval with at least n discontinuity points:

Let (a,

Proof.
<x, = b

a"f‘xl‘:xa{"‘

Proof. Clearly O(B) = 0 for all B € B, and also Q(#) = P{XE.@}
|

P(Q) = 1.
Let B;eB,i=1, 2,.-- with B; N B; = 9’;, i # j. Since the e
of a disjoint union of Borel sets is the disjoint union of their inverse i age e
g |
| F(a) < FOn—) < FGx) < - < Fx,—) < Flx) < FO).
k =1, 2, -+, n. Clearly

we have
5 B) = PIX {3 B,
Q{,Z_J; r} P{'i E:EI BI)} Let py = F{Il:l = F(JC..—'},
e X_l - n
PZ X (B £ py < Fb) ~ F@,
-y oo -1 o0 = : 5
el and it follows that the number of points x in (a, blwith jump p(x) > & =9
It follows that (#, B, Q) is a probability space, and the proof is com- is at most e~1{F(b) — F(a)}. Thus, for every integer N, the pumber o tgl:
plete. continuity points with jump greater than 1/N 15 finite. 1t follows that there
are no more than a countable number of discontinuity points in every ﬁn;tz
Since ( is a set function and set functions are not easy to handle, let us interv:;l (a, b]. Since & is a countable union of such intervals, the prool 18
introduce a point function on Z. complcie.
S ot Definition 2. Let X be an rv defined on (2, ¥, P)- Define a point function
Definition 1. A real-valued function F defined on (— oo, ) that 15 gy F(.) on .; by
* creasing, right continous and satisfies |
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(2) F(x) = Plo: X(w) < x} for a]) e
= 22,
The function F is called the distribution function of g, X

If there is no confusion, we will write
F(x) = P{X < x].
The following result justifies our calling F as define
*fined by (2) 4 ¢

Theorem 3. The function F defined in (2) is indeed a gf

.’:ﬂ.ﬂe’f-. Let Xy = Xz. The { = s .1'|] = { c0, Xz]g and We h
- n dvp
}’.{_‘{'l} = .Il :X = ..'-'f]} = j {X = ‘;-2} Jq{_:'; }
2).

Since F is nondecreasing, it is sufficient to show that for
numbers X, J X, x; > x5 > o > an

A, = {w: X(w)e(x, x;]}. Then A, €% and 4, % . Also
lim A, = 2 A, =
.i.'l"- : .#lf-]i y ';5‘

since none of the intervals (x, x;] contains x. It follows that lim
*—I

But mp[filjn{g_

P(4,) = P{X < x;} — P{X < x}
= F(x,) — F(x),

so that
lim F(x;) = F(x),
F

and F is right continuous.
Finally, let x, be a sequence of numbers decreasing to — co. Then

(X < x,} 2 {X < Xpn1} for each n

and

lim {X < x} = () (X = %} = $.
N==00 n=1
Therefore

F(—0) = lim P{X < x,} = P{lim {X < xu3} =0

Similarly,

p Y&
Ty 2 o= R E.E{Ij;nc
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F(+ o) = 511}‘{}”;4’&’ < x) =1

and the proof is complete.
The next result, which we state without proof, establishes a correspond-

ence between the induced probability Q on (%, %) and a point function F
d‘:ﬁnud ﬂn fﬁ-

([upoTEN & ‘.:HVF" a probability Q on (2, ¥B), there exists a distribution
function F satisfying

) Q(— 0, x] = F(x) forall xea,

and, conversely, given a df F, there exists a unique probability Q defined
on (%, B) that satisfies (3).

For prouf see Chung [15], pages 23-24,
-
~Theorem 5. Every df is the df of an rv on some probability space.

proof. Let F be a df. From Theorem 4 it follows that there exists a unique
pmhability Q defined on & that satisfies

Q(— oo, x] = F(x) forall xe .
Let (&, B, @) be the probability space on which we define

Xw) = w, we R.
Then

Qf{w: X(w) < x} = @(—mo, x] = F(x),
and Fis the df of rv X.

Remark 2. If X is an 1v on (2, &, P), we have seen (Theorem 3) that
F(x) = P{X < x} is a df associated with X. Theorem 5 assures us that to
every df F we can associate some rv. Thus, given an 1v, there exists a df,
and conversely. In this book when we speak of an rv we will assume that
it is defined on some probability space.

Example 1. Let X be defined on (Q, &, P) by

X(w) = ¢ forall weQ.
Then
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PlX = ¢} = 1, |
F(x) = O(—o0, x] = P{X (—oo,

and
Fix) = 1 if

x|} =@

if

X eop

Example 2. Let @ = {H, T}, and X be defined by

A(H) = 1, X(T) = 0.
If P assigns equal mass to {H} and {T}, then
Piii=0p =g = Pl =11
and
9 x < 0,
Ao = Q-0 =1k Osx<,
L, L:siy

Example 3. Let Q = {(i, j):i, je {1, 2, 3, 4, 5, 6}}, and o

all subsets of Q. Let P{(i, j)} = 1/6° for all 6° pairs (i, J)in g, IZ!:E &
X D =i+, I

Then
rﬂi

36
%
F(x) = O(—00, x] = P{X < x} = (§

1,

€ spt
efing of

Jj= 6.

X <2
<X X3
351*-:#,
4< x5
=< x=p
V2=

Example 4. We return to Example 2.2.4. For every subinterval J of 0,1
let P(I) be the length of the interval. Then (Q, &, P) is a probability space,
and the df of rv X(w) = w, w €2, is given by F(x)=0 if x <\,

F(x) = Plw: X(w) < x} = P[0, x]) = x if x
if x> 1

PROBLEMS 2.3

[0, 1], and F(x) =1

1. Write the df of rv X defined in Problem 2.2.1, assuming that the coin is fair.
2. What is the df of rv ¥ defined in Problem 2.2.2, assuming that the die is not

loaded?
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“ po the following functions define df"s?

Fx) =" ifx<0, =xH0=x<1/2, and = | if x = §
{:1]} Flx) = (1/x) tan~'x, — < X <

gx)=0ifx sl and =1—(1/x)if ] < x,

R e ifxz20,and =0ifx = 0

Fx) = . '
(d)

4 Lot ¥ be an rv with di F,

’ If Fis the df defined in Problem 3(a), find P{X = W, Pli < X
(a

= 1.
B) If F is the df defined in Problem 3 d), find Pl— oo < X
{

= )

;4 DISCRETE AND CONTINUOUS RANDOM VARIABLES

ret X be an rv defined '::r:. some fixed, but otherwise arbitrary, probability

space (2, &5 F) and :l':'- f be the df of X. 11"|I this book we shall restrict our-
selves to tWO types of rv's, namely, the case in which the rv assumesat most
q countable number of values, and that in which the df F is absolutely con-
cinuous (see P.2.13).

Defiition 1.~ An v X defined on (0, &, P)is said to be of the discrete
type, O simply discrete, if there :::f.isu.s a countable set E < g such that
ElxeE) = 5 The points of E which have positive mass are called jump
points Of points of increase of the df of X, and their probabilities are
called jumps of the df.

Note that E € B since every one-point set is in B. Indeed, if x € &, then

(1) {x}=ﬁ{( ——L—e:xz;x-h—-h—)\[.

n=1

Thus {X € E} is an event. Let X take on the value x; with probability

o
Ve
S
=
E
|
H
g
I
=
Il

1,2, :+, p; =0 foralli.
Then B2, pi = 1.

Definition 2. The collection of numbers {p,} satisfying P{X = x;} =p; = 0,
forall i and 17, p; = 1,iscalled the probability mass function (pmf) of rv X.

The df F of X is given by
(2) F(x) = P{X < x} m:%p;.

If I, denotes the indicator function of the set A, we may write

(3} X{iﬂ) = Elx,' I[x==l-{{t.l)-
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Let us define a function &(x) as follows:

(1, x=0
gx) = J i
10, x < 0.
Then we have

(4) F(x) = Elp,s(x — x,).

Example 1. The simplest example is that of an ry

F{..'l.;l = E{:I—f‘:l = {{]‘ x <.q
Ly X = C.

Example 2. A box contains good and defective items. If a, ;
good, we assign the number 1 to the drawing; otherwise, the e

p be the probability of drawing at random a good item, Thﬁ?”mhcr 0. LEi
0 1 —
e
1 P,
and
0, x <,
Fx)=P(X<sx}=11—p 0=<x<],
111 l < x.

Example 3. Let X be an rv with pmf
6 1 =
PIX=k =— 2 k=12,
Then

) = ,‘f’ 2 .j-:—zs(x — k).

The following result is obvious.

Theorem 1. Let {p,} be a collection of nonnegative real numbers such
that 3=, py = 1. Then {p,} is the pmf of some 1V ¥

. : ints. The
We next consider rv's associated with df’s that have no jump poit
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ar of cuch rv's is continuous, We shall restrict our attention to a special
gbclass of such V5.
5

]]eﬁﬂ“i’*'“ 3. Let X be an rv defined on ({1, 5, P) with df F. Then X is said

, be of the continuous type (or, simply, continuous) if F is absolutely
tC : )

ontinuous: that is, if there exists a nonnegative function f{x) such that for
& ery real pumber x wWe have
eve

5) F(x) = 5 . f(1) dt.
The function [ is called the probability density function (pdf) of the v X.

Note that f = 0 and satisfies lim, . ... F(x) = F(+ o) = [“_ f(1) dt = 1.
Letaand b be any two real numbers with a < b. Then

P{a < X < b} = F(b) — Fla)
]
== 5 i) d.
Let B be a Borel set of the real line. Since B can be obtained by a count-

able number of operations of unions, intersections, and differences on inter-
vals, the following result holds.

Theorem 2. Let X be an rv of the continuous type with pdf f. Then for
every Borel set B€ B

©) P(B) = | S d.
If F is absolutely continuous and f is continuous at x, we have

U F(x) = 4E2 = £,

Theorem 3. Every nonnegative real function f that is integrable over & and
satisfies

Sm fix)dx =1
is the pdf of some continuous type v X.

Proof. In view of Theorem 2.3.5 it suffices to show that there corre-
sponds a df F to f. Define

F(x) = S’_mm) d, xed.
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Then F(— ) = 0, F(+ ) = I, and, if x;
o - x oy : . “'] i

.F'{.'L'_-'] = {I : t J.,I‘_]-l'llr{‘[) lflr F J .-'f{'r} I!'Jf = P
(x)

Finally, F is (absolutely) continuous and hence continy,,, f
5 Irg
m th
Q‘ r]'
Bhyi

= Xy,

_ T
4j 15 the probap;,

Remark 1. In the discrete case, PlX
the value a. In the continuous case, f(a) is not the ¥ thay
takes the value a. Indeed, if X is of the continuoys tvp:mhﬂhilit}- utakm
b ] 11. as& 'Ia_l .
Sumeg &
ftl.-,-q

value with probability 0.

Theorem 4 Let X be any rv. Then

® P{X =a} =1lim Plt = X = al.
e
. < a, {,—4a,and write

< o = e

Proaf. Letif <
A, = illru < X = ﬂ}.

Then A, is a nonincreasing sequence of events which converges
s | = 1 r - 1 : ] i 1o
Nods = {X=a}. It follows that lim,_.. PA, = P{x al.
Since P{t < X < a} = Fla) — F(1), it follows thaq

PiX = aj = F(a) - lim F

"

Remark 2.

lim P{t < X < aj]

=g
f<a

F(a) — Fla—).

Il

Thus F has a jump disontinuity at a if and only if P{X = a} > 0, that:
is continuous at a if and only if PlX=a} =0. If X isan rv o‘f thel:F
tinuous type, P{X = a} = 0 for all a € #. Moreover, o

P{Xe® - {a}} = 1.

This justifies Remark 4 in Section 1.3.

Example 4. Let X be an rv with df F given by (Fig. 1)

0, x <0,
Fix)=¢x, 0<xsl],
55 | =iy

Differentiating F with respect to x at continuity points of f, we get
0, x<0orx>1,

ﬁx}zp&J:{l Dicix< L.

The function /is not continuous at x = 0, or at x = 1 (Fig. 2)- :;::“‘“
define £(0) and f(1) in any manner. Choosing f(0) = f(1) =0, we
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::{Fr ."fi]
|
1
for 1\
II
0 1 -
Fig- 1 Fig. 2
L O=x<,
S = (0, otherwise.
Then
P{4 < X < .6} = F{.6] — F{4} = .2.
Example 5, Let X have the triangular pdf (Fig. 3)
Ky G N -E 1‘
fxX)=32=x, 1<x<2,
0, otherwise.
It is easy to check that f is a pdf. For the df F of X we have (Fig. 4)
F(x) =0 if x < 0,
x 2
F{x}:L:dr=% ifo<x<l,
F _[‘rdr+r{2 Nty 1 il exed
= — = Jx — — x o
==}, : ey
and
F(x)=1 if x> 2.
fix) Fix)
}
i= 1 Fix)
LN
l!' * | | o X
0 1 2 0 2
Fig. 4 Graph of F.

Fig. 3 Graphof [.
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Then FUNCTIONS OF A RANDOM VARIARLE &1
P{.B::Xgl.ﬁ}=P{Xst.5}__p{xs 3) i i
] = .B83. and o, it
Example 6. Let k > 0 be a constant, and Fix) = ‘x. 0<x<1,
b s x
kx(l — x),
flx) = { o ) I=x=u, is the df of the rv degenerate at x = 0, and F(x) is the df with
0, otherwise, Here Fyx) 15 h 15 wi
Then I;f{'x_] dx = k/6. It follows that f(x) defines a df if Pt _ b O=x<i,
e 6. We '-'lﬂ.*.-.‘e . 142 0, otherwise,

3
PEY = g1 g j‘ .
{ } 6 0 xfl x} dx = -TE‘L OBLEMS 2.4

We conclude this discussion by emphasizing that the ¢ 1. Fet
considered ahnve rﬂfm onI]F a maH part nrﬂlﬁ Class of H.]I“;:‘tym ﬂf Vs Py = P{l = P}lm k= 01,2, O <p<l.

CIESSE& hﬂW&?ﬁrj contain Pl'&cﬁca |l]" all the random Vﬂ.ﬁ&hlﬁ ?‘ Thm twg T define the pmf of some rv? What is the df of this tv? If X is an v with
practice. We note without proof (see Chung [15], g'};m&t' gtﬂﬁk in ' E:;{Pni what is P{n < X < N}, where n, N(N > n) are positive integers?
decomposed into two parts according to CVErY df F cap ' 4 m.. B i e
— - Y B ' Yoes the function fy(x) = #%x e=*% if x >0, and = 0 if x < 0, where § > 0,
(9) ) = abf) +d = alF(os o gD ;B e
Here F; and F, are both df’s; F, is the - P

continuous (not necessarily absolutely

1e-*/#if x > 0, and = 0 otherwise,
further decomposed, but we will not go df? Find rresponding df.

| s of K do the following functions define the pmf of some rv?
Example 7. Let X be an rv with df . ¥ ¢ =0,1,2 =_

Note that the dth:&.Sj#
lutely continuous) in the i
neither discrete nor contin

where
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Theorem 1. Let X be an rv defined on (2, 5, p),

: s S Also, let o
measurable function on . Then g(.X) 15 also an rv. g be 4 B
el

Proaof.
(8(X) <y} = {Xeg (=0, y)

and since g is Borel-measurable, g (—o0, ¥]is a Bore] se :

' §
fe(X) < y} e &, and the proof is complete, Fﬂrl[n,.,,,l.:\3 tha
Theorem 2. Given an rv X with a known df, the d[ﬁirlhuliun
¥ = g(X), where g is a Borel-measurable function, is determineg of the )

Proof. We have
(D P{Y <y} = P{Xeg (-, y]}.

In what follows, we will always assume that the functions under cone:
| Borel-me ble Onside;
aflion are porel-measura p

f.«lf;ample 1. Let Xbe an rv with df F. Then |X], aX + b (where a % 4
" b are constants), X* (where k = 0 is an integer), and | X|* (g ~ 0) a
rv’'s. Define

i

re all

I"":{Xt IE[},
0, X <0,

and
X"' — ‘r: Xﬂ D,
0, X =D,

Then X, X are also rv’s. We have

P{iX| <y} =P{-y< X<y} = PX<y} - PlX < -y}
= ) —H-p+HX==y >0

P{ar+b5y}-——P{aX5y-b}

y—>b :
P{XET} i a0,
P{Xaf—;-ﬂ} if a<0;
0 if - p <0

W L =l=|'.},
P{X* <y} ={P{X < 0} If y .
PiX <0} +PlosX<yp i »>0

FUMCTIONS OF A RANDOM YVARIABLE h{]
4 r!"..'.
s milart "
i y (1 if v =0
Ipl ; 'I':_ = . : 1 :
; PlX = Vi if v=0.

, pv of the discrete type, and A be the countable set such that
1 1 and P{X = x} = 0for xe A. Let ¥ = g(X) be a one-to-one
piX € ']n' from A onto some set Hr, [hen the inverse map, g7}, is a single-
mappite . = of . To find P{Y = y}, we note that

PiLY = yi = PlglX)=yj=PFPiA=¢g I'{_L'J.?- ve B,
and PIY =yl =0, yeF.

.+ ¥ be a Poisson v with pmf
le g et .
pxamp

[e2 A, k=012 -31>0,
PiX =k} = H _
0, otherwise.
_ y? 4+ 3 Then y = x + 3 maps 4 =10, 1,2, -} onlo
LA ; ; 7. 12, 19, 28, ..+, The inverse map 18 x = + (¥ —73), and since
B 1o " ‘nut lues in A we take the positive square root of y — A
there ar

we have

negative va

B
' L 1‘3 / B\
PlY = yy = PIX = ¥y — 33 :‘T}’— 3}.; JE

and P{¥ =2} =0 elsewhere.

tion of a single-valued inverse on g is not necessary.

lly the restric :
If f;:z : finite (or even a countable) number of inverses for each y, from

countable additivity of P we have
PLY =y} = P{g(X) =y} = P{UX = a:8(@) = 2}

=EP{X=E13{.‘1}=}’}-

Example 3. Let X bean v with pmf

pixe 3] =4 Pi=-U =k REX Sl
P{X =1} =§ and Pix=2 =14

Let ¥ = X%, Then

A = {-25 '_1|-_-r [}l li 1}! and = {n‘ lll‘ 4}*
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We have
i
Yy = U,‘ : | = d
b+ B=8 y=qy = e 0N g 8700,
The case in which X is an rv of the i : . ]
we note that, if X is a continuous t:-';;]:-m;l:dui tijr:psecn::l ot Simpje imi]arl:f, if g’ < 0, then gis strictly decreasing and we have
function, ¥ = g(X) may not be an rv of the continuoyg ':yi?“‘ 5.121;:1 2 pY <3} = PiX = g ')
. & — ey =1 : :
Example 4. _Let X be an rv with uniform distribution on AT S tEpt e o
the pdf of X' is f(x) = 1/2, —1 < x < 1, and = 0 elsewhe =, 1], thay . '
Then, from Example 1, ¢ Let y = J;f‘ so that
0, Y <0, Wy) = —flg"'O) - %g_l{}r}.
;5 y=20
PFiF=sy;= . -1 ictly d ing, ()i ;
{ } 4o eyt gince & and g ' are both strictly decreasing, d/dy g '(y) is negative and (2)
1, y>1. follows-

Note that (see Theorem P.2.15)

d -1 1
dy g d g(x)/dx \,-_-.,—lg,a'

Example 4 shows that we need some
is also an rv of the continuous type whenev
the case when g is a continuous
ficient condition is given in the f

[

_~Theorem 3. Let X be an rv of :
be differentiable for all x th
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5. Let X have the density f(x) =1, 0 < » _
f;:nﬂet ¥ = e*. Then X = log ¥, and we have L ang =
1 ml:bh;‘ Thus _:L_ oI di<y
M) =|5 L 0<logy<y, O - :
0, y = 0.
that is, 8 Let X be an v with pdf
1 ampi® ™ 2x
2 ] < EX e D<x<m,
hy) = {-v e 1) =4
; otherwise. ‘ otherwise.
- = ¢ and 3 (his case g'(x) = cos x > 0 for x in (0, =(2) 'am? < 0 for
If Y 2 log X, then x y = sin X. :1: th:!-t the conditions of Theorem 3 are not sa'l:mﬁl_r.l:".. To
hy) =|— Le | . 1, 0D<e?? <1, ¢ in wﬂ"m: pdf of ¥ we return to (1) and see that the df of Y is given by

o
—_—

- t
{%e »2 0<y<o, comput® pY<y)=PEnXs<y, 0<y<l,
0, otherwise, =Pilo<s X = 2] U P < X < xl),

= 1 — sin"ly. Thus

,.Ei;mph‘- 6. Let X be a nonnegative rv of the continuoys type with rip . sin-ly and X2

and let @ > 0. Let ¥ = X*. Then where X1 o  a
= x
pr <9y = {57 S pr<s) = f s | fo
Pi= i LT 2 X

The pdf of ¥ is given by

‘l

Let ¥ = X° In this case, g'(x)
x < 0, so that the conditions ol

P(Y<y} =

o
1
d

L

where F is the df of X. Th
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(b) there does not exist any x such that g(x) = ¥
case we write n(y) = 0. :

E'{x} * (),
Then ¥ is a continuous rv with pdf given by in ""’hiql i

e [ pIWAENCY) (FHENGD) T g
0

ifn =g,
/ Example 9. Let X be an rv with pdf £ and let y _

x(¥) =¥, x:(y) = —y for y > 0, and

hf."') ={f(.}’:l+f(—y}* J-"::-ﬂ‘

» Yy =0.
Thus, if f(x)=1/2, —1 < x < 1, and = 0 otherwise, then

, O0sysi,
) { ) otherwise,

If f(x) = (1/4/2z) E_E‘aﬂ}! — 00 < X < o, then

M) = AT
Example 10. Let X be an rv of the c
Y = X*", where m is a pc
g(x) = 2mx*" ' > 0 for x> 0

we see that, for any y >0, n

follows that |

Remark 3. Th

X|.
! H“"“’"fml

FUNCTIONS OF A RANDOM VARIABLE

s
I S Then the df of Y is given by

gots An &

P{Y=<y} =P Xeg(—w,y)

P{XeZ g (~o0, )} n 4,

— 5 -]
EiP{IEA‘ N g (—o0, y1i}.
"4 Theorem 3 are satisfied by the restrict

nditions of . ¥ 1 T
If lh::ﬂm” obtain the pdf of ¥ on differentiating the df of Y. We remind
Ap
de

¢ that term-by-term differentiation is permissible if the differen.
the d Sﬂrias 15 unifﬂrml'j' convergent {E'EE. Theorem P'lllg‘lp
pate

11. Let X be an rv with pdf
xample b

1 =1,

x>l

e=n. 0> 0.

tet ¥ = sin X, and let sin ' y be the principal value. Then, for 0 <y < 1,
~ pisin X <V}

_pP0<X<sin'yor@n—Tr—sin'y<X<mz+siny

for all integers n = 1}
B v i)+ 3 PO e - STy S XS Dk By)

. _.::. .-"'-*...'v'-ﬂ"‘_.ti- X r:-:j_,?t. :ﬁ :-._.._ Ly

Vx—sin~1yl _ o—82n .r"rlin_-‘lr)]

. T e O W T EH&""’ sl ﬁ I'l‘-l _','lw:lu .
= "".-'I":_-'_l:‘:}'::-;ar _:4';!.{_.1_,_-5 Ty %&%-Exfji ; A _{:: ol S : LS
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Find the pmf's of the ws@ ¥Y=aX +b (b)) Y=Xx oy

3, Let Xbeanrv with pdf

0 if x <0,
f{x} = l ; if 0 < x < 1.
1.1"2 if 1 = x < oo,

Find the pdf of the rv 1/X.

3. Let X be a positive 1V of the continuous type with pdf s

the rv U = X/(1 + X). If, in particular, X has the pdf

l, 0 < X o= |
xX) = - ]
Ax) {'U. otherwise,

what is the pdf of U?

Find the df’s of ¥ and Z,
5. Let Xbeanrv with pdf

_[Be'= ifx =0,
So) {ﬂ otherwise.

Let ¥ = [X — 1/6F. Find the pdf of Y.

4. Let X be an rv with pdf f defined in Example 11. Let ¥ = cos x

6. A point is chosen at random on the circumference of a circle of rag;
center at the origin, that is, the polar angle f of the point chosen ha;ada

f0) = 2 (=7 ).

Find the pdf of the abscissa of the point selected.

7. For the rv ¥ of Example 7 find the pdf of the following rv's: (a) ¥, = ex
o Yo 2Kt + 1, (© Y =g(X), where g()=1if x>0, =12 if f=

and‘=-1if'xf:(},

8. Suppose thata projectile is fired at an angle # above the earth with a velocity ¥,

Assuming that  is an rv with pdf

2 gz x
0 = & lfﬁ{ﬂ'{4,
0 otherwise,

find the pdf of the range R of the projectile, where R = V2 sin 20/g, g being the

gravitational constant.

9. Let X be an rv with pdf flx) = 1/2n) if0 < x < 27, and = 0 otherwise.

Let Y = sin X. Find the df and pdf of Y.

10. Let X be an v with pdf f(x) = 13if = 1 < xS 2. and = 0 otherwise.

Let ¥ = | X|. Find the pdf of Y.

(*)- Fing P

FLINC FIOMNS OF A RANDOM VARIABLE

11

pe an ™ with pdf flx) = (1/20) o

. ; 0=x<i,:s
Let }'.1'-' Find the pdf of Y. hud

0 otherwise,

flleiiy ) ;
i~ ks ' " |. . t 4 L
Lﬂ at X be an ¥ of the con 1“““_1'?“ type, and let ¥ = g{ X)) be defined as follows:
12 EL _qafx - 0, and == 11f x < Q.
(a) F[ﬂ pifx = p = xif|x| < b.and =— bifx < — b,
(o) gt*) ”_ eif 1%1 = b, and = 0if x| < b.
(c? g di l;;h-.:l'um of ¥ in each case.
the 417

prove Theorem 4.
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