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9.1 CHI-SQUARE GOODNESS-OF-FIT TESTS
We now consider applications of the very important chi-square statistic, first pro-
posed by Karl Pearson in 1900. As the reader will see, it is a very adaptable
test statistic and can be used for many different types of tests. In particular,
one application allows us to test the appropriateness of different probabilistic
models.

So that the reader can get some idea as to why Pearson first proposed his chi-
square statistic, we begin with the binomial case. That is, let Y1 be b(n,p1), where
0 < p1 < 1. According to the central limit theorem,

Z = Y1 − np1√
np1(1− p1)

has a distribution that is approximatelyN(0, 1) for large n, particularly when np1 ≥ 5
and n(1− p1) ≥ 5. Thus, it is not surprising that Q1 = Z2 is approximately χ2(1). If
we let Y2 = n− Y1 and p2 = 1− p1, we see that Q1 may be written as

Q1 = (Y1 − np1)2
np1(1− p1) =

(Y1 − np1)2
np1

+ (Y1 − np1)
2

n(1− p1) .

Since

(Y1 − np1)2 = (n− Y1 − n[1− p1])2 = (Y2 − np2)2,
we have

Q1 = (Y1 − np1)2
np1

+ (Y2 − np2)
2

np2
.

Let us now carefully consider each term in this last expression forQ1. Of course,
Y1 is the number of “successes,” and np1 is the expected number of “successes”; that
is,E(Y1) = np1. Likewise,Y2 and np2 are, respectively, the number and the expected
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416 Chapter 9 More Tests

number of “failures.” So each numerator consists of the square of the difference of
an observed number and an expected number. Note thatQ1 can be written as

Q1 =
2∑
i=1

(Yi − npi)2
npi

, (9.1-1)

and we have seen intuitively that it has an approximate chi-square distribution with
one degree of freedom. In a sense, Q1 measures the “closeness” of the observed
numbers to the corresponding expected numbers. For example, if the observed val-
ues of Y1 and Y2 equal their expected values, then the computed Q1 is equal to
q1 = 0; but if they differ much from them, then the computed Q1 = q1 is relatively
large.

To generalize, we let an experiment have k (instead of only two) mutually
exclusive and exhaustive outcomes, say, A1,A2, . . . ,Ak. Let pi = P(Ai), and thus∑k
i=1 pi = 1. The experiment is repeated n independent times, and we let Yi rep-

resent the number of times the experiment results in Ai, i = 1, 2, . . . ,k. This joint
distribution of Y1,Y2, . . . ,Yk−1 is a straightforward generalization of the binomial
distribution, as follows.

In considering the joint pmf, we see that

f (y1, y2, . . . , yk−1) = P(Y1 = y1,Y2 = y2, . . . ,Yk−1 = yk−1),
where y1, y2, . . . , yk−1 are nonnegative integers such that y1 + y2 + · · · + yk−1 ≤ n.
Note that we do not need to considerYk, since, once the other k−1 random variables
are observed to equal y1, y2, . . . , yk−1, respectively, we know that

Yk = n− y1 − y2 − · · · − yk−1 = yk, say.
From the independence of the trials, the probability of each particular arrangement
of y1 A1s, y2 A2s, . . . , yk Aks is

py11 p
y2
2 · · · pykk .

The number of such arrangements is the multinomial coefficient(
n

y1, y2, . . . , yk

)
= n!
y1! y2! · · · yk! .

Hence, the product of these two expressions gives the joint pmf of Y1,Y2, . . . ,Yk−1:

f (y1, y2, . . . , yk−1) = n!
y1! y2! · · · yk! p

y1
1 p

y2
2 · · · pykk .

(Recall that yk = n− y1 − y2 − · · · − yk−1.)
Pearson then constructed an expression similar to Q1 (Equation 9.1-1), which

involves Y1 and Y2 = n − Y1, that we denote by Qk−1, which involves
Y1,Y2, . . . ,Yk−1, and Yk = n− Y1 − Y2 − · · · − Yk−1, namely,

Qk−1 =
k∑
i=1

(Yi − npi)2
npi

.

He argued thatQk−1 has an approximate chi-square distribution with k− 1 degrees
of freedom in much the same way we argued that Q1 is approximately χ2(1). We
accept Pearson’s conclusion, as the proof is beyond the level of this text.

Some writers suggest that n should be large enough so that npi ≥ 5,
i = 1, 2, . . . ,k, to be certain that the approximating distribution is adequate. This is
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probably good advice for the beginner to follow, although we have seen the approx-
imation work very well when npi ≥ 1, i = 1, 2, . . . , k. The important thing to guard
against is allowing some particular npi to become so small that the corresponding
term in Qk−1, namely, (Yi − npi)2/npi, tends to dominate the others because of
its small denominator. In any case, it is important to realize that Qk−1 has only an
approximate chi-square distribution.

We shall now show how we can use the fact thatQk−1 is approximately χ2(k−1)
to test hypotheses about probabilities of various outcomes. Let an experiment have
kmutually exclusive and exhaustive outcomes, A1,A2, . . . ,Ak. We would like to test
whether pi = P(Ai) is equal to a known number pi0, i = 1, 2, . . . ,k. That is, we shall
test the hypothesis

H0 : pi = pi0, i = 1, 2, . . . , k.
In order to test such a hypothesis, we shall take a sample of size n; that is, we repeat
the experiment n independent times. We tend to favorH0 if the observed number of
times that Ai occurred, say, yi, and the number of times Ai was expected to occur if
H0 were true, namely, npi0, are approximately equal. That is, if

qk−1 =
k∑
i=1

(yi − npi0)2
npi0

is “small,” we tend to favor H0. Since the distribution of Qk−1 is approximately
χ2(k−1), we shall reject H0 if qk−1 ≥ χ2α(k−1), where α is the desired significance
level of the test.

Example
9.1-1

If persons are asked to record a string of random digits, such as

3 7 2 4 1 9 7 2 1 5 0 8 . . . ,

we usually find that they are reluctant to record the same or even the two clos-
est numbers in adjacent positions. And yet, in true random-digit generation, the
probability of the next digit being the same as the preceding one is p10 = 1/10,
the probability of the next being only one away from the preceding (assuming that
0 is one away from 9) is p20 = 2/10, and the probability of all other possibilities
is p30 = 7/10. We shall test one person’s concept of a random sequence by asking
her to record a string of 51 digits that seems to represent a random-digit generation.
Thus, we shall test

H0 : p1 = p10 = 1
10
, p2 = p20 = 2

10
, p3 = p30 = 7

10
.

The critical region for an α = 0.05 significance level is q2 ≥ χ20.05(2) = 5.991. The
sequence of digits was as follows:

5 8 3 1 9 4 6 7 9 2 6 3 0

8 7 5 1 3 6 2 1 9 5 4 8 0

3 7 1 4 6 0 4 3 8 2 7 3 9

8 5 6 1 8 7 0 3 5 2 5 2
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We went through this listing and observed how many times the next digit was the
same as or was one away from the preceding one:

Frequency Expected Number

Same 0 50(1/10) = 5

One away 8 50(2/10) = 10

Other 42 50(7/10) = 35

Total 50 50

The computed chi-square statistic is

(0− 5)2
5

+ (8− 10)
2

10
+ (42− 35)

2

35
= 6.8 > 5.991 = χ20.05(2).

Thus, we would say that this string of 51 digits does not seem to be random.

One major disadvantage in the use of the chi-square test is that it is a many-
sided test. That is, the alternative hypothesis is very general, and it would be difficult
to restrict alternatives to situations such as H1: p1 > p10, p2 > p20, p3 < p30 (with
k = 3). As a matter of fact, some statisticians would probably test H0 against this
particular alternativeH1 by using a linear function of Y1,Y2, and Y3. However, that
sort of discussion is beyond the scope of the book because it involves knowing more
about the distributions of linear functions of the dependent random variablesY1,Y2,
and Y3. In any case, the student who truly recognizes that this chi-square statistic
tests H0: pi = pi0, i = 1, 2, . . . ,k, against all alternatives can usually appreciate the
fact that it is more difficult to reject H0 at a given significance level α when the chi-
square statistic is used than it would be if some appropriate “one-sided” test statistic
were available.

Many experiments yield a set of data, say, x1, x2, . . . , xn, and the experimenter is
often interested in determining whether these data can be treated as the observed
values of a random sample X1,X2, . . . ,Xn from a given distribution. That is, would
this proposed distribution be a reasonable probabilistic model for these sample
items? To see how the chi-square test can help us answer questions of this sort,
consider a very simple example.

Example
9.1-2

Let X denote the number of heads that occur when four coins are tossed at ran-
dom. Under the assumption that the four coins are independent and the probability
of heads on each coin is 1/2, X is b(4, 1/2). One hundred repetitions of this experi-
ment resulted in 0, 1, 2, 3, and 4 heads being observed on 7, 18, 40, 31, and 4 trials,
respectively. Do these results support the assumptions? That is, is b(4, 1/2) a reason-
able model for the distribution of X? To answer this, we begin by letting A1 = {0},
A2 = {1}, A3 = {2}, A4 = {3}, and A5 = {4}. If pi0 = P(X ∈ Ai) when X is
b(4, 1/2), then



Section 9.1 Chi-Square Goodness-of-Fit Tests 419

p10 = p50 =
(
4
0

)(
1
2

)4
= 1
16

= 0.0625,

p20 = p40 =
(
4
1

)(
1
2

)4
= 4
16

= 0.25,

p30 =
(
4
2

)(
1
2

)4
= 6
16

= 0.375.

At an approximate α = 0.05 significance level, the null hypothesis
H0 : pi = pi0, i = 1, 2, . . . , 5,

is rejected if the observed value of Q4 is greater than χ20.05(4) = 9.488. If we use
the 100 repetitions of this experiment that resulted in the observed values y1 = 7,
y2 = 18, y3 = 40, y4 = 31, and y5 = 4, of Y1,Y2, . . . ,Y5, respectively, then the
computed value of Q4 is

q4 = (7− 6.25)2
6.25

+ (18− 25)
2

25
+ (40− 37.5)

2

37.5
+ (31− 25)

2

25
+ (4− 6.25)

2

6.25
= 4.47.

Since 4.47< 9.488, the hypothesis is not rejected. That is, the data support the
hypothesis that b(4, 1/2) is a reasonable probabilistic model for X. Recall that the
mean of a chi-square random variable is its number of degrees of freedom. In this
example, the mean is 4 and the observed value ofQ4 is 4.47, just a little greater than
the mean.

Thus far, all the hypotheses H0 tested with the chi-square statistic Qk−1 have
been simple ones (i.e., completely specified—namely, in H0: pi = pi0, i = 1, 2, . . . ,k,
each pi0 has been known). This is not always the case, and it frequently happens that
p10,p20, . . . ,pk0 are functions of one or more unknown parameters. For example,
suppose that the hypothesized model for X in Example 9.1-2 was H0: X is b(4,p),
0 < p < 1. Then

pi0 = P(X ∈ Ai) = 4!
(i− 1)!(5− i)!p

i−1(1− p)5−i, i = 1, 2, . . . , 5,

which is a function of the unknown parameter p. Of course, if H0: pi = pi0,
i = 1, 2, . . . , 5, is true, then, for large n,

Q4 =
5∑
i=1

(Yi − npi0)2
npi0

still has an approximate chi-square distribution with four degrees of freedom. The
difficulty is that when Y1,Y2, . . . ,Y5 are observed to be equal to y1, y2, . . . , y5, Q4
cannot be computed, since p10, p20, . . . ,p50 (and hence Q4) are functions of the
unknown parameter p.

One way out of the difficulty would be to estimate p from the data and then
carry out the computations with the use of this estimate. It is interesting to note
the following: Say the estimation of p is carried out by minimizing Q4 with respect
to p, yielding p̃. This p̃ is sometimes called a minimum chi-square estimator of p.
If, then, this p̃ is used in Q4, the statistic Q4 still has an approximate chi-square
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distribution, but with only 4 − 1 = 3 degrees of freedom. That is, the number of
degrees of freedom of the approximating chi-square distribution is reduced by one
for each parameter estimated by the minimum chi-square technique. We accept this
result without proof (as it is a rather difficult one). Although we have considered
it when pi0, i = 1, 2, . . . ,k, is a function of only one parameter, it holds when there
is more than one unknown parameter, say, d. Hence, in a more general situation,
the test would be completed by computing Qk−1, using Yi and the estimated pi0,
i = 1, 2, . . . ,k, to obtain qk−1 (i.e., qk−1 is the minimized chi-square). This value qk−1
would then be compared with a critical value χ2α(k−1−d). In our special case, the
computed (minimized) chi-square q4 would be compared with χ2α(3).

There is still one trouble with all of this: It is usually very difficult to find
minimum chi-square estimators. Hence, most statisticians usually use some reason-
able method of estimating the parameters. (Maximum likelihood is satisfactory.)
They then compute qk−1, recognizing that it is somewhat larger than the minimized
chi-square, and compare it with χ2α(k− 1− d). Note that this approach provides
a slightly larger probability of rejecting H0 than would the scheme in which the
minimized chi-square were used because the computed qk−1 is larger than the
minimum qk−1.

Example
9.1-3

Let X denote the number of alpha particles emitted by barium-133 in one tenth of
a second. The following 50 observations of X were taken with a Geiger counter in a
fixed position:

7 4 3 6 4 4 5 3 5 3

5 5 3 2 5 4 3 3 7 6

6 4 3 11 9 6 7 4 5 4

7 3 2 8 6 7 4 1 9 8

4 8 9 3 9 7 7 9 3 10

The experimenter is interested in determining whether X has a Poisson distribution.
To test H0: X is Poisson, we first estimate the mean of X—say, λ—with the sample
mean, x = 5.4, of these 50 observations. We then partition the set of outcomes for
this experiment into the setsA1 = {0, 1, 2, 3},A2 = {4},A3 = {5},A4 = {6},A5 = {7},
and A6 = {8, 9, 10, . . .}. (Note that we combined {0, 1, 2, 3} into one set A1 and
{8, 9, 10, . . .} into another A6 so that the expected number of outcomes for each set
would be at least five when H0 is true.) In Table 9.1-1, the data are grouped and the
estimated probabilities specified by the hypothesis that X has a Poisson distribution

Table 9.1-1 Grouped Geiger counter data

Outcome

A1 A2 A3 A4 A5 A6

Frequency 13 9 6 5 7 10

Probability 0.213 0.160 0.173 0.156 0.120 0.178

Expected (50pi) 10.65 8.00 8.65 7.80 6.00 8.90



Section 9.1 Chi-Square Goodness-of-Fit Tests 421

with an estimated λ̂ = x = 5.4 are given. Since one parameter was estimated, Q6−1
has an approximate chi-square distribution with r = 6−1−1 = 4 degrees of freedom.
Also, since

q5 = [13− 50(0.213)]2
50(0.213)

+ · · · + [10− 50(0.178)]
2

50(0.178)

= 2.763 < 9.488 = χ20.05(4),
H0 is not rejected at the 5% significance level. That is, with only these data, we are
quite willing to accept the model that X has a Poisson distribution.

Let us now consider the problem of testing a model for the distribution of a
random variableW of the continuous type. That is, if F(w) is the distribution function
ofW, we wish to test

H0 : F(w) = F0(w),
where F0(w) is some known distribution function of the continuous type. Recall that
we have considered problems of this type in which we used q–q plots. In order to use
the chi-square statistic, we must partition the set of possible values ofW into k sets.
One way this can be done is as follows: Partition the interval [0, 1] into k sets with
the points b0,b1,b2, . . . ,bk, where

0 = b0 < b1 < b2 < · · · < bk = 1.
Let ai = F−10 (bi), i = 1, 2, . . . ,k − 1; A1 = (−∞, a1], Ai = (ai−1, ai] for
i = 2, 3, . . . ,k − 1, and Ak = (ak−1,∞); and pi = P(W ∈ Ai), i = 1, 2, . . . ,k. Let
Yi denote the number of times the observed value ofW belongs toAi, i = 1, 2, . . . ,k,
in n independent repetitions of the experiment. Then Y1,Y2, . . . ,Yk have a multi-
nomial distribution with parameters n, p1,p2, . . . ,pk−1. Also, let pi0 = P(W ∈ Ai)
when the distribution function ofW is F0(w). The hypothesis that we actually test is
a modification of H0, namely,

H′0 : pi = pi0, i = 1, 2, . . . , k.
This hypothesis is rejected if the observed value of the chi-square statistic

Qk−1 =
k∑
i=1

(Yi − npi0)2
npi0

is at least as great as χ2α(k−1). If the hypothesis H′0: pi = pi0, i = 1, 2, . . . , k, is not
rejected, we do not reject the hypothesis H0: F(w) = F0(w).

Example
9.1-4

Example 6.1-5 gives 105 observations of the times in minutes between calls to 911.
Also given is a histogram of these data, with the exponential pdf with θ = 20 super-
imposed. We shall now use a chi-square goodness-of-fit test to see whether or not
this is an appropriate model for the data. That is, if X is equal to the time between
calls to 911, we shall test the null hypothesis that the distribution of X is exponen-
tial with a mean of θ = 20. Table 9.1-2 groups the data into nine classes and gives
the probabilities and expected values of these classes. Using the frequencies and
expected values, the chi-square goodness-of-fit statistic is

q8 = (41− 38.0520)2
38.0520

+ (22− 24.2655)
2

24.2655
+ · · · + (2− 2.8665)

2

2.8665
= 4.6861.
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Table 9.1-2 Summary of times between calls to 911

Class Frequency Probability Expected

A1 = [0, 9] 41 0.3624 38.0520

A2 = (9, 18] 22 0.2311 24.2655

A3 = (18, 27] 11 0.1473 15.4665

A4 = (27, 36] 10 0.0939 9.8595

A5 = (36, 45] 9 0.0599 6.2895

A6 = (45, 54] 5 0.0382 4.0110

A7 = (54, 63] 2 0.0244 2.5620

A8 = (63, 72] 3 0.0155 1.6275

A9 = (72,∞) 2 0.0273 2.8665

The p-value associated with this test is 0.7905, which means that it is an extremely
good fit.

Note that we assumed that we knew θ = 20. We could also have run this test let-
ting θ = x, remembering that we then lose one degree of freedom. For this example,
the outcome would be about the same.

It is also true, in dealing with models of random variables of the continuous type,
that we must frequently estimate unknown parameters. For example, let H0 be that
W isN(μ, σ 2), whereμ and σ 2 are unknown.With a random sampleW1,W2, . . . ,Wn,
we first can estimate μ and σ 2, possibly with w and s2w. We partition the space
{w : −∞ < w < ∞} into k mutually disjoint sets A1,A2, . . . ,Ak. We then use the
estimates of μ and σ 2—say, w and s2 = s2w, respectively, to estimate

p̂i0 =
∫
Ai

1

s
√
2π
exp

[
− (w− w)

2

2s2

]
dw,

i = 1, 2, . . . ,k. Using the observed frequencies y1, y2, . . . , yk of A1,A2, . . . ,Ak,
respectively, from the observed random sample w1,w2, . . . ,wn, and p̂10, p̂20, . . . , p̂k0
estimated with w and s2 = s2w, we compare the computed

qk−1 =
k∑
i=1

(yi − n̂pi0)2
n̂pi0

with χ2α(k−1−2). This value qk−1 will again be somewhat larger than that which
would be found using minimum chi-square estimation, and certain caution should be
observed. Several exercises illustrate the procedure in which one or more parame-
ters must be estimated. Finally, note that the methods given in this section frequently
are classified under the more general title of goodness-of-fit tests. In particular, then,
the tests in this section would be chi-square goodness-of-fit tests.
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Exercises

9.1-1. A 1-pound bag of candy-coated chocolate-covered
peanuts contained 224 pieces of candy, each colored
brown, orange, green, or yellow. Test the null hypothesis
that the machine filling these bags treats the four colors
of candy equally likely; that is, test

H0 : pB = pO = pG = pY = 1
4
.

The observed values were 42 brown, 64 orange, 53 green,
and 65 yellow candies. You may select the significance
level or give an approximate p-value.

9.1-2. A particular brand of candy-coated chocolate
comes in five different colors that we shall denote asA1 =
{brown}, A2 = {yellow}, A3 = {orange}, A4 = {green}, and
A5 = {coffee}. Let pi equal the probability that the color
of a piece of candy selected at random belongs to Ai,
i = 1, 2, . . . , 5. Test the null hypothesis
H0 : p1 = 0.4, p2 = 0.2, p3 = 0.2, p4 = 0.1, p5 = 0.1,

using a random sample of n = 580 pieces of candy whose
colors yielded the respective frequencies 224, 119, 130, 48,
and 59. You may select the significance level or give an
approximate p-value.

9.1-3. In the Michigan Lottery Daily3 Game, twice a day
a three-digit integer is generated one digit at a time. Let pi
denote the probability of generating digit i, i = 0, 1, . . . , 9.
Let α = 0.05, and use the following 50 digits to test
H0: p0 = p1 = · · · = p9 = 1/10:

1 6 9 9 3 8 5 0 6 7

4 7 5 9 4 6 5 6 4 4

4 8 0 9 3 2 1 5 4 5

7 3 2 1 4 6 7 1 3 4

4 8 8 6 1 6 1 2 8 8

9.1-4. In a biology laboratory, students use corn to test
the Mendelian theory of inheritance. The theory claims
that frequencies of the four categories “smooth and yel-
low,” “wrinkled and yellow,” “smooth and purple,” and
“wrinkled and purple” will occur in the ratio 9:3:3:1. If a
student counted 124, 30, 43, and 11, respectively, for these
four categories, would these data support the Mendelian
theory? Let α = 0.05.
9.1-5. Let X equal the number of female children in a
three-child family. We shall use a chi-square goodness-of-
fit statistic to test the null hypothesis that the distribution
of X is b(3, 0.5).

(a) Define the test statistic and critical region, using an
α = 0.05 significance level.

(b) Among students who were taking statistics, 52 came
from families with three children. For these families,

x = 0, 1, 2, and 3 for 5, 17, 24, and 6 families, respec-
tively. Calculate the value of the test statistic and
state your conclusion, considering how the sample was
selected.

9.1-6. It has been claimed that, for a pennyminted in 1999
or earlier, the probability of observing heads upon spin-
ning the penny is p = 0.30. Three students got together,
and they would each spin a penny and record the num-
ber X of heads out of the three spins. They repeated this
experiment n = 200 times, observing 0, 1, 2, and 3 heads
57, 95, 38, and 10 times, respectively. Use these data to
test the hypotheses that X is b(3, 0.30). Give limits for
the p-value of this test. In addition, out of the 600 spins,
calculate the number of heads occurring and then a 95%
confidence interval for p.

9.1-7. A rare type of heredity change causes the bac-
terium in E. coli to become resistant to the drug strep-
tomycin. This type of change, called mutation, can be
detected by plating many bacteria on petri dishes con-
taining an antibiotic medium. Any colonies that grow on
this medium result from a single mutant cell. A sample
of n = 150 petri dishes of streptomycin agar were each
plated with 106 bacteria, and the numbers of colonies
were counted on each dish. The observed results were
that 92 dishes had 0 colonies, 46 had 1, 8 had 2, 3 had
3, and 1 dish had 4 colonies. Let X equal the number of
colonies per dish. Test the hypothesis thatX has a Poisson
distribution. Use x = 0.5 as an estimate of λ. Let α = 0.01.
9.1-8. For determining the half-lives of radioactive iso-
topes, it is important to know what the background radi-
ation is for a given detector over a certain period. A
γ -ray detection experiment over 300 one-second intervals
yielded the following data:

0 2 4 6 6 1 7 4 6 1 1 2 3 6 4 2 7 4 4 2

2 5 4 4 4 1 2 4 3 2 2 5 0 3 1 1 0 0 5 2

7 1 3 3 3 2 3 1 4 1 3 5 3 5 1 3 3 0 3 2

6 1 1 4 6 3 6 4 4 2 2 4 3 3 6 1 6 2 5 0

6 3 4 3 1 1 4 6 1 5 1 1 4 1 4 1 1 1 3 3

4 3 3 2 5 2 1 3 5 3 2 7 0 4 2 3 3 5 6 1

4 2 6 4 2 0 4 4 7 3 5 2 2 3 1 3 1 3 6 5

4 8 2 2 4 2 2 1 4 7 5 2 1 1 4 1 4 3 6 2

1 1 2 2 2 2 3 5 4 3 2 2 3 3 2 4 4 3 2 2

3 6 1 1 3 3 2 1 4 5 5 1 2 3 3 1 3 7 2 5

4 2 0 6 2 3 2 3 0 4 4 5 2 5 3 0 4 6 2 2

2 2 2 5 2 2 3 4 2 3 7 1 1 7 1 3 6 0 5 3

0 0 3 3 0 2 4 3 1 2 3 3 3 4 3 2 2 7 5 3

5 1 1 2 2 6 1 3 1 4 4 2 3 4 5 1 3 4 3 1

0 3 7 4 0 5 2 5 4 4 2 2 3 2 4 6 5 5 3 4
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Do these look like observations of a Poisson random vari-
able with mean λ = 3? To answer this question, do the
following:

(a) Find the frequencies of 0, 1, 2, . . . , 8.

(b) Calculate the sample mean and sample variance. Are
they approximately equal to each other?

(c) Construct a probability histogram with λ = 3 and a
relative frequency histogram on the same graph.

(d) Use α = 0.05 and a chi-square goodness-of-fit test to
answer this question.

9.1-9. Let X equal the amount of butterfat (in pounds)
produced by 90 cows during a 305-day milk produc-
tion period following the birth of their first calf. Test
the hypothesis that the distribution of X is N(μ, σ 2),
using k = 10 classes of equal probability. You may take
x = 511.633 and sx = 87.576 as estimates of μ and σ ,
respectively. The data are as follows:

486 537 513 583 453 510 570 500 458 555

618 327 350 643 500 497 421 505 637 599

392 574 492 635 460 696 593 422 499 524

539 339 472 427 532 470 417 437 388 481

537 489 418 434 466 464 544 475 608 444

573 611 586 613 645 540 494 532 691 478

513 583 457 612 628 516 452 501 453 643

541 439 627 619 617 394 607 502 395 470

531 526 496 561 491 380 345 274 672 509

9.1-10. A biologist is studying the life cycle of the avian
schistosome that causes swimmer’s itch. His study uses
Menganser ducks for the adult parasites and aquatic
snails as intermediate hosts for the larval stages. The
life history is cyclic. (For more information, see http://
swimmersitch.org/.) As a part of this study, the biologist
and his students used snails from a natural population to
measure the distances (in cm) that snails travel per day.
The conjecture is that snails that had a patent infection
would not travel as far as those without without such an
infection.

Here are the measurements in cm that snails traveled
per day. There are 39 in the infected group and 31 in the
control group.

Distances for Infected Snail Group (ordered):

263 238 226 220 170 155 139 123 119 107 107 97 90

90 90 79 75 74 71 66 60 55 47 47 47 45

43 41 40 39 38 38 35 32 32 28 19 10 10

Distances for Control Snail Group (ordered):

314 300 274 246 190 186 185 182 180 141 132

129 110 100 95 95 93 83 55 52 50 48

48 44 40 32 30 25 24 18 7

(a) Find the sample means and sample standard devia-
tions for the two groups of snails.

(b) Make box plots of the two groups of snails on the
same graph.

(c) For the control snail group, test the hypothesis that
the distances come from an exponential distribution.
Use x as an estimate of θ . Group the data into 5
or 10 classes, with equal probabilities for each class.
Thus, the expected value will be either 6.2 or 3.1,
respectively.

(d) For the infected snail group, test the hypothesis that
the distances come from a gamma distribution with
α = 2 and θ = 42. Use 10 classes with equal probabili-
ties so that the expected value of each class is 3.9. Use
Minitab or some other computer program to calculate
the boundaries of the classes.

9.1-11. In Exercise 6.1-4, data are given for the melting
points for 50 metal alloy filaments. Here the data are
repeated:

320 326 325 318 322 320 329 317 316 331

320 320 317 329 316 308 321 319 322 335

318 313 327 314 329 323 327 323 324 314

308 305 328 330 322 310 324 314 312 318

313 320 324 311 317 325 328 319 310 324

Test the hypothesis that these are observations of a
normally distributed random variable. Note that youmust
estimate two parameters: μ and σ .

9.2 CONTINGENCY TABLES
In this section, we demonstrate the flexibility of the chi-square test. We first look
at a method for testing whether two or more multinomial distributions are equal,
sometimes called a test for homogeneity. Then we consider a test for independence of
attributes of classification. Both of these lead to a similar test statistic.
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Suppose that each of two independent experiments can end in one of the k
mutually exclusive and exhaustive events A1,A2, . . . ,Ak. Let

pij = P(Ai), i = 1, 2, . . . ,k, j = 1, 2.
That is, p11,p21, . . . ,pk1 are the probabilities of the events in the first experi-
ment, and p12,p22, . . . ,pk2 are those associated with the second experiment. Let
the experiments be repeated n1 and n2 independent times, respectively. Also,
let Y11,Y21, . . . ,Yk1 be the frequencies of A1,A2, . . . ,Ak associated with the n1
independent trials of the first experiment. Similarly, let Y12,Y22, . . . ,Yk2 be the
respective frequencies associated with the n2 trials of the second experiment. Of
course,

∑k
i=1 Yij = nj, j = 1, 2. From the sampling distribution theory corresponding

to the basic chi-square test, we know that each of

k∑
i=1

(Yij − njpij)2
njpij

, j = 1, 2,

has an approximate chi-square distribution with k − 1 degrees of freedom. Since
the two experiments are independent (and thus the two chi-square statistics are
independent), the sum

2∑
j=1

k∑
i=1

(Yij − njpij)2
njpij

is approximately chi-square with k− 1+ k− 1 = 2k− 2 degrees of freedom.
Usually, the pij, i = 1, 2, . . . ,k, j = 1, 2, are unknown, and frequently we wish to

test the hypothesis

H0 : p11 = p12, p21 = p22, . . . , pk1 = pk2;
that is, H0 is the hypothesis that the corresponding probabilities associated with the
two independent experiments are equal. UnderH0, we can estimate the unknown

pi1 = pi2, i = 1, 2, . . . , k,
by using the relative frequency (Yi1 + Yi2)/(n1 + n2), i = 1, 2, . . . , k. That is, if H0
is true, we can say that the two experiments are actually parts of a larger one in
which Yi1+Yi2 is the frequency of the event Ai, i = 1, 2, . . . , k. Note that we have to
estimate only the k− 1 probabilities pi1 = pi2, using

Yi1 + Yi2
n1 + n2 , i = 1, 2, . . . , k− 1,

since the sum of the k probabilities must equal 1. That is, the estimator of pk1 =
pk2 is

1− Y11 + Y12
n1 + n2 − · · · − Yk−1,1 + Yk−1,2

n1 + n2 = Yk1 + Yk2
n1 + n2 .

Substituting these estimators, we find that

Q =
2∑
j=1

k∑
i=1

[Yij − nj(Yi1 + Yi2)/(n1 + n2)]2
nj(Yi1 + Yi2)/(n1 + n2)
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has an approximate chi-square distribution with 2k − 2 − (k − 1) = k − 1 degrees
of freedom. Here k − 1 is subtracted from 2k − 2, because that is the number of
estimated parameters. The critical region for testing H0 is of the form

q ≥ χ2α(k−1).

Example
9.2-1

To test two methods of instruction, 50 students are selected at random from each of
two groups. At the end of the instruction period, each student is assigned a grade
(A, B, C, D, or F) by an evaluating team. The data are recorded as follows:

Grade

A B C D F Totals

Group I 8 13 16 10 3 50

Group II 4 9 14 16 7 50

Accordingly, if the hypothesis H0 that the corresponding probabilities are equal is
true, then the respective estimates of the probabilities are

8+ 4
100

= 0.12, 0.22, 0.30, 0.26, 3+ 7
100

= 0.10.

Thus, the estimates of n1pi1 = n2pi2 are 6, 11, 15, 13, and 5, respectively. Hence, the
computed value of Q is

q = (8− 6)2
6

+ (13− 11)
2

11
+ (16− 15)

2

15
+ (10− 13)

2

13
+ (3− 5)

2

5

+ (4− 6)
2

6
+ (9− 11)

2

11
+ (14− 15)

2

15
+ (16− 13)

2

13
+ (7− 5)

2

5

= 4
6
+ 4
11
+ 1
15
+ 9
13
+ 4
5
+ 4
6
+ 4
11
+ 1
15
+ 9
13
+ 4
5
= 5.18.

Now, under H0, Q has an approximate chi-square distribution with k − 1 = 4
degrees of freedom, so the α = 0.05 critical region is q ≥ 9.488 = χ20.05(4). Here
q= 5.18< 9.488, and hence H0 is not rejected at the 5% significance level.
Furthermore, the p-value for q = 5.18 is 0.269, which is greater than most signifi-
cance levels. Thus, with these data, we cannot say that there is a difference between
the two methods of instruction.

It is fairly obvious how this procedure can be extended to testing the equality of
h independent multinomial distributions. That is, let

pij = P(Ai), i = 1, 2, . . . ,k, j = 1, 2, . . . , h,
and test

H0 : pi1 = pi2 = · · · = pih = pi, i = 1, 2, . . . , k.
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Repeat the jth experiment nj independent times, and let Y1j,Y2j, . . . ,Ykj denote the
frequencies of the respective events A1,A2, . . . ,Ak. Now,

Q =
h∑
j=1

k∑
i=1

(Yij − njpij)2
njpij

has an approximate chi-square distribution with h(k−1) degrees of freedom. Under
H0, we must estimate k− 1 probabilities, using

p̂i =
∑h
j=1 Yij∑h
j=1 nj

, i = 1, 2, . . . , k− 1,

because the estimate of pk follows from p̂k = 1− p̂1 − p̂2 − · · · − p̂k−1. We use these
estimates to obtain

Q =
h∑
j=1

k∑
i=1

(Yij − nĵpi)2
nĵpi

,

which has an approximate chi-square distribution, with its degrees of freedom given
by h(k− 1)− (k− 1) = (h− 1)(k− 1).

Let us see how we can use the preceding procedures to test the equality
of two or more independent distributions that are not necessarily multinomial.
Suppose first that we are given random variables U and V with distribution func-
tions F(u) and G(v), respectively. It is sometimes of interest to test the hypothesis
H0: F(x) = G(x) for all x. Previously, we considered tests of μU = μV , σ 2U = σ 2V . In
Section 8.4, we will look at the two-sample Wilcoxon test. Now we shall assume only
that the distributions are independent and of the continuous type.

We are interested in testing the hypothesis H0: F(x) = G(x) for all x. This
hypothesis will be replaced by another one. Partition the real line into k mutually
disjoint sets A1,A2, . . . ,Ak. Let

pi1 = P(U ∈ Ai), i = 1, 2, . . . ,k,
and

pi2 = P(V ∈ Ai), i = 1, 2, . . . ,k.
We observe that if F(x) = G(x) for all x, then pi1 = pi2, i = 1, 2, . . . ,k. We replace
the hypothesis H0: F(x) = G(x) with the less restrictive hypothesis H′0: pi1 = pi2,
i = 1, 2, . . . ,k. That is, we are now essentially interested in testing the equality of two
multinomial distributions.

Let n1 and n2 denote the number of independent observations of U and V,
respectively. For i = 1, 2, . . . , k, let Yij denote the number of these observations of
U and V, j = 1, 2, respectively, that fall into a set Ai. At this point, we proceed to
make the test of H′0 as described earlier. Of course, if H

′
0 is rejected at the (approx-

imate) significance level α, then H0 is rejected with the same probability. However,
if H′0 is true, H0 is not necessarily true. Thus, if H

′
0 is not rejected, then we do not

reject H0.
In applications, the question of how to selectA1,A2, . . . ,Ak is frequently raised.

Obviously, there is no single choice for k or for the dividing marks of the partition.
But it is interesting to observe that the combined sample can be used in this selec-
tion without upsetting the approximate distribution ofQ. For example, suppose that
n1 = n2 = 20. Then we could easily select the dividing marks of the partition so that
k = 4, and one fourth of the combined sample falls into each of the four sets.
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Example
9.2-2

Select, at random, 20 cars of each of two comparable major-brand models. All 40
cars are submitted to accelerated life testing; that is, they are driven many miles over
very poor roads in a short time, and their failure times (in weeks) are recorded as
follows:

Brand U: 25 31 20 42 39 19 35 36 44 26

38 31 29 41 43 36 28 31 25 38

Brand V: 28 17 33 25 31 21 16 19 31 27

23 19 25 22 29 32 24 20 34 26

If we use 23.5, 28.5, and 34.5 as dividing marks, we note that exactly one fourth of
the 40 cars fall into each of the resulting four sets. Thus, the data can be summarized
as follows:

A1 A2 A3 A4 Totals

Brand U 2 4 4 10 20

Brand V 8 6 6 0 20

The estimate of each pi is 10/40 = 1/4, which, multiplied by nj = 20, gives 5. Hence,
the computed Q is

q = (2− 5)2
5

+ (4− 5)
2

5
+ (4− 5)

2

5
+ (10− 5)

2

5
+ (8− 5)

2

5

+ (6− 5)
2

5
+ (6− 5)

2

5
+ (0− 5)

2

5

= 72
5
= 14.4 > 7.815 = χ20.05(3).

Also, the p-value is 0.0024. Thus, it seems that the two brands of cars have differ-
ent distributions for the length of life under accelerated life testing. Brand U seems
better than brand V.

Again, it should be clear how this approach can be extended to more than two
distributions, and this extension will be illustrated in the exercises.

Now let us suppose that a random experiment results in an outcome that can
be classified by two different attributes, such as height and weight. Assume that the
first attribute is assigned to one and only one of kmutually exclusive and exhaustive
event—say A1,A2, . . . ,Ak—and the second attribute falls into one and only one of h
mutually exclusive and exhaustive events—say, B1,B2, . . . ,Bh. Let the probability of
Ai ∩ Bj be defined by

pij = P(Ai ∩ Bj), i = 1, 2, . . . ,k, j = 1, 2, . . . , h.
The random experiment is to be repeated n independent times, and Yij will

denote the frequency of the event Ai ∩Bj. Since there are kh such events as Ai ∩Bj,
the random variable

Qkh−1 =
h∑
j=1

k∑
i=1

(Yij − npij)2
npij
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has an approximate chi-square distribution with kh−1 degrees of freedom, provided
that n is large.

Suppose that we wish to test the hypothesis of the independence of the A and B
attributes, namely,

H0 : P(Ai ∩ Bj) = P(Ai)P(Bj), i = 1, 2, . . . ,k, j = 1, 2, . . . , h.
Let us denote P(Ai) by pi· and P(Bj) by p·j; that is,

pi· =
h∑
j=1

pij = P(Ai) and p·j =
k∑
i=1

pij = P(Bj).

Of course,

1 =
h∑
j=1

k∑
i=1

pij =
h∑
j=1

p·j =
k∑
i=1

pi·.

Then the hypothesis can be formulated as

H0 : pij = pi·p·j, i = 1, 2, . . . , k, j = 1, 2, . . . ,h.
To test H0, we can use Qkh−1 with pij replaced by pi·p·j. But if pi·, i = 1, 2, . . . ,k,
and p·j, j = 1, 2, . . . , h, are unknown, as they usually are in applications, we cannot
computeQkh−1 once the frequencies are observed. In such a case, we estimate these
unknown parameters by

p̂i· = yi·
n
, where yi· =

h∑
j=1

yij

is the observed frequency of Ai, i = 1, 2, . . . ,k; and

p̂·j = y·j
n
, where y·j =

k∑
i=1

yij

is the observed frequency of Bj, j = 1, 2, . . . , h. Since
∑k
i=1 pi· =

∑h
j=1 p·j = 1, we

actually estimate only k−1+h−1 = k+h−2 parameters. So if these estimates are
used inQkh−1, with pij = pi·p·j, then, according to the rule stated earlier, the random
variable

Q =
h∑
j=1

k∑
i=1

[Yij − n(Yi·/n)(Y·j/n)]2
n(Yi·/n)(Y·j/n)

has an approximate chi-square distribution with kh−1− (k+h−2) = (k−1)(h−1)
degrees of freedom, provided that H0 is true. The hypothesis H0 is rejected if the
computed value of this statistic exceeds χ2α[(k−1)(h−1)].

Example
9.2-3

The 400 undergraduate students in a random sample at the University of Iowa were
classified according to the college in which the students were enrolled and according
to their gender. The results are recorded in Table 9.2-1, called a k× h contingency
table, where, in this case, k = 2 and h = 5. (Do not be concerned about the numbers
in parentheses at this point.) Incidentally, these data do actually reflect the compo-
sition of the undergraduate colleges at Iowa, but they were modified a little to make
the computations easier in this example.
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Table 9.2-1 Undergraduates at the University of Iowa

College

Gender Business Engineering Liberal Arts Nursing Pharmacy Totals

Male 21 16 145 2 6 190

(16.625) (9.5) (152) (7.125) (4.75)

Female 14 4 175 13 4 210

(18.375) (10.5) (168) (7.875) (5.25)

Totals 35 20 320 15 10 400

We desire to test the null hypothesis H0: pij = pi·p·j, i = 1, 2 and j = 1, 2, 3, 4, 5,
that the college in which a student enrolls is independent of the gender of that
student. Under H0, estimates of the probabilities are

p̂1· = 190
400

= 0.475 and p̂2· = 210
400

= 0.525

and

p̂·1 = 35
400

= 0.0875, p̂·2 = 0.05, p̂·3 = 0.8, p̂·4 = 0.0375, p̂·5 = 0.025.

The expected numbers n(yi·/n)(y·j/n) are computed as follows:

400(0.475)(0.0875) = 16.625,
400(0.525)(0.0875) = 18.375,
400(0.475)(0.05) = 9.5,

and so on. These are the values recorded in parentheses in Table 9.2-1. The computed
chi-square statistic is

q = (21− 16.625)2
16.625

+ (14− 18.375)
2

18.375
+ · · · + (4− 5.25)

2

5.25

= 1.15+ 1.04+ 4.45+ 4.02+ 0.32+ 0.29+ 3.69
+ 3.34+ 0.33+ 0.30 = 18.93.

Since the number of degrees of freedom equals (k− 1)(h− 1) = 4, this q = 18.93 >
13.28 = χ20.01(4), and we rejectH0 at the α = 0.01 significance level. Moreover, since
the first two terms of q come from the business college, the next two from engi-
neering, and so on, it is clear that the enrollments in engineering and nursing are
more highly dependent on gender than in the other colleges, because they have con-
tributed the most to the value of the chi-square statistic. It is also interesting to note
that one expected number is less than 5, namely, 4.75. However, as the associated
term in q does not contribute an unusual amount to the chi-square value, it does not
concern us.
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It is fairly obvious how to extend the preceding testing procedure to more than
two attributes. For example, if the third attribute falls into one and only one of
m mutually exclusive and exhaustive events—say, C1,C2, . . . ,Cm—then we test the
independence of the three attributes by using

Q =
m∑
r=1

h∑
j=1

k∑
i=1

[Yijr − n(Yi··/n)(Y·j·/n)(Y··r/n)]2
n(Yi··/n)(Y·j·/n)(Y··r/n)

,

where Yijr, Yi··, Y·j·, and Y··r are the respective observed frequencies of the events
Ai ∩ Bj ∩ Cr, Ai, Bj, and Cr in n independent trials of the experiment. If n is large
and if the three attributes are independent, then Q has an approximate chi-square
distribution with khm − 1 − (k − 1) − (h − 1) − (m − 1) = khm − k − h − m + 2
degrees of freedom.

Rather than explore this extension further, it is more instructive to note some
interesting uses of contingency tables.

Example
9.2-4

Say we observed 30 values x1, x2, . . . , x30 that are claimed to be the values of a
random sample. That is, the corresponding random variables X1,X2, . . . ,X30 were
supposed to be mutually independent and each of these random variables is sup-
posed to have the same distribution. Say, however, by looking at the 30 values, we
detect an upward trend which indicates that there might have been some depen-
dence and/or the random variables did not actually have the same distribution. One
simple way to test whether they could be thought of as being observed values of a
random sample is the following: Mark each x high (H) or low (L), depending on
whether it is above or below the sample median. Then divide the x values into three
groups: x1, . . . , x10; x11, . . . , x20; and x21, . . . , x30. Certainly, if the observations are
those of a random sample, we would expect five H’s and five L’s in each group. That
is, the attribute classified as H or L should be independent of the group number. The
summary of these data provides a 3 × 2 contingency table. For example, say the 30
values are

5.6 8.2 7.8 4.8 5.5 8.1 6.7 7.7 9.3 6.9

8.2 10.1 7.5 6.9 11.1 9.2 8.7 10.3 10.7 10.0

9.2 11.6 10.3 11.7 9.9 10.6 10.0 11.4 10.9 11.1

The median can be taken to be the average of the two middle observations in mag-
nitude, namely, 9.2 and 9.3. Marking each item H or L after comparing it with this
median, we obtain the following 3× 2 contingency table:

Group L H Totals

1 9 1 10

2 5 5 10

3 1 9 10

Totals 15 15 30
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Here each n(yi·/n)(y·j/n) = 30(10/30)(15/30) = 5, so that the computed value of
Q is

q = (9− 5)2
5

+ (1− 5)
2

5
+ (5− 5)

2

5
+ (5− 5)

2

5
+ (1− 5)

2

5
+ (9− 5)

2

5

= 12.8 > 5.991 = χ20.05(2),

since in this instance (k− 1)(h− 1) = 2 degrees of freedom. (The p-value is 0.0017.)
Hence, we reject the conjecture that these 30 values could be the observations of a
random sample. Obviously, modifications could be made to this scheme: dividing the
sample into more (or fewer) than three groups and rating items differently, such as
low (L), middle (M), and high (H).

It cannot be emphasized enough that the chi-square statistic can be used fairly
effectively in almost any situation in which there should be independence. For
example, suppose that we have a group of workers who have essentially the same
qualifications (training, experience, etc.). Many believe that the salary and gender of
the workers should be independent attributes, yet there have been several claims in
special cases that there is a dependence—or discrimination—in attributes associated
with such a problem.

Example
9.2-5

Two groups of workers have the same qualifications for a particular type of work.
Their experience in salaries is summarized by the following 2× 5 contingency table,
in which the upper bound of each salary range is not included in that listing:

Salary (Thousands of Dollars)

Group 27–29 29–31 31–33 33–35 35 and over Totals

1 6 11 16 14 13 60

2 5 9 8 6 2 30

Totals 11 20 24 20 15 90

To test whether the group assignment and the salaries seem to be independent
with these data at the α = 0.05 significance level, we compute

q = [6− 90(60/90)(11/90)]2
90(60/90)(11/90)

+ · · · + [2− 90(30/90)(15/90)]
2

90(30/90)(15/90)

= 4.752 < 9.488 = χ20.05(4).

Also, the p-value is 0.314. Hence, with these limited data, group assignment and
salaries seem to be independent.

Before turning to the exercises, note that we could have thought of the last two
examples in this section as testing the equality of two or more multinomial distri-
butions. In Example 9.2-4, the three groups define three binomial distributions, and
in Example 9.2-5, the two groups define two multinomial distributions. What would
have happened if we had used the computations outlined earlier in the section? It is
interesting to note that we obtain exactly the same value of chi-square and in each
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case the number of degrees of freedom is equal to (k−1)(h−1). Hence, it makes no
difference whether we think of it as a test of independence or a test of the equality
of several multinomial distributions. Our advice is to use the terminology that seems
most natural for the particular situation.

Exercises

9.2-1. We wish to see if two groups of nurses distribute
their time in six different categories about the same way.
That is, the hypothesis under consideration is H0: pi1 =
pi2, i = 1, 2, . . . , 6. To test this hypothesis, nurses are
observed at random throughout several days, each obser-
vation resulting in a mark in one of the six categories. A
summary of the results is given by the following frequency
table:

Category

1 2 3 4 5 6 Totals

Group I 95 36 71 21 45 32 300

Group II 53 26 43 18 32 28 200

Use a chi-square test with α = 0.05.
9.2-2. Suppose that a third group of nurses was observed
along with groups I and II of Exercise 9.2-1, resulting in
the respective frequencies 130, 75, 136, 33, 61, and 65. Test
H0: pi1 = pi2 = pi3, i = 1, 2, . . . , 6, at the α = 0.025
significance level.

9.2-3. Each of two comparable classes of 15 students
responded to two different methods of instructions, giving
the following scores on a standardized test:

Class U: 91 42 39 62 55 82 67 44

51 77 61 52 76 41 59

Class V: 80 71 55 67 61 93 49 78

57 88 79 81 63 51 75

Use a chi-square test with α = 0.05 to test the equality of
the distributions of test scores by dividing the combined
sample into three equal parts (low, middle, high).

9.2-4. Suppose that a third class (W) of 15 students was
observed along with classes U and V of Exercise 9.2-3,
resulting in scores of

91 73 67 83 59 98 87 69

78 80 65 94 82 74 85

Again, use a chi-square test with α = 0.05 to test the
equality of the three distributions by dividing the com-
bined sample into three equal parts.

9.2-5. In the following contingency table, 1015 individu-
als are classified by gender and by whether they favor,
oppose, or have no opinion on a complete ban on smoking
in public places:

Smoking in Public Places

Gender Favor Oppose No Opinion Totals

Male 262 231 10 503

Female 302 205 5 512

Totals 564 436 15 1015

Test the null hypothesis that gender and opinion on smok-
ing in public places are independent. Give the approxi-
mate p-value of this test.

9.2-6. A random survey of 100 students asked each stu-
dent to select the most preferred form of recreational
activity from five choices. Following are the results of the
survey:

Recreational Choice

Baseball Jogging
Gender Basketball Softball Swimming Running Tennis Totals

Male 21 5 9 12 13 60

Female 9 3 1 15 12 40

Totals 30 8 10 27 25 100

Test whether the choice is independent of the gender
of the respondent. Approximate the p-value of the test.
Would we reject the null hypothesis at α = 0.05?
9.2-7. One hundred music majors in a random sample
were classified as follows by gender and by the kind of
instrument (including voice) that they played:
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Instrument

Gender Piano Woodwind Brass String Vocal Totals

Male 4 11 15 6 9 45

Female 7 18 6 6 18 55

Totals 11 29 21 12 27 100

Test whether the selection of instrument is independent of
the gender of the respondent. Approximate the p-value of
this test.

9.2-8. A student who uses a certain college’s recreational
facilities was interested in whether there is a difference
between the facilities used by men and those used by
women. Use α = 0.05 and the following data to test the
null hypothesis that facility and gender are independent
attributes:

Facility

Racquetball
Gender Court Track Totals

Male 51 30 81

Female 43 48 91

Totals 94 78 172

9.2-9. A survey of high school girls classified them by two
attributes: whether or not they participated in sports and
whether or not they had one or more older brothers. Use
the following data to test the null hypothesis that these
two attributes of classification are independent:

Participated in Sports

Older Brother(s) Yes No Totals

Yes 12 8 20

No 13 27 40

Totals 25 35 60

Approximate the p-value of this test. Dowe reject the null
hypothesis if α = 0.05?
9.2-10. A random sample of 50 women who were tested
for cholesterol was classified according to age and choles-
terol level and grouped into the following contingency
table.

Cholesterol Level

Age <180 180–210 >210 Totals

<50 5 11 9 25

≥50 4 3 18 25

Totals 9 14 27 50

Test the null hypothesis H0: Age and cholesterol level
are independent attributes of classification. What is your
conclusion if α = 0.01?
9.2-11. Although high school grades and testing scores,
such as SAT or ACT, can be used to predict first-year col-
lege grade-point average (GPA), many educators claim
that a more important factor influencing GPA is the living
conditions of students. In particular, it is claimed that the
roommate of the student will have a great influence on his
or her grades. To test this hypothesis, suppose we selected
at random 200 students and classified each according to
the following two attributes:

(a) Ranking of the student’s roommate on a scale from
1 to 5, with 1 denoting a person who was difficult
to live with and discouraged scholarship, and 5 sig-
nifying a person who was congenial and encouraged
scholarship.

(b) The student’s first-year GPA.
Say this classification gives the following 5×4 contingency
table:

Grade-Point Average

Rank of Under
Roommate 2.00 2.00–2.69 2.70–3.19 3.20–4.00 Totals

1 8 9 10 4 31

2 5 11 15 11 42

3 6 7 20 14 47

4 3 5 22 23 53

5 1 3 11 12 27

Totals 23 35 78 64 200

Compute the chi-square statistic used to test the inde-
pendence of the two attributes, and compare it with the
critical value associated with α = 0.05.
9.2-12. In a psychology experiment, 140 students were
divided into majors emphasizing left-hemisphere brain
skills (e.g., philosophy, physics, and mathematics) and
majors emphasizing right-hemisphere skills (e.g., art,
music, theater, and dance). They were also classified into
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one of three groups on the basis of hand posture (right
noninverted, left inverted, and left noninverted). The data
are as follows:

LH RH

RN 89 29

LI 5 4

LN 5 8

Do these data show sufficient evidence to reject the claim
that the choice of college major is independent of hand
posture? Let α = 0.025.
9.2-13. A study was conducted to determine the media
credibility for reporting news. Those surveyed were asked
to give their age, gender, education, and the most credible
medium. The results of the survey are as follows:

Most Credible Medium

Age Newspaper Television Radio Totals

Under 35 30 68 10 108

35–54 61 79 20 160

Over 54 98 43 21 162

Totals 189 190 51 430

Most Credible Medium

Gender Newspaper Television Radio Totals

Male 92 108 19 219

Female 97 81 32 210

Totals 189 189 51 429

Most Credible Medium

Education Newspaper Television Radio Totals

Grade School 45 22 6 73

High School 94 115 30 239

College 49 52 13 114

Totals 188 189 49 426

(a) Test whether media credibility and age are indepen-
dent.

(b) Test whether media credibility and gender are inde-
pendent.

(c) Test whether media credibility and education are
independent.

(d) Give the approximate p-value for each test.

9.3 ONE-FACTOR ANALYSIS OF VARIANCE
Frequently, experimenters want to compare more than two treatments: yields of sev-
eral different corn hybrids; results due to three or more teaching techniques; or miles
per gallon obtained from many different types of compact cars. Sometimes the dif-
ferent treatment distributions of the resulting observations are due to changing the
level of a certain factor (e.g., different doses of a given drug). Thus, the consideration
of the equality of the different means of the various distributions comes under the
analysis of a one-factor experiment.

In Section 8.2, we discussed how to compare the means of two normal distri-
butions. More generally, let us now consider m normal distributions with unknown
means μ1,μ2, . . . ,μm and an unknown, but common, variance σ 2. One inference
that we wish to consider is a test of the equality of the m means, namely, H0:
μ1 = μ2 = · · · = μm = μ, with μ unspecified, against all possible alternative
hypotheses H1. In order to test this hypothesis, we shall take independent random
samples from these distributions. LetXi1,Xi2, . . . ,Xini represent a random sample of
size ni from the normal distributionN(μi, σ 2), i = 1, 2, . . . ,m. In Table 9.3-1, we have
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Table 9.3-1 One-factor random samples

Means

X1: X11 X12 · · · X1n1 X1·

X2: X21 X22 · · · X2n2 X2·

...
...

...
...

...
...

Xm: Xm1 Xm2 · · · Xmnm Xm·

Grand Mean: X ··

indicated these random samples along with the row means (sample means), where,
with n = n1 + n2 + · · · + nm,

X ·· = 1
n

m∑
i=1

ni∑
j=1

Xij and Xi· = 1
ni

ni∑
j=1

Xij, i = 1, 2, . . . ,m.

The dot in the notation for the means,X ·· andXi·, indicates the index over which
the average is taken. Here X ·· is an average taken over both indices, while Xi· is
taken over just the index j.

To determine a critical region for a test of H0, we shall first partition the sum of
squares associated with the variance of the combined samples into two parts. This
sum of squares is given by

SS(TO) =
m∑
i=1

ni∑
j=1
(Xij −X ··)2

=
m∑
i=1

ni∑
j=1
(Xij −Xi· +Xi· −X ··)2

=
m∑
i=1

ni∑
j=1
(Xij −Xi·)2 +

m∑
i=1

ni∑
j=1
(Xi· −X ··)2

+ 2
m∑
i=1

ni∑
j=1
(Xij −Xi·)(Xi· −X ··).

The last term of the right-hand member of this identity may be written as

2
m∑
i=1

⎡⎣(Xi· −X ··) ni∑
j=1
(Xij −Xi·)

⎤⎦ = 2 m∑
i=1
(Xi· −X ··)(niXi· − niXi·) = 0,

and the preceding term may be written as

m∑
i=1

ni∑
j=1
(Xi· −X ··)2 =

m∑
i=1

ni(Xi· −X ··)2.
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Thus,

SS(TO) =
m∑
i=1

ni∑
j=1
(Xij −Xi·)2 +

m∑
i=1

ni(Xi· −X ··)2.

For notation, let

SS(TO) =
m∑
i=1

ni∑
j=1
(Xij −X ··)2, the total sum of squares;

SS(E) =
m∑
i=1

ni∑
j=1
(Xij −Xi·)2, the sum of squares within treatments,

groups, or classes, often called the error

sum of squares;

SS(T) =
m∑
i=1

ni (Xi· −X ··)2, the sum of squares among the different
treatments, groups, or classes, often called

the between-treatment sum of squares.

Hence,

SS(TO) = SS(E)+ SS(T).
When H0 is true, we may regard Xij, i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, as a random

sample of size n = n1 + n2 + · · · + nm from the normal distribution N(μ, σ 2). Then
SS(TO)/(n − 1) is an unbiased estimator of σ 2 because SS(TO)/σ 2 is χ2(n−1), so
that E[SS(TO)/σ 2] = n− 1 and E[SS(TO)/(n− 1)] = σ 2. An unbiased estimator of
σ 2 based only on the sample from the ith distribution is

Wi =

ni∑
j=1
(Xij −Xi·)2

ni − 1 for i = 1, 2, . . . ,m,

because (ni − 1)Wi/σ
2 is χ2(ni−1). Thus,

E
[
(ni − 1)Wi

σ 2

]
= ni − 1,

and so

E(Wi) = σ 2, i = 1, 2, . . . ,m.
It follows that the sum of m of these independent chi-square random variables,
namely,

m∑
i=1

(ni − 1)Wi

σ 2
= SS(E)

σ 2
,

is also chi-square with (n1−1)+(n2−1)+· · ·+(nm−1) = n−m degrees of freedom.
Hence, SS(E)/(n−m) is an unbiased estimator of σ 2. We now have

SS(TO)
σ 2

= SS(E)
σ 2

+ SS(T)
σ 2

,
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where

SS(TO)
σ 2

is χ2(n−1) and
SS(E)
σ 2

is χ2(n−m).

Because SS(T) ≥ 0, there is a theorem (see subsequent remark) which states
that SS(E) and SS(T) are independent and the distribution of SS(T)/σ 2 is
χ2(m−1).

REMARK The sums of squares, SS(T), SS(E), and SS(TO), are examples of
quadratic forms in the variables Xij, i = 1, 2, . . . ,m, j = 1, 2, . . . , ni. That is, each
term in these sums of squares is of second degree in Xij. Furthermore, the coeffi-
cients of the variables are real numbers, so these sums of squares are called real
quadratic forms. The next theorem, stated without proof, is used in this chapter.
[For a proof, see Hogg, McKean, and Craig, Introduction to Mathematical Statistics,
7th ed. (Upper Saddle River: Prentice Hall, 2013).]

Theorem
9.3-1

Let Q = Q1 + Q2 + · · · + Qk, where Q,Q1, . . . ,Qk are k + 1 real quadratic
forms in n mutually independent random variables normally distributed with the
same variance σ 2. Let Q/σ 2,Q1/σ 2, . . . ,Qk−1/σ 2 have chi-square distributions
with r, r1, . . . , rk−1 degrees of freedom, respectively. IfQk is nonnegative, then

(a) Q1, . . . ,Qk are mutually independent, and hence,

(b) Qk/σ 2 has a chi-square distribution with r− (r1+ · · ·+ rk−1) = rk degrees of
freedom.

Since, underH0, SS(T)/σ 2 is χ2(m−1), we haveE[SS(T)/σ 2] = m−1 and it fol-
lows that E[SS(T)/(m− 1)] = σ 2. Now, the estimator of σ 2, namely, SS(E)/(n−m),
which is based on SS(E), is always unbiased, whether H0 is true or false. However,
if the means μ1,μ2, . . . ,μm are not equal, the expected value of the estimator
that is based on SS(T) will be greater than σ 2. To make this last statement clear,
we have

E[SS(T)] = E
[
m∑
i=1

ni(Xi· −X ··)2
]
= E

[
m∑
i=1

niX
2
i· − nX2··

]

=
m∑
i=1

ni{Var(Xi·)+ [E(Xi·)]2} − n{Var(X ··)+ [E(X ··)]2}

=
m∑
i=1

ni

{
σ 2

ni
+ μ2i

}
− n
{
σ 2

n
+ μ2

}

= (m− 1)σ 2 +
m∑
i=1

ni(μi − μ)2,

where μ = (1/n)∑m
i=1 niμi. If μ1 = μ2 = · · · = μm = μ, then

E
(
SS(T)
m− 1

)
= σ 2.
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If the means are not all equal, then

E
[
SS(T)
m− 1

]
= σ 2 +

m∑
i=1

ni
(μi − μ)2
m− 1 > σ 2.

We can base our test of H0 on the ratio of SS(T)/(m − 1) and SS(E)/(n − m),
both of which are unbiased estimators of σ 2, provided that H0: μ1 = μ2 = · · · = μm
is true, so that, underH0, the ratio would assume values near 1. However, in the case
that the means μ1,μ2, . . . ,μm begin to differ, this ratio tends to become large, since
E[SS(T)/(m− 1)] gets larger. Under H0, the ratio

SS(T)/(m− 1)
SS(E)/(n−m) =

[SS(T)/σ 2]/(m− 1)
[SS(E)/σ 2]/(n−m) = F

has an F distribution withm−1 and n−m degrees of freedom because SS(T)/σ 2 and
SS(E)/σ 2 are independent chi-square variables. We would reject H0 if the observed
value of F is too large because this would indicate that we have a relatively large
SS(T), suggesting that the means are unequal. Thus, the critical region is of the form
F ≥ Fα(m−1,n−m).

The information used for tests of the equality of several means is often summa-
rized in an analysis-of-variance table, orANOVA table, like that given in Table 9.3-2,
where the mean square (MS) is the sum of squares (SS) divided by its degrees of
freedom.

Example
9.3-1

Let X1,X2,X3,X4 be independent random variables that have normal distributions
N(μi, σ 2), i = 1, 2, 3, 4. We shall test

H0 : μ1 = μ2 = μ3 = μ4 = μ

against all alternatives on the basis of a random sample of size ni = 3 from each of
the four distributions. A critical region of size α = 0.05 is given by

F = SS(T)/(4− 1)
SS(E)/(12− 4) ≥ 4.07 = F0.05(3, 8).

The observed data are shown in Table 9.3-3. (Clearly, these data are not observations
from normal distributions; they were selected to illustrate the calculations.)

Table 9.3-2 Analysis-of-variance table

Source Sum of Squares (SS) Degrees of Freedom Mean Square (MS) F Ratio

Treatment SS(T) m− 1 MS(T)= SS(T)
m− 1

MS(T)
MS(E)

Error SS(E) n−m MS(E)= SS(E)
n−m

Total SS(TO) n− 1
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Table 9.3-3 Illustrative data

Observations Xi·

x1: 13 8 9 10

x2: 15 11 13 13

x3: 8 12 7 9

x4: 11 15 10 12

x·· 11

For the given data, the calculated SS(TO), SS(E), and SS(T) are

SS(TO) = (13− 11)2 + (8− 11)2 + · · · + (15− 11)2 + (10− 11)2 = 80,
SS(E) = (13− 10)2 + (8− 10)2 + · · · + (15− 12)2 + (10− 12)2 = 50,
SS(T) = 3[(10− 11)2 + (13− 11)2 + (9− 11)2 + (12− 11)2] = 30.

Note that since SS(TO) = SS(E) + SS(T), only two of the three values need to be
calculated directly from the data. Here the computed value of F is

30/3
50/8

= 1.6 < 4.07,

and H0 is not rejected. The p-value is the probability, under H0, of obtaining an F
that is at least as large as this computed value of F. It is often given by computer
programs.

The information for this example is summarized in Table 9.3-4. Again, we note
that (here and elsewhere) the F statistic is the ratio of two appropriate mean
squares.

Formulas that sometimes simplify the calculations of SS(TO), SS(T), and SS(E)
(and also reduce roundoff errors created by subtracting the averages from the
observations) are

Table 9.3-4 ANOVA table for illustrative data

Sum of Squares Degrees of Mean Square
Source (SS) Freedom (MS) F Ratio p-value

Treatment 30 3 30/3 1.6 0.264

Error 50 8 50/8

Total 80 11



Section 9.3 One-Factor Analysis of Variance 441

SS(TO) =
m∑
i=1

ni∑
j=1

X2ij −
1
n

⎡⎣ m∑
i=1

ni∑
j=1

Xij

⎤⎦2,
SS(T) =

m∑
i=1

1
ni

⎡⎣ ni∑
j=1

Xij

⎤⎦2 − 1
n

⎡⎣ m∑
i=1

ni∑
j=1

Xij

⎤⎦2,
and

SS(E) = SS(TO)− SS(T).
It is interesting to note that in these formulas each square is divided by the num-
ber of observations in the sum being squared: X2ij by 1, (

∑ni
j=1Xij)

2 by ni, and

(
∑m
i=1
∑ni
j=1Xij)

2 by n. The preceding formulas are used in Example 9.3-2. Although
they are useful, you are encouraged to use appropriate statistical packages on a
computer to aid you with these calculations.

If the sample sizes are all at least equal to 7, insight can be gained by plot-
ting box-and-whisker diagrams on the same figure, for each of the samples. This
technique is also illustrated in Example 9.3-2.

Example
9.3-2

A window that is manufactured for an automobile has five studs for attaching it. A
company that manufactures these windows performs “pullout tests” to determine
the force needed to pull a stud out of the window. Let Xi, i = 1, 2, 3, 4, 5, equal the
force required at position i, and assume that the distribution of Xi is N(μi, σ 2). We
shall test the null hypothesisH0: μ1 = μ2 = μ3 = μ4 = μ5, using seven independent
observations at each position. At an α = 0.01 significance level, H0 is rejected if the
computed

F = SS(T)/(5− 1)
SS(E)/(35− 5) ≥ 4.02 = F0.01(4, 30).

The observed data, along with certain sums, are given in Table 9.3-5. For these
data,

Table 9.3-5 Pullout test data

Observations
7∑
j=1

xij
7∑
j=1

x2ij

x1: 92 90 87 105 86 83 102 645 59,847

x2: 100 108 98 110 114 97 94 721 74,609

x3: 143 149 138 136 139 120 145 970 134,936

x4: 147 144 160 149 152 131 134 1017 148,367

x5: 142 155 119 134 133 146 152 981 138,415

Totals 4334 556,174
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SS(TO) = 556, 174− 1
35
(4334)2 = 19,500.97,

SS(T) = 1
7
(6452 + 7212 + 9702 + 10172 + 9812 )

− 1
35
(4334)2 = 16,672.11,

SS(E) = 19,500.97− 16,672.11 = 2828.86.

Since the computed F is

F = 16,672.11/4
2828.86/30

= 44.20,

the null hypothesis is clearly rejected. This information obtained from the equations
is summarized in Table 9.3-6.

But why is H0 rejected? The box-and-whisker diagrams shown in Figure 9.3-1
help to answer this question. It looks like the forces required to pull out studs in
positions 1 and 2 are similar, and those in positions 3, 4, and 5 are quite similar,
but different from, positions 1 and 2. (See Exercise 9.3-10.) An examination of the
window would confirm that this is the case.

As with the two-sample t test, the F test works quite well even if the underly-
ing distributions are nonnormal, unless they are highly skewed or the variances are
quite different. In these latter cases, we might need to transform the observations

Table 9.3-6 ANOVA table for pullout tests

Source Sum of Squares (SS) Degrees of Freedom Mean Square (MS) F

Treatment 16,672.11 4 4, 168.03 44.20

Error 2,828.86 30 94.30

Total 19,500.97 34

X1

80 100 120 140 160

X2

X3

X4

X5

Figure 9.3-1 Box plots for pullout tests
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to make the data more symmetric with about the same variances or to use certain
nonparametric methods that are beyond the scope of this text.

Exercises

(In some of the exercises that follow, we must make
assumptions, such as normal distributions with equal vari-
ances.)

9.3-1. Let μ1,μ2,μ3 be, respectively, the means of three
normal distributions with a common, but unknown, vari-
ance σ 2. In order to test, at the α = 0.05 significance level,
the hypothesis H0: μ1 = μ2 = μ3 against all possible
alternative hypotheses, we take a random sample of size
4 from each of these distributions. Determine whether we
accept or reject H0 if the observed values from the three
distributions are, respectively, as follows:

x1: 5 9 6 8

x2: 11 13 10 12

x3: 10 6 9 9

9.3-2. Let μi be the average yield in bushels per acre of
variety i of corn, i = 1, 2, 3, 4. In order to test the hypoth-
esis H0: μ1 = μ2 = μ3 = μ4 at the 5% significance level,
four test plots for each of the four varieties of corn are
planted. Determine whether we accept or reject H0 if the
yield in bushels per acre of the four varieties of corn are,
respectively, as follows:

x1: 158.82 166.99 164.30 168.73

x2: 176.84 165.69 167.87 166.18

x3: 180.16 168.84 170.65 173.58

x4: 151.58 163.51 164.57 160.75

9.3-3. Four groups of three pigs each were fed individu-
ally four different feeds for a specified length of time to
test the hypothesis H0: μ1 = μ2 = μ3 = μ4, where μi,
i = 1, 2, 3, 4, is the mean weight gain for each of the feeds.
Determine whether the null hypothesis is accepted or
rejected at a 5% significance level if the observed weight
gains in pounds are, respectively, as follows:

x1: 194.11 182.80 187.43

x2: 216.06 203.50 216.88

x3: 178.10 189.20 181.33

x4: 197.11 202.68 209.18

9.3-4. Ledolter and Hogg (see References) report that a
civil engineer wishes to compare the strengths of three
different types of beams, one (A) made of steel and two
(B and C) made of different and more expensive alloys.

A certain deflection (in units of 0.001 inch) was measured
for each beam when submitted to a given force; thus, a
small deflection would indicate a beam of great strength.
The order statistics for the three samples, of respective
sizes n1 = 8, n2 = 6, and n3 = 6, are as follows:

A: 79 82 83 84 85 86 86 87

B: 74 75 76 77 78 82

C: 77 78 79 79 79 82

(a) Use these data, α = 0.05, and the F test to test the
equality of the three means.

(b) For each set of data, construct box-and-whisker dia-
grams on the same figure and give an interpretation
of your diagrams.

9.3-5. The female cuckoo lays her eggs in other birds’
nests. The “foster parents” are usually deceived, proba-
bly because of the similarity in sizes of their own eggs
and cuckoo eggs. Latter (see References) investigated this
possible explanation and measured the lengths of cuckoo
eggs (in mm) that were found in the nests of three species.
Following are his results:

Hedge sparrow: 22.0 23.9 20.9 23.8 25.0

24.0 21.7 23.8 22.8 23.1

23.1 23.5 23.0 23.0

Robin: 21.8 23.0 23.3 22.4 23.0

23.0 23.0 22.4 23.9 22.3

22.0 22.6 22.0 22.1 21.1

23.0

Wren: 19.8 22.1 21.5 20.9 22.0

21.0 22.3 21.0 20.3 20.9

22.0 20.0 20.8 21.2 21.0

(a) Construct an ANOVA table to test the equality of the
three means.

(b) For each set of data, construct box-and-whisker dia-
grams on the same figure.

(c) Interpret your results.

9.3-6. Let X1,X2,X3,X4 equal the cholesterol level of a
woman under the age of 50, a man under 50, a woman 50
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or older, and a man 50 or older, respectively. Assume that
the distribution of Xi is N(μi, σ 2), i = 1, 2, 3, 4. We shall
test the null hypothesis H0: μ1 = μ2 = μ3 = μ4, using
seven observations of each Xi.

(a) Give a critical region for an α = 0.05 significance
level.

(b) Construct an ANOVA table and state your conclu-
sion, using the following data:

x1: 221 213 202 183 185 197 162

x2: 271 192 189 209 227 236 142

x3: 262 193 224 201 161 178 265

x4: 192 253 248 278 232 267 289

(c) Give bounds on the p-value for this test.

(d) For each set of data, construct box-and-whisker dia-
grams on the same figure and give an interpretation
of your diagram.

9.3-7. Montgomery (see References) examines the
strengths of a synthetic fiber that may be affected by
the percentage of cotton in the fiber. Five levels of this
percentage are considered, with five observations taken
at each level.

Percentage Tensile Strength
of Cotton in lb/in2

15 7 7 15 11 9

20 12 17 12 18 18

25 14 18 18 19 19

30 19 25 22 19 23

35 7 10 11 15 11

Use the F test, with α = 0.05, to see if there are differ-
ences in the breaking strengths due to the percentages of
cotton used.

9.3-8. Different sizes of nails are packaged in “1-pound”
boxes. Let Xi equal the weight of a box with nail size
(4i)C, i = 1, 2, 3, 4, 5, where 4C, 8C, 12C, 16C, and 20C are
the sizes of the sinkers from smallest to largest. Assume
that the distribution of Xi is N(μi, σ 2). To test the null
hypothesis that the mean weights of “1-pound” boxes are
all equal for different sizes of nails, we shall use ran-
dom samples of size 7, weighing the nails to the nearest
hundredth of a pound.

(a) Give a critical region for an α = 0.05 significance
level.

(b) Construct an ANOVA table and state your conclu-
sion, using the following data:

x1: 1.03 1.04 1.07 1.03 1.08 1.06 1.07

x2: 1.03 1.10 1.08 1.05 1.06 1.06 1.05

x3: 1.03 1.08 1.06 1.02 1.04 1.04 1.07

x4: 1.10 1.10 1.09 1.09 1.06 1.05 1.08

x5: 1.04 1.06 1.07 1.06 1.05 1.07 1.05

(c) For each set of data, construct box-and-whisker dia-
grams on the same figure and give an interpretation
of your diagrams.

9.3-9. Let Xi, i = 1, 2, 3, 4, equal the distance (in yards)
that a golf ball travels when hit from a tee, where i denotes
the index of the ith manufacturer. Assume that the distri-
bution of Xi is N(μi, σ 2), i = 1, 2, 3, 4, when a ball is hit
by a certain golfer. We shall test the null hypothesis H0:
μ1 = μ2 = μ3 = μ4, using three observations of each
random variable.

(a) Give a critical region for an α = 0.05 significance
level.

(b) Construct an ANOVA table and state your conclu-
sion, using the following data:

x1: 240 221 265

x2: 286 256 272

x3: 259 245 232

x4: 239 215 223

(c) What would your conclusion be if α = 0.025?
(d) What is the approximate p-value of this test?

9.3-10. From the box-and-whisker diagrams in Figure
9.3-1, it looks like the means of X1 and X2 could be equal
and also that the means of X3, X4, and X5 could be equal
but different from the first two.

(a) Using the data in Example 9.3-2, as well as a t test and
an F test, test H0: μ1 = μ2 against a two-sided alter-
native hypothesis. Let α = 0.05. Do the F and t tests
give the same result?

(b) Using the data in Example 9.3-2, test H0: μ3 = μ4 =
μ5. Let α = 0.05.

9.3-11. The driver of a diesel-powered automobile
decided to test the quality of three types of diesel fuel
sold in the area. The test is to be based on miles per gal-
lon (mpg). Make the usual assumptions, take α = 0.05,
and use the following data to test the null hypothesis that
the three means are equal:

Brand A: 38.7 39.2 40.1 38.9

Brand B: 41.9 42.3 41.3

Brand C: 40.8 41.2 39.5 38.9 40.3



Section 9.4 Two-Way Analysis of Variance 445

9.3-12. A particular process puts a coating on a piece of
glass so that it is sensitive to touch. Randomly throughout
the day, pieces of glass are selected from the produc-
tion line and the resistance is measured at 12 different
locations on the glass. On each of three different days,
December 6, December 7, and December 22, the follow-
ing data give the means of the 12 measurements on each
of 11 pieces of glass:

December 6: 175.05 177.44 181.94 176.51 182.12 164.34

163.20 168.12 171.26 171.92 167.87

December 7: 175.93 176.62 171.39 173.90 178.34 172.90

174.67 174.27 177.16 184.13 167.21

December 22: 167.27 161.48 161.86 173.83 170.75 172.90

173.27 170.82 170.93 173.89 177.68

(a) Use these data to test whether the means on all three
days are equal.

(b) Use box-and-whisker diagrams to confirm your
answer.

9.3-13. For an aerosol product, there are three weights:
the tare weight (container weight), the concentrate
weight, and the propellant weight. Let X1,X2,X3 denote
the propellant weights on three different days. Assume
that each of these independent random variables has a
normal distribution with common variance and respective
means μ1,μ2, and μ3. We shall test the null hypothesis
H0: μ1 = μ2 = μ3, using nine observations of each of the
random variables.

(a) Give a critical region for an α = 0.01 significance
level.

(b) Construct an ANOVA table and state your conclu-
sion, using the following data:

x1: 43.06 43.32 42.63 42.86 43.05

42.87 42.94 42.80 42.36

x2: 42.33 42.81 42.13 42.41 42.39

42.10 42.42 41.42 42.52

x3: 42.83 42.57 42.96 43.16 42.25

42.24 42.20 41.97 42.61

(c) For each set of data, construct box-and-whisker dia-
grams on the same figure and give an interpretation
of your diagrams.

9.3-14. Ledolter and Hogg (see References) report the
comparison of three workers with different experience
who manufacture brake wheels for a magnetic brake.
Worker A has four years of experience, worker B has
seven years, and worker C has one year. The company is
concerned about the product’s quality, which is measured
by the difference between the specified diameter and the
actual diameter of the brake wheel. On a given day, the
supervisor selects nine brake wheels at random from the
output of each worker. The following data give the dif-
ferences between the specified and actual diameters in
hundredths of an inch:

Worker A: 2.0 3.0 2.3 3.5 3.0 2.0 4.0 4.5 3.0

Worker B: 1.5 3.0 4.5 3.0 3.0 2.0 2.5 1.0 2.0

Worker C: 2.5 3.0 2.0 2.5 1.5 2.5 2.5 3.0 3.5

(a) Test whether there are statistically significant dif-
ferences in the quality among the three different
workers.

(b) Do box plots of the data confirm your answer in
part (a)?

9.3-15. Ledolter and Hogg (see References) report that
an operator of a feedlot wants to compare the effective-
ness of three different cattle feed supplements. He selects
a random sample of 15 one-year-old heifers from his lot of
over 1000 and divides them into three groups at random.
Each group gets a different feed supplement. Upon not-
ing that one heifer in group A was lost due to an accident,
the operator records the gains in weight (in pounds) over
a six-month period as follows:

Group A: 500 650 530 680

Group B: 700 620 780 830 860

Group C: 500 520 400 580 410

(a) Test whether there are differences in the mean weight
gains due to the three different feed supplements.

(b) Do box plots of the data confirm your answer in
part (a)?

9.4 TWO-WAY ANALYSIS OF VARIANCE
The test of the equality of several means, considered in Section 9.3, is an example of
a statistical inference method called the analysis of variance (ANOVA). This method
derives its name from the fact that the quadratic form SS(TO) = (n−1)S2—the total
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sum of squares about the combined sample mean—is decomposed into its compo-
nents and analyzed. In this section, other problems in the analysis of variance will
be investigated; here we restrict our considerations to the two-factor case, but the
reader can see how it can be extended to three-factor and other cases.

Consider a situation in which it is desirable to investigate the effects of two fac-
tors that influence an outcome of an experiment. For example, a teaching method
(lecture, discussion, computer assisted, television, etc.) and the size of a class might
influence a student’s score on a standard test; or the type of car and the grade of
gasoline used might change the number of miles per gallon. In this latter example, if
the number of miles per gallon is not affected by the grade of gasoline, we would no
doubt use the least expensive grade.

The first analysis-of-variance model that we discuss is referred to as a two-
way classification with one observation per cell. Assume that there are two factors
(attributes), one of which has a levels and the other b levels. There are thus n = ab
possible combinations, each of which determines a cell. Let us think of these cells
as being arranged in a rows and b columns. Here we take one observation per cell,
and we denote the observation in the ith row and jth column by Xij. Assume fur-
ther that Xij is N(μij, σ 2), i = 1, 2, . . . , a, and j = 1, 2, . . . , b; and the n = ab random
variables are independent. [The assumptions of normality and homogeneous (same)
variances can be somewhat relaxed in applications, with little change in the signifi-
cance levels of the resulting tests.] We shall assume that the means μij are composed
of a row effect, a column effect, and an overall effect in some additive way, namely,
μij = μ+ αi + βj, where∑a

i=1 αi = 0 and
∑b
j=1 βj = 0. The parameter αi represents

the ith row effect, and the parameter βj represents the jth column effect.

REMARK There is no loss in generality in assuming that

a∑
i=1

αi =
b∑
j=1

βj = 0.

To see this, let μij = μ′ + α′i + β ′j . Write

α ′ =
(
1
a

) a∑
i=1

α′i and β
′ =
(
1
b

) b∑
j=1

β ′j .

We have

μij = (μ′ + α ′ + β ′)+ (α′i − α ′)+ (β ′j − β ′) = μ+ αi + βj,

where
∑a
i=1 αi = 0 and

∑b
j=1 βj = 0. The reader is asked to find μ, αi, and βj for one

display of μij in Exercise 9.4-2.

To test the hypothesis that there is no row effect, we would test HA: α1 =
α2 = · · · = αa = 0, since

∑a
i=1 αi = 0. Similarly, to test that there is no col-

umn effect, we would test HB: β1 = β2 = · · · = βb = 0, since
∑b
j=1 βj = 0. To

test these hypotheses, we shall again partition the total sum of squares into several
components. Letting

Xi· = 1
b

b∑
j=1

Xij, X ·j = 1
a

a∑
i=1

Xij, X ·· = 1
ab

a∑
i=1

b∑
j=1

Xij,
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we have

SS(TO) =
a∑

i=1

b∑
j=1
(Xij −X ··)2

=
a∑

i=1

b∑
j=1
[(Xi· −X ··)+ (X ·j −X ··)+ (Xij −Xi· −X ·j +X ··)]2

= b
a∑

i=1
(Xi· −X ··)2 + a

b∑
j=1
(X ·j −X ··)2

+
a∑

i=1

b∑
j=1
(Xij −Xi· −X ·j +X ··)2

= SS(A)+ SS(B)+ SS(E),
where SS(A) is the sum of squares among levels of factor A, or among rows; SS(B)
is the sum of squares among levels of factor B, or among columns; and SS(E) is
the error or residual sum of squares. In Exercise 9.4-4, the reader is asked to show
that the three cross-product terms in the square of the trinomial sum to zero. The
distribution of the error sum of squares does not depend on the mean μij, provided
that the additive model is correct. Hence, its distribution is the same whether HA

or HB is true or not, and thus SS(E) acts as a “measuring stick,” as did SS(E) in
Section 9.3. This can be seen more clearly by writing

SS(E) =
a∑

i=1

b∑
j=1
(Xij −Xi· −X ·j +X ··)2

=
a∑

i=1

b∑
j=1
[Xij − (Xi· −X ··)− (X ·j −X ··)−X ··]2

and noting the similarity of the summand in the right-hand member to

Xij − μij = Xij − αi − βj − μ.
We now show that SS(A)/σ 2, SS(B)/σ 2, and SS(E)/σ 2 are independent chi-

square variables, provided that both HA and HB are true—that is, when all the
means μij have a common value μ. To do this, we first note that SS(TO)/σ 2 is
χ2(ab−1). In addition, from Section 9.3, we see that expressions such as SS(A)/σ 2
and SS(B)/σ 2 are chi-square variables, namely, χ2(a−1) and χ2(b−1), by replac-
ing the ni of Section 9.3 by a and b, respectively. Obviously, SS(E) ≥ 0, and hence
by Theorem 9.3-1, SS(A)/σ 2, SS(B)/σ 2, and SS(E)/σ 2 are independent chi-square
variables with a− 1, b− 1, and ab− 1− (a− 1)− (b− 1) = (a− 1)(b− 1) degrees
of freedom, respectively.

To test the hypothesis HA: α1 = α2 = · · · = αa = 0, we shall use the row sum of
squares SS(A) and the residual sum of squares SS(E). When HA is true, SS(A)/σ 2

and SS(E)/σ 2 are independent chi-square variables with a − 1 and (a − 1)(b − 1)
degrees of freedom, respectively. Thus, SS(A)/(a−1) and SS(E)/[(a−1)(b−1)] are
both unbiased estimators of σ 2 when HA is true. However, E[SS(A)/(a − 1)] > σ 2
when HA is not true, and hence we would rejectHA when

FA = SS(A)/[σ 2(a− 1)]
SS(E)/[σ 2(a− 1)(b− 1)] =

SS(A)/(a− 1)
SS(E)/[(a− 1)(b− 1)]
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is “too large.” Since FA has an F distribution with a − 1 and (a − 1)(b − 1) degrees
of freedom when HA is true, HA is rejected if the observed value of FA equals or
exceeds Fα[a−1, (a−1)(b−1)].

Similarly, the test of the hypothesis HB: β1 = β2 = · · · = βb = 0 against all
alternatives can be based on

FB = SS(B)/[σ 2(b− 1)]
SS(E)/[σ 2(a− 1)(b− 1)] =

SS(B)/(b− 1)
SS(E)/[(a− 1)(b− 1)] ,

which has an F distribution with b−1 and (a−1)(b−1) degrees of freedom, provided
that HB is true.

Table 9.4-1 is the ANOVA table that summarizes the information needed for
these tests of hypotheses. The formulas for FA and FB show that each of them is a
ratio of two mean squares.

Example
9.4-1

Each of three cars is driven with each of four different brands of gasoline. The
number of miles per gallon driven for each of the ab = (3)(4) = 12 different
combinations is recorded in Table 9.4-2.

We would like to test whether we can expect the same mileage for each of these
four brands of gasoline. In our notation, we test the hypothesis

HB : β1 = β2 = β3 = β4 = 0

Table 9.4-1 Two-way ANOVA table, one observation per cell

Source Sum of Squares (SS) Degrees of Freedom Mean Square (MS) F

Factor A SS(A) a− 1 MS(A) = SS(A)
a− 1

MS(A)
MS(E)(row)

Factor B SS(B) b− 1 MS(B) = SS(B)
b− 1

MS(B)
MS(E)(column)

Error SS(E) (a− 1)(b− 1) MS(E) = SS(E)
(a− 1)(b− 1)

Total SS(TO) ab− 1

Table 9.4-2 Gas mileage data

Gasoline

Car 1 2 3 4 Xi·

1 26 28 31 31 29

2 24 25 28 27 26

3 25 25 28 26 26

X ·j 25 26 29 28 27
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against all alternatives. At a 1% significance level, we shall rejectHB if the computed
F, namely,

SS(B)/(4− 1)
SS(E)/[(3− 1)(4− 1)] ≥ 9.78 = F0.01(3, 6).

We have

SS(B) = 3[(25− 27)2 + (26− 27)2 + (29− 27)2 + (28− 27)2] = 30;
SS(E) = (26− 29− 25+ 27)2 + (24− 26− 25+ 27)2 + · · ·

+ (26− 26− 28+ 27)2 = 4.
Hence, the computed F is

30/3
4/6

= 15 > 9.78,

and the hypothesis HB is rejected. That is, the gasolines seem to give different
performances (at least with these three cars).

The information for this example is summarized in Table 9.4-3.

In a two-way classification problem, particular combinations of the two fac-
tors might interact differently from what is expected from the additive model. For
instance, in Example 9.4-1, gasoline 3 seemed to be the best gasoline and car 1 the
best car; however, it sometimes happens that the two best do not “mix” well and
the joint performance is poor. That is, there might be a strange interaction between
this combination of car and gasoline, and accordingly, the joint performance is not as
good as expected. Sometimes it happens that we get good results from a combination
of some of the poorer levels of each factor. This phenomenon is called interaction,
and it frequently occurs in practice (e.g., in chemistry). In order to test for possi-
ble interaction, we shall consider a two-way classification problem in which c > 1
independent observations per cell are taken.

Assume that Xijk, i = 1, 2, . . . , a; j = 1, 2, . . . , b; and k = 1, 2, . . . , c, are n = abc
random variables that are mutually independent and have normal distributions with
a common, but unknown, variance σ 2. The mean of each Xijk, k = 1, 2, . . . , c,
is μij = μ + αi + βj + γij, where

∑a
i=1 αi = 0,

∑b
j=1 βj = 0,

∑a
i=1 γij = 0,

and
∑b

j=1 γij = 0. The parameter γij is called the interaction associated with cell (i, j).
That is, the interaction between the ith level of one classification and the jth level of

Table 9.4-3 ANOVA table for gas mileage data

Sum of Squares Degrees of Mean Square
Source (SS) Freedom (MS) F p-value

Row (A) 24 2 12 18 0.003

Column (B) 30 3 10 15 0.003

Error 4 6 2/3

Total 58 11
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the other classification is γij. In Exercise 9.4-6, the reader is asked to determine μ,
αi, βj, and γij for some given μij.

To test the hypotheses that (a) the row effects are equal to zero, (b) the column
effects are equal to zero, and (c) there is no interaction, we shall again partition the
total sum of squares into several components. Letting

Xij· = 1
c

c∑
k=1

Xijk,

Xi·· = 1
bc

b∑
j=1

c∑
k=1

Xijk,

X ·j· = 1
ac

a∑
i=1

c∑
k=1

Xijk,

X ··· = 1
abc

a∑
i=1

b∑
j=1

c∑
k=1

Xijk,

we have

SS(TO) =
a∑

i=1

b∑
j=1

c∑
k=1

(Xijk −X ···)2

= bc
a∑

i=1
(Xi·· −X ···)2 + ac

b∑
j=1
(X ·j· −X ···)2

+c
a∑

i=1

b∑
j=1
(Xij· −Xi·· −X ·j· +X ···)2 +

a∑
i=1

b∑
j=1

c∑
k=1

(Xijk −Xij·)2

= SS(A)+ SS(B)+ SS(AB)+ SS(E),
where SS(A) is the row sum of squares, or the sum of squares among levels of factor
A; SS(B) is the column sum of squares, or the sum of squares among levels of factor
B; SS(AB) is the interaction sum of squares; and SS(E) is the error sum of squares.
Again, we can show that the cross-product terms sum to zero.

To consider the joint distribution of SS(A), SS(B), SS(AB), and SS(E), let
us assume that all the means equal the same value μ. Of course, we know that
SS(TO)/σ 2 is χ2(abc− 1). Also, by letting the ni of Section 9.3 equal bc and ac,
respectively, we know that SS(A)/σ 2 and SS(B)/σ 2 are χ2(a− 1) and χ2(b− 1).
Moreover, ∑c

k=1 (Xijk −Xij·)2

σ 2

is χ2(c− 1); hence, SS(E)/σ 2 is the sum of ab independent chi-square variables
such as this and thus is χ2[ab(c− 1)]. Of course SS(AB) ≥ 0; so, according to
Theorem 9.3-1, SS(A)/σ 2, SS(B)/σ 2, SS(AB)/σ 2, and SS(E)/σ 2 are mutually inde-
pendent chi-square variables with a− 1, b− 1, (a− 1)(b− 1), and ab(c− 1) degrees
of freedom, respectively.

To test the hypotheses concerning row, column, and interaction effects, we form
F statistics in which the numerators are affected by deviations from the respective
hypotheses, whereas the denominator is a function of SS(E), whose distribution
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depends only on the value of σ 2 and not on the values of the cell means. Hence,
SS(E) acts as our measuring stick here.

The statistic for testing the hypothesis

HAB : γij = 0, i = 1, 2, . . . , a; j = 1, 2, . . . , b,
against all alternatives is

FAB =
c
∑a

i=1
∑b

j=1 (Xij· −Xi·· −X ·j· +X ···)2/[σ 2(a− 1)(b− 1)]∑a
i=1
∑b

j=1
∑c

k=1 (Xijk −Xij·)2/[σ 2ab(c− 1)]

= SS(AB)/[(a− 1)(b− 1)]
SS(E)/[ab(c− 1)] ,

which has an F distribution with (a − 1)(b − 1) and ab(c − 1) degrees of freedom
whenHAB is true. If the computed FAB ≥ Fα[(a−1)(b−1), ab(c−1)], we rejectHAB and
say that there is a difference among the means, since there seems to be interaction.
Most statisticians do not proceed to test row and column effects ifHAB is rejected.

The statistic for testing the hypothesis

HA : α1 = α2 = · · · = αa = 0
against all alternatives is

FA = bc
∑a

i=1 (Xi·· −X ···)2/[σ 2(a− 1)]∑a
i=1
∑b

j=1
∑c

k=1 (Xijk −Xij·)2/[σ 2ab(c− 1)] =
SS(A)/(a− 1)
SS(E)/[ab(c− 1)] ,

which has an F distribution with a− 1 and ab(c− 1) degrees of freedom whenHA is
true. The statistic for testing the hypothesis

HB : β1 = β2 = · · · = βb = 0
against all alternatives is

FB =
ac
∑b

j=1 (X ·j· −X ···)2/[σ 2(b− 1)]∑a
i=1
∑b

j=1
∑c

k=1 (Xijk −Xij·)2/[σ 2ab(c− 1)] =
SS(B)/(b− 1)

SS(E)/[ab(c− 1)] ,

which has an F distribution with b− 1 and ab(c− 1) degrees of freedom whenHB is
true. Each of these hypotheses is rejected if the observed value of F is greater than
a given constant that is selected to yield the desired significance level.

Table 9.4-4 is the ANOVA table that summarizes the information needed for
these tests of hypotheses.

Example
9.4-2

Consider the following experiment: One hundred eight people were randomly
divided into 6 groups with 18 people in each group. Each person was given sets
of three numbers to add. The three numbers were either in a “down array” or an
“across array,” representing the two levels of factor A. The levels of factor B are
determined by the number of digits in the numbers to be added: one-digit, two-digit,
or three-digit numbers. Table 9.4-5 illustrates this experiment with a sample problem
for each cell; note, however, that an individual person works problems only of one of
these types. Each person was placed in one of the six groups and was told to work as
many problems as possible in 90 seconds. The measurement that was recorded was
the average number of problems worked correctly in two trials.
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Table 9.4-4 Two-way ANOVA table, c observations per cell

Sum of Squares Degrees of Mean Square
Source (SS) Freedom (MS) F

Factor A SS(A) a− 1 MS(A) = SS(A)
a− 1

MS(A)
MS(E)(row)

Factor B SS(B) b− 1 MS(B) = SS(B)
b− 1

MS(B)
MS(E)(column)

Factor AB SS(AB) (a− 1)(b− 1) MS(AB) = SS(AB)
(a− 1)(b− 1)

MS(AB)
MS(E)

(interaction)

Error SS(E) ab(c− 1) MS(E) = SS(E)
ab(c− 1)

Total SS(TO) abc− 1

Table 9.4-5 Illustration of arrays for numbers of digits

Number of Digits

Type of Array 1 2 3

Down 5 25 259

3 69 567

8 37 130

Across 5 + 3 + 8 = 25 + 69 + 37 = 259 + 567 + 130 =

Whenever this many subjects are used, a computer becomes an invaluable tool.
A computer program provided the summary shown in Table 9.4-6 of the sample
means of the rows, the columns, and the six cells. Each cell mean is the average for
18 people.

Simply considering these means, we can see clearly that there is a column effect:
It is not surprising that it is easier to add one-digit than three-digit numbers.

The most interesting feature of these results is that they show the possibility of
interaction. The largest cell mean occurs for those adding one-digit numbers in an
across array. Note, however, that for two- and three-digit numbers, the down arrays
have larger means than the across arrays.

The computer provided the ANOVA table given in Table 9.4-7. The number
of degrees of freedom for SS(E) is not in our F table in Appendix B. However,
the rightmost column, obtained from the computer printout, provides the p-value
of each test, namely, the probability of obtaining an F as large as or larger than
the calculated F ratio. Note, for example, that, to test for interaction, F = 5.51
and the p-value is 0.0053. Thus, the hypothesis of no interaction would be rejected
at the α = 0.05 or α = 0.01 significance level, but it would not be rejected with
α = 0.001.
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Table 9.4-6 Cell, row, and column means for adding numbers

Number of Digits

Type of Array 1 2 3 Row Means

Down 23.806 10.694 6.278 13.593

Across 26.056 6.750 3.944 12.250

Column means 24.931 8.722 5.111

Table 9.4-7 ANOVA table for adding numbers

Source Sum of Squares Degrees of Freedom Mean Square F p-value

Factor A 48.678 1 48.669 2.885 0.0925
(array)

Factor B 8022.73 2 4011.363 237.778 <0.0001
(number
of digits)

Interaction 185.92 2 92.961 5.510 0.0053

Error 1720.76 102 16.870

Total 9978.08 107

Exercises

(In some of the exercises that follow, we must make
assumptions, such as normal distributions with equal vari-
ances.)

9.4-1. For the data given in Example 9.4-1, test the
hypothesis HA: α1 = α2 = α3 = 0 against all alternatives
at the 5% significance level.

9.4-2. With a = 3 and b = 4, find μ, αi, and βj if μij,
i = 1, 2, 3 and j = 1, 2, 3, 4, are given by

6 3 7 8

10 7 11 12

8 5 9 10

Note that in an “additive” model such as this one, one row
(column) can be determined by adding a constant value to
each of the elements of another row (column).

9.4-3. We wish to compare compressive strengths of con-
crete corresponding to a = 3 different drying methods
(treatments). Concrete is mixed in batches that are just
large enough to produce three cylinders. Although care
is taken to achieve uniformity, we expect some variability
among the b = 5 batches used to obtain the following
compressive strengths (there is little reason to suspect
interaction; hence, only one observation is taken in each
cell):

Batch

Treatment B1 B2 B3 B4 B5

A1 52 47 44 51 42

A2 60 55 49 52 43

A3 56 48 45 44 38
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(a) Use the 5% significance level and test HA: α1 = α2 =
α3 = 0 against all alternatives.

(b) Use the 5% significance level and test HB: β1 = β2 =
β3 = β4 = β5 = 0 against all alternatives. (See
Ledolter and Hogg in References.)

9.4-4. Show that the cross-product terms formed from
(Xi· −X ··), (X ·j −X ··), and (Xij −Xi· −X ·j +X ··) sum to
zero, i = 1, 2, . . . a and j = 1, 2, . . . ,b. Hint: For example,
write

a∑
i=1

b∑
j=1
(X ·j −X ··)(Xij −Xi· −X ·j +X ··)

=
b∑

j=1
(X ·j −X ··)

a∑
i=1
[(Xij −X ·j)− (Xi· −X ··)]

and sum each term in the inner summation, as grouped
here, to get zero.

9.4-5. A psychology student was interested in testing how
food consumption by rats would be affected by a partic-
ular drug. She used two levels of one attribute, namely,
drug and placebo, and four levels of a second attribute,
namely, male (M), castrated (C), female (F), and ovariec-
tomized (O). For each cell, she observed five rats. The
amount of food consumed in grams per 24 hours is listed
in the following table:

M C F O

Drug 22.56 16.54 18.58 18.20

25.02 24.64 15.44 14.56

23.66 24.62 16.12 15.54

17.22 19.06 16.88 16.82

22.58 20.12 17.58 14.56

Placebo 25.64 22.50 17.82 19.74

28.84 24.48 15.76 17.48

26.00 25.52 12.96 16.46

26.02 24.76 15.00 16.44

23.24 20.62 19.54 15.70

(a) Use the 5% significance level and test HAB: γij = 0,
i = 1, 2, j = 1, 2, 3, 4.

(b) Use the 5% significance level and test HA: α1 =
α2 = 0.

(c) Use the 5% significance level and test HB: β1 = β2 =
β3 = β4 = 0.

(d) How could you modify this model so that there
are three attributes of classification, each with two
levels?

9.4-6. With a = 3 and b = 4, find μ, αi, βj, and γij if μij,
i = 1, 2, 3 and j = 1, 2, 3, 4, are given by

6 7 7 12

10 3 11 8

8 5 9 10

Note the difference between the layout here and that
in Exercise 9.4-2. Does the interaction help explain the
difference?

9.4-7. In order to test whether four brands of gasoline
give equal performance in terms of mileage, each of three
cars was driven with each of the four brands of gasoline.
Then each of the (3)(4) = 12 possible combinations was
repeated four times. The number of miles per gallon for
each of the four repetitions in each cell is recorded in the
following table:

Brand of Gasoline

Car 1 2 3 4

1 31.0 24.9 26.3 30.0 25.8 29.4 27.8 27.3

26.2 28.8 25.2 31.6 24.5 24.8 28.2 30.4

2 30.6 29.5 25.5 26.8 26.6 23.7 28.1 27.1

30.8 28.9 27.4 29.4 28.2 26.1 31.5 29.1

3 24.2 23.1 27.4 28.1 25.2 26.7 26.3 26.4

26.8 27.4 26.4 26.9 27.7 28.1 27.9 28.8

Test the hypotheses HAB: no interaction, HA: no row
effect, and HB: no column effect, each at the 5% signif-
icance level.

9.4-8. There is another way of looking at Exercise 9.3-6,
namely, as a two-factor analysis-of-variance problem with
the levels of gender being female and male, the levels of
age being less than 50 and at least 50, and the measure-
ment for each subject being their cholesterol level. The
data would then be set up as follows:
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Age

Gender <50 ≥50

221 262

213 193

202 224

Female 183 201

185 161

197 178

162 265

271 192

192 253

189 248

Male 209 278

227 232

236 267

142 289

(a) Test HAB: γij = 0, i = 1, 2; j = 1, 2 (no interaction).
(b) Test HA: α1 = α2 = 0 (no row effect).
(c) Test HB: β1 = β2 = 0 (no column effect).
Use a 5% significance level for each test.

9.4-9. Ledolter and Hogg (see References) report that
volunteers who had a smoking history classified as heavy,
moderate, and nonsmoker were accepted until nine men
were in each category. Three men in each category were
randomly assigned to each of the following three stress
tests: bicycle ergometer, treadmill, and step tests. The
time until maximum oxygen uptake was recorded in min-
utes as follows:

Test

Smoking History Bicycle Treadmill Step Test

Nonsmoker 12.8, 13.5, 11.2 16.2, 18.1, 17.8 22.6, 19.3, 18.9

Moderate 10.9, 11.1, 9.8 15.5, 13.8, 16.2 20.1, 21.0, 15.9

Heavy 8.7, 9.2, 7.5 14.7, 13.2, 8.1 16.2, 16.1, 17.8

(a) Analyze the results of this experiment. Obtain the
ANOVA table and test for main effects and interac-
tions.

(b) Use box plots to compare the data graphically.

9.5* GENERAL FACTORIAL AND 2K FACTORIAL DESIGNS
In Section 9.4, we studied two-factor experiments in which the A factor is performed
at a levels and the B factor has b levels. Without replications, we need ab-level com-
binations, and with c replications with each of these combinations, we need a total
of abc experiments.

Let us now consider a situation with three factors—say, A, B, and C, with a, b, and
c levels, respectively. Here there are a total of abc-level combinations, and if, at each
of these combinations, we have d replications, there is a need for abcd experiments.
Once these experiments are run, in some random order, and the data collected, there
are computer programs available to calculate the entries in the ANOVA table, as in
Table 9.5-1.

The main effects (A, B, and C) and the two-factor interactions (AB, AC, and
BC) have the same interpretations as in the two-factor ANOVA. The three-factor
interaction represents that part of the model for the means μijh, i = 1, 2, . . . , a;
j = 1, 2, . . . , b; h = 1, 2, . . . , c, that cannot be explained by a model including only
the main effects and two-factor interactions. In particular, if, for each fixed h, the
“plane” created by μijh is “parallel” to the “plane” created by every other fixed h,
then the three-factor interaction is equal to zero. Usually, higher-order interactions
tend to be small.
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Table 9.5-1 ANOVA table

Source SS d.f. MS F

A SS(A) a− 1 MS(A) MS(A)/MS(E)

B SS(B) b− 1 MS(B) MS(B)/MS(E)

C SS(C) c− 1 MS(C) MS(C)/MS(E)

AB SS(AB) (a− 1)(b− 1) MS(AB) MS(AB)/MS(E)

AC SS(AC) (a− 1)(c− 1) MS(AC) MS(AC)/MS(E)

BC SS(BC) (b− 1)(c− 1) MS(BC) MS(BC)/MS(E)

ABC SS(ABC) (a− 1)(b− 1)(c− 1) MS(ABC) MS(ABC)/MS(E)

Error SS(E) abc(d− 1) MS(E)

Total SS(TO) abcd− 1

In the testing sequence, we test the three-factor interaction first by checking to
see whether or not

MS(ABC)/MS(E) ≥ Fα[(a−1)(b−1)(c−1), abc(d−1)].
If this inequality holds, the ABC interaction is significant at the α level. We would
then not continue testing the two-factor interactions and the main effects with those
F values, but analyze the data otherwise. For example, for each fixed h, we could
look at a two-factor ANOVA for factors A and B. Of course, if the inequality does
not hold, we next check the two-factor interactions with the appropriate F values. If
these are not significant, we check the main effects, A, B, and C.

Factorial analyses with three or more factors require many experiments, par-
ticularly if each factor has several levels. Often, in the health, social, and physical
sciences, experimenters want to consider several factors (maybe as many as 10, 20,
or even hundreds), and they cannot afford to run that many experiments. This is
particularly true with preliminary or screening investigations, in which they want to
detect the factors that seem most important. In these cases, they often consider fac-
torial experiments such that each of k factors is run at just two levels, frequently
without replication. We consider only this situation, although the reader should rec-
ognize that it has many variations. In particular, there are methods for investigating
only fractions of these 2k designs. The reader interested in more information should
refer to a good book on the design of experiments, such as that by Box, Hunter, and
Hunter (see References). Many statisticians in industry believe that these statistical
methods are the most useful in improving product and process designs. Hence, this
is clearly an extremely important topic, as many industries are greatly concerned
about the quality of their products.

In factorial experiments in which each of the k factors is considered at only two
levels, those levels are selected at some reasonable low and high values. That is, with
the help of someone in the field, the typical range of each factor is considered. For
instance, if we are considering baking temperatures in the range from 300◦ to 375◦,
a representative low is selected—say, 320◦—and a representative high is selected—
say 355◦. There is no formula for these selections, and someone familiar with the
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experiment would help make them. Often, it happens that only two different types
of a material (e.g., fabric) are considered and one is called low and the other high.

Thus, we select a low and high for each factor and code them as −1 and +1 or,
more simply, − and +, respectively. We give three 2k designs, for k = 2, 3, and 4, in
standard order in Tables 9.5-2, 9.5-3, and 9.5-4, respectively. From these three tables,
we can easily note what is meant by standard order. The A column starts with a
minus sign and then the sign alternates. The B column begins with two minus signs
and then the signs alternate in blocks of two. The C column has 4 minus signs and
then 4 plus signs, and so on. The D column starts with 8 minus signs and then 8 plus
signs. It is easy to extend this idea to 2k designs, where k ≥ 5. To illustrate, under
the E column in a 25 design, we have 16 minus signs followed by 16 plus signs, which
together account for the 32 experiments.

To be absolutely certain what these runs mean, consider run number 12 in
Table 9.5-4: A is set at its high level, B at its high, C at its low, and D at its high
level. The value X12 is the random observation resulting from this one combina-
tion of these four settings. It must be emphasized that the runs are not necessarily
performed in the order 1, 2, 3, . . . , 2k; in fact, they should be performed in a random

Table 9.5-2 22 Design

22 Design

Run A B Observation

1 − − X1

2 + − X2

3 − + X3

4 + + X4

Table 9.5-3 23 Design

23 Design

Run A B C Observation

1 − − − X1

2 + − − X2

3 − + − X3

4 + + − X4

5 − − + X5

6 + − + X6

7 − + + X7

8 + + + X8
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Table 9.5-4 24 Design

24 Design

Run A B C D Observation

1 − − − − X1

2 + − − − X2

3 − + − − X3

4 + + − − X4

5 − − + − X5

6 + − + − X6

7 − + + − X7

8 + + + − X8

9 − − − + X9

10 + − − + X10

11 − + − + X11

12 + + − + X12

13 − − + + X13

14 + − + + X14

15 − + + + X15

16 + + + + X16

order if at all possible. That is, in a 23 design, we might perform the experiment in
the order 3, 2, 8, 6, 5, 1, 4, 7 if this, in fact, was a random selection of a permutation
of the first eight positive integers.

Once all 2k experiments have been run, it is possible to consider the total sum
of squares

2k∑
i=1
(Xi −X)2

and decompose it very easily into 2k − 1 parts, which represent the respective
measurements (estimators) of the k main effects,

(
k
2

)
two-factor interactions,

(
k
3

)
three-factor interactions, and so on, until we have the one k-factor interaction. We
illustrate this decomposition with the 23 design in Table 9.5-5. Note that column
AB is found by formally multiplying the elements of column A by the correspond-
ing ones in B. Likewise, AC is found by multiplying the elements of column A by
the corresponding ones in column C, and so on, until column ABC is the prod-
uct of the corresponding elements of columns A, B, and C. Next, we construct
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Table 9.5-5 23 Design decomposition

23 Design

Run A B C AB AC BC ABC Observation

1 − − − + + + − X1

2 + − − − − + + X2

3 − + − − + − + X3

4 + + − + − − − X4

5 − − + + − − + X5

6 + − + − + − − X6

7 − + + − − + − X7

8 + + + + + + + X8

seven linear forms, using these seven columns of signs with the corresponding
observations. The resulting measures (estimates) of the main effects (A, B, C), the
two-factor interactions (AB, AC, BC), and the three-factor interaction (ABC) are
then found by dividing the linear forms by 2k = 23 = 8. (Some statisticians divide by
2k−1 = 23−1 = 4.) These are denoted by

[A] = (−X1 +X2 −X3 +X4 −X5 +X6 −X7 +X8)/8,

[B] = (−X1 −X2 +X3 +X4 −X5 −X6 +X7 +X8)/8,

[C] = (−X1 −X2 −X3 −X4 +X5 +X6 +X7 +X8)/8,

[AB] = (+X1 −X2 −X3 +X4 +X5 −X6 −X7 +X8)/8,

[AC] = (+X1 −X2 +X3 −X4 −X5 +X6 −X7 +X8)/8,

[BC] = (+X1 +X2 −X3 −X4 −X5 −X6 +X7 +X8)/8,

[ABC] = (−X1 +X2 +X3 −X4 +X5 −X6 −X7 +X8)/8.

With assumptions of normality, mutual independence, and common variance σ 2,
under the overall null hypothesis of the equality of all the means, each of these
measures has a normal distribution with mean zero and variance σ 2/8 (in gen-
eral, σ 2/2k). This implies that the square of each measure divided by σ 2/8 is χ2(1).
Moreover, it can be shown (see Exercise 9.5-2) that

8∑
i=1

(
Xi −X

)2 = 8 ([A]2 + [B]2 + [C]2 + [AB]2 + [AC]2 + [BC]2 + [ABC]2) .
So, by Theorem 9.3-1, the terms on the right-hand side, divided by σ 2, are mutu-
ally independent random variables, each being χ2(1). While it requires a little more
theory, it follows that the linear forms [A], [B], [C], [AB], [AC], [BC], and [ABC]
are mutually independent N(0, σ 2/8) random variables.
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Since we have assumed that we have not run any replications, how can we obtain
an estimate of σ 2 to see if any of the main effects or interactions are significant? To
help us, we fall back on the use of a q–q plot because, under the overall null hypothe-
sis, those seven measures are mutually independently, normally distributed variables
with the same mean and variance. Thus, a q–q plot of the normal percentiles against
the corresponding ordered values of the measures should be about on a straight
line if, in fact, the null hypothesis is true. If one of these points is “out of line,” we
might believe that the overall null hypothesis is not true and that the effect asso-
ciated with the factor represented with that point is significant. It is possible that
two or three points might be out of line; then all corresponding effects (main or
interaction) should be investigated. Clearly, this is not a formal test, but it has been
extremely successful in practice.

As an illustration, we use the data from an experiment designed to evaluate the
effects of laundering on a certain fire-retardant treatment for fabrics. These data,
somewhat modified, were taken from Experimental Statistics, National Bureau of
Standards Handbook 91, by Mary G. Natrella (Washington, DC: U.S. Government
Printing Office, 1963). Factor A is the type of fabric (sateen or monk’s cloth), factor
B corresponds to two different fire-retardant treatments, and factor C describes the
laundering conditions (no laundering, after one laundering). The observations are

Table 9.5-6 Seven measures ordered

Identity of Effect Ordered Effect Percentile Percentile from N(0, 1)

[A] −8.06 12.5 −1.15
[AB] −2.19 25.0 −0.67
[AC] −0.31 37.5 −0.32
[ABC] 0.31 50.0 0.00

[C] 0.56 62.5 0.32

[BC] 0.81 75.0 0.67

[B] 1.56 87.5 1.15

[AB]
[AC]

[B]

[BC]

[C]

[A]

[ABC]

−1.0

−0.5

0.5

1.0

−8 −7 −6 −5 −4 −3 −2 −1 1 2

Figure 9.5-1 A q–q plot of normal
percentiles versus estimated effects
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inches burned, measured on a standard-size fabric after a flame test. They are as
follows, in standard order:

x1 = 41.0, x2 = 30.5, x3 = 47.5, x4 = 27.0,

x5 = 39.5, x6 = 26.5, x7 = 48.0, x8 = 27.5.

Thus, the measures of the effects are

[A] = (−41.0+ 30.5− 47.5+ 27.0− 39.5+ 26.5− 48.0+ 27.5)/8 = −8.06,
[B] = (−41.0− 30.5+ 47.5+ 27.0− 39.5− 26.5+ 48.0+ 27.5)/8 = 1.56,
[C] = (−41.0− 30.5− 47.5− 27.0+ 39.5+ 26.5+ 48.0+ 27.5)/8 = 0.56,

[AB] = (+41.0− 30.5− 47.5+ 27.0+ 39.5− 26.5− 48.0+ 27.5)/8 = −2.19,
[AC] = (+41.0− 30.5+ 47.5− 27.0− 39.5+ 26.5− 48.0+ 27.5)/8 = −0.31,
[BC] = (+41.0+ 30.5− 47.5− 27.0− 39.5− 26.5+ 48.0+ 27.5)/8 = 0.81,

[ABC] = (−41.0+ 30.5+ 47.5− 27.0+ 39.5− 26.5− 48.0+ 27.5)/8 = 0.31.
In Table 9.5-6, we order these seven measures, determine their percentiles, and

find the corresponding percentiles of the standard normal distribution.
The q–q plot is given in Figure 9.5-1. Each point has been identified with its

effect. A straight line fits six of those points reasonably well, but the point associated
with [A] = −8.06 is far from this straight line. Hence, the main effect of factor A (the
type of fabric) seems to be significant. It is interesting to note that the laundering
factor, C, does not seem to be a significant factor.

Exercises

9.5-1. Write out a 22 design, displaying the A, B, and AB
columns for the four runs.

(a) If X1,X2,X3, andX4 are the four observations for the
respective runs in standard order, write out the three
linear forms, [A], [B], and [AB], that measure the two
main effects and the interaction. These linear forms
should include the divisor 22 = 4.

(b) Show that
∑4

i=1 (Xi −X)2 = 4([A]2 + [B]2 + [AB]2).
(c) Under the null hypothesis that all the means are equal
and with the usual assumptions (normality, mutual
independence, and common variance), what can you
say about the distributions of the expressions in (b)
after each is divided by σ 2?

9.5-2. Show that, in a 23 design,

8∑
i=1
(Xi −X)2

= 8
(
[A]2 + [B]2 + [C]2 + [AB]2 + [AC]2 + [BC]2 + [ABC]2

)
.

Hint: Since both the right and the left members of this
equation are symmetric in the variables X1,X2, . . . ,X8,
it is necessary to show only that the corresponding coef-
ficients of X1Xi, i = 1, 2, . . . , 8, are the same in each
member of the equation. Of course, recall thatX = (X1+
X2 + · · · +X8)/8.

9.5-3. Show that the unbiased estimator of the variance
σ 2 from a sample of size n = 2 is one half of the
square of the difference of the two observations. Thus,
show that, if a 2k design is replicated, say, with Xi1 and
Xi2, i = 1, 2, . . . , 2k, then the estimate of the common
σ 2 is

1
2k+1

2k∑
i=1
(Xi1 −Xi2)2 =MS(E).

Under the usual assumptions, this equation implies that
each of 2k[A]2/MS(E), 2k[B]2/MS(E), 2k[AB]2/MS(E),
and so on has an F(1, 2k) distribution under the null
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hypothesis. This approach, of course, would provide tests
for the significance of the various effects, including inter-
actions.

9.5-4. Ledolter and Hogg (see References) note that per-
cent yields from a certain chemical reaction for changing
temperature (factor A), reaction time (factor B), and con-
centration (factor C) are x1 = 79.7, x2 = 74.3, x3 = 76.7,
x4 = 70.0, x5 = 84.0, x6 = 81.3, x7 = 87.3, and x8 = 73.7,
in standard order with a 23 design.

(a) Estimate the main effects, the three two-factor inter-
actions, and the three-factor interaction.

(b) Construct an appropriate q–q plot to see if any of
these effects seem to be significantly larger than the
others.

9.5-5. Box, Hunter, and Hunter (see References) studied
the effects of catalyst charge (10 pounds = −1, 20 pounds
= +1), temperature (220 ◦C = − 1, 240 ◦C = +1), pres-
sure (50 psi = −1, 80 psi = +1), and concentration (10%
= −1, 12% = +1) on percent conversion (X) of a certain
chemical. The results of a 24 design, in standard order, are

x1 = 71, x2 = 61, x3 = 90, x4 = 82, x5 = 68, x6 = 61,
x7 = 87, x8 = 80, x9 = 61, x10 = 50, x11 = 89,
x12 = 83, x13 = 59, x14 = 51, x15 = 85, x16 = 78.

(a) Estimate the main effects and the two-, three-, and
four-factor interactions.

(b) Construct an appropriate q–q plot and assess the
significance of the various effects.

9.6* TESTS CONCERNING REGRESSION AND CORRELATION
In Section 6.5, we considered the estimation of the parameters of a very simple
regression curve, namely, a straight line. We can use confidence intervals for the
parameters to test hypotheses about them. For example, with the same model as
that in Section 6.5, we could test the hypothesis H0: β = β0 by using a t random
variable that was used for a confidence interval with β replaced by β0, namely,

T1 = β̂ − β0√
nσ̂ 2

(n− 2)∑n
i=1 (xi − x)2

.

The null hypothesis, along with three possible alternative hypotheses, is given in
Table 9.6-1; these tests are equivalent to stating that we reject H0 if β0 is not in
certain confidence intervals. For example, the first test is equivalent to rejecting H0
if β0 is not in the one-sided confidence interval with lower bound

β̂ − tα(n−2)
√

nσ̂ 2

(n− 2)∑n
i=1 (xi − x)2

.

Often we let β0 = 0 and test the hypothesis H0: β = 0. That is, we test the null
hypothesis that the slope is equal to zero.

Table 9.6-1 Tests about the slope of the regression line

H0 H1 Critical Region

β = β0 β > β0 t1 ≥ tα(n−2)
β = β0 β < β0 t1 ≤ −tα(n−2)
β = β0 β 
= β0 |t1| ≥ tα/2(n−2)
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Example
9.6-1

Let x equal a student’s preliminary test score in a psychology course and y equal the
same student’s score on the final examination. With n = 10 students, we shall test
H0: β = 0 against H1: β 
= 0. At the 0.01 significance level, the critical region is
|t1| ≥ t0.005(8) = 3.355. Using the data in Example 6.5-1, we find that the observed
value of T1 is

t1 = 0.742− 0√
10(21.7709)/8(756.1)

= 0.742
0.1897

= 3.911.

Thus, we reject H0 and conclude that a student’s score on the final examination is
related to his or her preliminary test score.

We consider tests about the correlation coefficient ρ of a bivariate normal dis-
tribution. Let X and Y have a bivariate normal distribution. We know that if the
correlation coefficient ρ is zero, then X and Y are independent random variables.
Furthermore, the value of ρ gives a measure of the linear relationship between X
and Y. We now give methods for using the sample correlation coefficient to test the
hypothesis H0: ρ = 0 and also to form a confidence interval for ρ.

Let (X1,Y1), (X2,Y2), . . . , (Xn,Yn) denote a random sample from a bivariate
normal distribution with parameters μX , μY , σ 2X , σ

2
Y , and ρ. That is, the n pairs of

(X,Y) are independent, and each pair has the same bivariate normal distribution.
The sample correlation coefficient is

R = [1/(n− 1)]∑n
i=1 (Xi −X)(Yi − Y)√

[1/(n− 1)]∑n
i=1 (Xi −X)2

√
[1/(n− 1)]∑n

i=1(Yi − Y)2
= SXY

SXSY
.

We note that

R
SY

SX
= SXY

S2X
= [1/(n− 1)]∑n

i=1 (Xi −X)(Yi − Y)

[1/(n− 1)]∑n
i=1 (Xi −X)2

is exactly the solution that we obtained for β̂ in Section 6.5 when the X-values were
fixed at X1 = x1,X2 = x2, . . . ,Xn = xn. Let us consider these values fixed temporar-
ily so that we are considering conditional distributions, given X1 = x1, . . . ,Xn = xn.
Moreover, ifH0: ρ = 0 is true, thenY1,Y2, . . . ,Yn are independent ofX1,X2, . . . ,Xn
and β = ρσY/σX = 0. Under these conditions, the conditional distribution of

β̂ =
∑n

i=1 (Xi −X)(Yi − Y)∑n
i=1 (Xi −X)2

,

given that X1 = x1,X2 = x2, . . . ,Xn = xn, is N[0, σ 2Y/(n − 1)s2x] when s2x > 0.
Moreover, recall from Section 6.5 that the conditional distribution of∑n

i=1 [Yi − Y − (SXY/S2X)(Xi −X)]2

σ 2Y
= (n− 1)S2Y(1− R2)

σ 2Y
,

given that X1 = x1, . . . ,Xn = xn, is χ2(n− 2) and is independent of β̂. (See
Exercise 9.6-6.) Thus, when ρ = 0, the conditional distribution of

T = (RSY/SX)/(σY/
√

n− 1 SX)√
[(n− 1)S2Y (1− R2)/σ 2Y ][1/(n− 2)]

= R
√

n− 2√
1− R2

is t with n− 2 degrees of freedom. However, since the conditional distribution of T,
given thatX1 = x1, . . . ,Xn = xn, does not depend on x1, x2, . . . , xn, the unconditional
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distribution of T must be t with n−2 degrees of freedom, and T and (X1,X2, . . . ,Xn)
are independent when ρ = 0.
REMARK It is interesting to note that in the discussion about the distribution of
T, the assumption that (X,Y) has a bivariate normal distribution can be relaxed.
Specifically, ifX and Y are independent and Y has a normal distribution, then T has
a t distribution regardless of the distribution of X. Obviously, the roles of X and Y
can be reversed in all of this development. In particular, ifX and Y are independent,
then T and Y1,Y2, . . . ,Yn are also independent.

Now T can be used to test H0: ρ = 0. If the alternative hypothesis is H1:
ρ > 0, we would use the critical region defined by the observed T ≥ tα(n−2), since
large T implies large R. Obvious modifications would be made for the alternative
hypotheses H1: ρ < 0 and H1: ρ 
= 0, the latter leading to a two-sided test.

Using the pdf h(t) of T, we can find the distribution function and pdf of R when
−1 < r < 1, provided that ρ = 0:

G(r) = P(R ≤ r) = P

(
T ≤ r

√
n− 2√
1− r2

)

=
∫ r

√
n−2/

√
1−r2

−∞
h(t) dt

=
∫ r

√
n−2/

√
1−r2

−∞
�[(n− 1)/2]

�(1/2)�[(n− 2)/2]
1√

n− 2

(
1+ t2

n− 2

)−(n−1)/2
dt.

The derivative of G(r), with respect to r, is (see Appendix D.4)

g(r) = h

(
r
√

n− 2√
1− r2

)
d(r
√

n− 2/
√
1− r2 )

dr
,

which equals

g(r) = �[(n− 1)/2]
�(1/2)�[(n− 2)/2] (1− r2)(n−4)/2, −1 < r < 1.

Thus, to test the hypothesis H0: ρ = 0 against the alternative hypothesis H1: ρ 
= 0
at a significance level α, select either a constant rα/2(n−2) or a constant tα/2(n−2)
so that

α = P( |R | ≥ rα/2(n−2);H0) = P( |T | ≥ tα/2(n−2);H0),

depending on the availability of R or T tables.
It is interesting to graph the pdf of R. Note in particular that if n = 4, g(r) = 1/2,

−1 < r < 1, and if n = 6, g(r) = (3/4)(1− r2), −1 < r < 1. The graphs of the pdf of
R when n = 8 and when n = 14 are given in Figure 9.6-1. Recall that this is the pdf
of R when ρ = 0. As n increases, R is more likely to equal values close to 0.

Table IX in Appendix B lists selected values of the distribution function of R
when ρ = 0. For example, if n = 8, then the number of degrees of freedom is 6
and P(R ≤ 0.7887) = 0.99. Also, if α = 0.10, then rα/2(6) = r0.05(6) = 0.6215. [See
Figure 9.6-1(a).]

It is also possible to obtain an approximate test of size α by using the fact that

W = 1
2
ln
1+ R
1− R
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Figure 9.6-1 R pdfs when n = 8 and n = 14

has an approximate normal distribution with mean (1/2) ln[(1 + ρ)/(1 − ρ)] and
variance 1/(n − 3). We accept this statement without proof. (See Exercise 9.6-8.)
Thus, a test ofH0: ρ = ρ0 can be based on the statistic

Z =
1
2
ln
1+ R
1− R −

1
2
ln
1+ ρ0
1− ρ0√

1
n− 3

,

which has a distribution that is approximately N(0, 1) under H0. Notice that this
approximate size-α test can be used to test a null hypothesis specifying a nonzero
population correlation coefficient, whereas the exact size-α test may be used only
in conjunction with the null hypothesis H0: ρ = 0. Also, notice that the sample size
must be at least n = 4 for the approximate test, but n = 3 is sufficient for the
exact test.

Example
9.6-2

We would like to test the hypothesis H0: ρ = 0 against H1: ρ 
= 0 at an α = 0.05
significance level. A random sample of size 18 from a bivariate normal distribution
yielded a sample correlation coefficient of r = 0.35. From Table XI in Appendix B,
since 0.35 < 0.4683, H0 is accepted (not rejected) at an α = 0.05 significance level.
Using the t distribution, we would reject H0 if |t| ≥ 2.120 = t0.025(16). Since

t = 0.35
√
16√

1− (0.35)2 = 1.495,

H0 is not rejected. If we had used the normal approximation for Z, H0 would be
rejected if |z| ≥ 1.96. Because

z = (1/2) ln[(1+ 0.35)/(1− 0.35)]− 0√
1/(18− 3) = 1.415,

H0 is not rejected.

To develop an approximate 100(1 − α)% confidence interval for ρ, we use the
normal approximation for the distribution of Z. Thus, we select a constant c = zα/2
from Table V in Appendix B so that
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P

(
−c ≤ (1/2) ln[(1+ R)/(1− R)]− (1/2) ln[(1+ ρ)/(1− ρ)]√

1/(n− 3) ≤ c
)
≈ 1− α.

After several algebraic manipulations, this formula becomes

P

(
1+ R− (1− R) exp(2c/√n− 3)
1+ R+ (1− R) exp(2c/√n− 3) ≤ ρ ≤

1+ R− (1− R) exp(−2c/√n− 3)
1+ R+ (1− R) exp(−2c/√n− 3)

)
≈ 1− α.

Example
9.6-3

Suppose that a random sample of size 12 from a bivariate normal distribution yielded
a correlation coefficient of r = 0.6. An approximate 95% confidence interval for ρ
would be⎡⎢⎢⎣1+ 0.6− (1− 0.6) exp

(
2(1.96)
3

)
1+ 0.6+ (1− 0.6) exp

(
2(1.96)
3

) , 1+ 0.6− (1− 0.6) exp
(−2(1.96)

3

)
1+ 0.6+ (1− 0.6) exp

(−2(1.96)
3

)
⎤⎥⎥⎦

= [0.040, 0.873].
If the sample size had been n = 39 and r = 0.6, the approximate 95% confidence
interval would have been [0.351, 0.770].

Exercises

(In some of the exercises that follow, we must make
assumptions of normal distributions with the usual nota-
tion.)

9.6-1. For the data given in Exercise 6.5-3, use a t test
to test H0: β = 0 against H1: β > 0 at the α = 0.025
significance level.

9.6-2. For the data given in Exercise 6.5-4, use a t test
to test H0: β = 0 against H1: β > 0 at the α = 0.025
significance level.

9.6-3. A random sample of size n = 27 from a bivariate
normal distribution yielded a sample correlation coeffi-
cient of r = −0.45. Would the hypothesis H0: ρ = 0 be
rejected in favor of H1: ρ 
= 0 at an α = 0.05 significance
level?

9.6-4. In bowling, it is often possible to score well in the
first game and then bowl poorly in the second game, or
vice versa. The following six pairs of numbers give the
scores of the first and second games bowled by the same
person on six consecutive Tuesday evenings:

Game 1: 170 190 200 183 187 178

Game 2: 197 178 150 176 205 153

Assume a bivariate normal distribution, and use these
scores to test the hypothesis H0: ρ = 0 against H1: ρ 
= 0
at α = 0.10.
9.6-5. A random sample of size 28 from a bivariate nor-
mal distribution yielded a sample correlation coefficient
of r = 0.65. Find an approximate 90% confidence interval
for ρ.

9.6-6. By squaring the binomial expression [(Yi − Y) −
(SxY/s2x)(xi − x)], show that

n∑
i=1
[(Yi − Y)− (SxY/s2x)(xi − x)]2

=
n∑
i=1
(Yi − Y)2 − 2

(
SxY
s2x

) n∑
i=1
(xi − x)(Yi − Y)

+S
2
xY

s4x

n∑
i=1
(xi − x)2

equals (n − 1)S2Y(1 − R2), where X1 = x1,X2 = x2, . . . ,
Xn = xn.Hint: Replace SxY =∑n

i=1(xi−x)(Yi−Y)/(n−1)
by RsxSY .
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9.6-7. To help determine whether gallinules selected their
mate on the basis of weight, 14 pairs of gallinules were
captured and weighed. Test the null hypothesis H0: ρ = 0
against a two-sided alternative at an α = 0.01 signifi-
cance level. Given that the male and female weights for
the n = 14 pairs of birds yielded a sample correlation
coefficient of r = −0.252, would H0 be rejected?
9.6-8. In sampling from a bivariate normal distribution,
it is true that the sample correlation coefficient R has an
approximate normal distribution N[ρ, (1 − ρ2)2/n] if the
sample size n is large. Since, for large n, R is close to ρ,
use two terms of the Taylor’s expansion of u(R) about ρ
and determine that function u(R) such that it has a vari-
ance which is (essentially) free of p. (The solution of this
exercise explains why the transformation (1/2) ln[(1+R)/
(1− R)] was suggested.)
9.6-9. Show that when ρ = 0,
(a) The points of inflection for the graph of the pdf of R

are at r = ±1/√n− 5 for n ≥ 7.
(b) E(R) = 0.
(c) Var(R) = 1/(n − 1),n ≥ 3. Hint: Note that E(R2) =

E[1− (1− R2)].
9.6-10. In a college health fitness program, let X equal
the weight in kilograms of a female freshman at the begin-
ning of the program and let Y equal her change in weight
during the semester. We shall use the following data for
n = 16 observations of (x, y) to test the null hypothesis
H0: ρ = 0 against a two-sided alternative hypothesis:

(61.4, −3.2) (62.9, 1.4) (58.7, 1.3) (49.3, 0.6)

(71.3, 0.2) (81.5,−2.2) (60.8, 0.9) (50.2, 0.2)

(60.3, 2.0) (54.6, 0.3) (51.1, 3.7) (53.3, 0.2)

(81.0, −0.5) (67.6, −0.8) (71.4, −0.1) (72.1, −0.1)

(a) What is the conclusion if α = 0.10?
(b) What is the conclusion if α = 0.05?

9.6-11. Let X and Y have a bivariate normal distribution
with correlation coefficient ρ. To test H0: ρ = 0 against
H1: ρ 
= 0, a random sample of n pairs of observations
is selected. Suppose that the sample correlation coeffi-
cient is r = 0.68. Using a significance level of α = 0.05,
find the smallest value of the sample size n so that H0 is
rejected.

9.6-12. In Exercise 6.5-5, data are given for horsepower,
the time it takes a car to go from 0 to 60, and the weight
in pounds of a car, for 14 cars. Those data are repeated
here:

Horsepower 0–60 Weight Horsepower 0–60 Weight

230 8.1 3516 282 6.2 3627

225 7.8 3690 300 6.4 3892

375 4.7 2976 220 7.7 3377

322 6.6 4215 250 7.0 3625

190 8.4 3761 315 5.3 3230

150 8.4 2940 200 6.2 2657

178 7.2 2818 300 5.5 3518

(a) Let ρ be the correlation coefficient of horsepower and
weight. Test H0: ρ = 0 against H1: ρ 
= 0.

(b) Let ρ be the correlation coefficient of horsepower and
“0–60.” Test H0: ρ = 0 against H1: ρ < 0.

(c) Let ρ be the correlation coefficient of weight and
“0–60.” Test H0: ρ = 0 against H1: ρ 
= 0.

9.7* STATISTICAL QUALITY CONTROL
Statistical methods can be used in many scientific fields, such as medical research,
engineering, chemistry, and psychology. Often, it is necessary to compare two ways
of doing something—say, the old way and a possible new way. We collect data on
each way, quite possibly in a laboratory situation, and try to decide whether the new
way is actually better than the old. Needless to say, it would be terrible to change to
the new way at great expense, only to find out that it is really not any better than
the old. That is, suppose the lab results indicate, by some statistical method, that the
new is seemingly better than the old. Can we actually extrapolate those outcomes in
the lab to the situations in the real world? Clearly, statisticians cannot make these
decisions, but they should be made by some professional who knows both statistics
and the specialty in question very well. The statistical analysis might provide helpful
guidelines, but we still need the expert to make the final decision.
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However, even before investigating possible changes in any process, it is
extremely important to determine exactly what the process in question is doing at
the present time. Often, people in charge of an organization do not understand the
capabilities of many of its processes. Simply measuring what is going on frequently
leads to improvements. In many cases, measurement is easy, such as determining
the diameter of a bolt, but sometimes it is extremely difficult, as in evaluating good
teaching or many other service activities. But if at all possible, we encourage those
involved to begin to “listen” to their processes; that is, they should measure what
is going on in their organization. These measurements alone often are the begin-
ning of desirable improvements. While most of our remarks in this chapter concern
measurements made in manufacturing, service industries frequently find them just
as useful.

At one time, some manufacturing plants would make parts to be used in the
construction of some piece of equipment. Say a particular line in the plant, mak-
ing a certain part, might produce several hundreds of them each day. These items
would then be sent on to an inspection cage, where they would be checked for
goodness, often several days or even weeks later. Occasionally, the inspectors would
discover many defectives among the items made, say, two weeks ago. There was lit-
tle that could be done at that point except scrap or rework the defective parts, both
expensive outcomes.

In the 1920s, W. A. Shewhart, who was working for AT&T Bell Labs, recog-
nized that this was an undesirable situation and suggested that, with some suitable
frequency, a sample of these parts should be taken as they were being made.
If the sample indicated that the items were satisfactory, the manufacturing pro-
cess would continue. But if the sampled parts were not satisfactory, corrections
should be made then so that things became satisfactory. This idea led to what are
commonly called Shewhart control charts—the basis of what was called statistical
quality control in those early days; today it is often referred to as statistical process
control.

Shewhart control charts consist of calculated values of a statistic, say, x, plotted
in sequence. That is, in making products, every so often (each hour, each day, or each
week, depending upon how many items are being produced) a sample of size n of
them is taken, and they are measured, resulting in the observations x1, x2, . . . , xn.
The average x and the standard deviation s are computed. This is done k times, and
the k values of x and s are averaged, resulting in x and s, respectively; usually, k is
equal to some number between 10 and 30.

The central limit theorem states that if the true mean μ and standard deviation
σ of the process were known, then almost all of the x-values would plot between
μ−3σ/√n andμ+3σ/√n, unless the system has actually changed. However, suppose
we know neither μ nor σ , and thus μ is estimated by x and 3σ/

√
n by A3s, where x

and s are the respective means of the k observations of x and s, and where A3 is a
factor depending upon n that can be found in books on statistical quality control.
A few values of A3 (and some other constants that will be used later) are given in
Table 9.7-1 for typical values of n.

The estimates ofμ±3σ/√n are called the upper control limit (UCL), x+A3s, and
the lower control limit (LCL), x−A3s, and x provides the estimate of the centerline.
A typical plot is given in Figure 9.7-1. Here, in the 13th sampling period, x is outside
the control limits, indicating that the process has changed and that some investiga-
tion and action are needed to correct this change, which seems like an upward shift
in the process.

Note that there is a control chart for the s values, too. From sampling distribution
theory, values of B3 and B4 have been determined and are given in Table 9.7-1, so
we know that almost all the s-values should be between B3s and B4s if there is no
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Table 9.7-1 Some constants used with control charts

n A3 B3 B4 A2 D3 D4

4 1.63 0 2.27 0.73 0 2.28

5 1.43 0 2.09 0.58 0 2.11

6 1.29 0.03 1.97 0.48 0 2.00

8 1.10 0.185 1.815 0.37 0.14 1.86

10 0.98 0.28 1.72 0.31 0.22 1.78

20 0.68 0.51 1.49 0.18 0.41 1.59

LCL

UCL

0.5

1.0

1.5

2.0

2 64 10 12 148

 x 

Figure 9.7-1 Typical control chart

change in the underlying distribution. So again, if an individual s-value is outside
these control limits, some action should be taken, as it seems as if there has been a
change in the variation of the underlying distribution.

Often, when these charts are first constructed after k = 10 to 30 sampling peri-
ods, many points fall outside the control limits. A team consisting of workers, the
manager of the process, the supervisor, an engineer, and even a statistician should
try to find the reasons that this has occurred, and the situation should be corrected.
After this is done and the points plot within the control limits, the process is “in
statistical control.” However, being in statistical control is not a guarantee of satis-
faction with the products. SinceA3s is an estimate of 3σ/

√
n, it follows that

√
nA3s is

an estimate of 3σ , and with an underlying distribution close to a normal one, almost
all items would be between x±√nA3s. If these limits are too wide, then corrections
must be made again.

If the variation is under control (i.e., if x and s are within their control limits),
we say that the variations seen in x and s are due to common causes. If prod-
ucts made under such a system with these existing common causes are satisfactory,
then production continues. If either x or s, however, is outside the control limits,
that is an indication that some special causes are at work, and they must be cor-
rected. That is, a team should investigate the problem and some action should be
taken.
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Table 9.7-2 Console opening times

Group x1 x2 x3 x4 x5 x s R

1 1.2 1.8 1.7 1.3 1.4 1.480 0.259 0.60

2 1.5 1.2 1.0 1.0 1.8 1.300 0.346 0.80

3 0.9 1.6 1.0 1.0 1.0 1.100 0.283 0.70

4 1.3 0.9 0.9 1.2 1.0 1.060 0.182 0.40

5 0.7 0.8 0.9 0.6 0.8 0.760 0.114 0.30

6 1.2 0.9 1.1 1.0 1.0 1.040 0.104 0.30

7 1.1 0.9 1.1 1.0 1.4 1.100 0.187 0.50

8 1.4 0.9 0.9 1.1 1.0 1.060 0.207 0.50

9 1.3 1.4 1.1 1.5 1.6 1.380 0.192 0.50

10 1.6 1.5 1.4 1.3 1.5 1.460 0.114 0.30

x = 1.174 s = 0.200 R = 0.49

Example
9.7-1

A company produces a storage console. Twice a day, nine critical characteristics are
tested on five consoles that are selected randomly from the production line. One of
these characteristics is the time it takes the lower storage component door to open
completely. Table 9.7-2 lists the opening times in seconds for the consoles that were
tested during one week. Also included in the table are the sample means, the sample
standard deviations, and the ranges.

The upper control limit (UCL) and the lower control limit (LCL) for x are found
using A3 in Table 9.7-1 with n = 5 as follows:

UCL = x+A3s = 1.174+ 1.43(0.20) = 1.460

and

LCL = x−A3s = 1.174− 1.43(0.20) = 0.888.

These control limits and the sample means are plotted on the x chart in Figure 9.7-2.
There should be some concern about the fifth sampling period; thus, there should be
an investigation to determine why that particular x is below the LCL.

The UCL and LCL for s are found using B3 and B4 in Table 9.7-1 with n = 5 as
follows:

UCL = B4s = 2.09(0.200) = 0.418

and

LCL = B3s = 0(0.200) = 0.
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Figure 9.7-2 The x chart and s chart
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Figure 9.7-3 Plot of 50 console opening times and R chart

These control limits and the sample standard deviations are plotted on the s chart in
Figure 9.7-2.

Almost all of the observations should lie between x±√nA3s; namely,

1.174+√5 (1.43)(0.20) = 1.814
and

1.174−√5 (1.43)(0.20) = 0.534.
This situation is illustrated in Figure 9.7-3, in which all 50 observations do fall within
these control limits.

In most books on statistical quality control, there is an alternative way of con-
structing the limits on an x chart. For each sample, we compute the range,R, which is
the absolute value of the difference of the extremes of the sample. This computation
is much easier than that for calculating s. After k samples are taken, we compute
the average of these R-values, obtaining R as well as x. The statistic A2 R serves
as an estimate of 3σ/

√
n, where A2 is found in Table 9.7-1. Thus, the estimates of

μ± 3σ/√n, namely, x±A2R, can be used as the UCL and LCL of an x chart.
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In addition,
√
nA2R is an estimate of 3σ ; so, with an underlying distribution

that is close to a normal one, we find that almost all observations are within the
limits x±√nA2 R.

Moreover, an R chart can be constructed with centerline R and control limits
equal to D3R and D4R, where D3 and D4 are given in Table 9.7-1 and were deter-
mined so that almost all R-values should be between the control limits if there is no
change in the underlying distribution. Thus, a value of R falling outside those lim-
its would indicate a change in the spread of the underlying distribution, and some
corrective action should be considered.

The use of R, rather than s, is illustrated in the next example.

Example
9.7-2

Using the data in Example 9.7-1, we compute UCL and LCL for an x chart. We use
x±A2 R as follows:

UCL = x+A2R = 1.174+ 0.58(0.49) = 1.458

and

LCL = x−A2 R = 1.174− 0.58(0.49) = 0.890.

Note that these values are very close to the limits that we found for the x chart in
Figure 9.7-2 using x ± A3s. In addition, almost all of the observations should lie
within the limits x+√nA2R, which are

UCL = 1.174+√5 (0.58)(0.49) = 1.809

and

LCL = 1.174−√5 (0.58)(0.49) = 0.539.

Note that these are almost the same as the limits found in Example 9.7-1 and plotted
in Figure 9.7-3.

An R chart can be constructed with centerline R = 0.49 and control limits
given by

UCL = D4R = 2.11(0.49) = 1.034

and

LCL = D3R = 0(0.49) = 0.

Figure 9.7-3 illustrates this control chart for the range, and we see that its pattern is
similar to that of the s chart in Figure 9.7-2.

There are two other Shewhart control charts: the p and c charts. The central
limit theorem, which provided a justification for the three-sigma limits in the x
chart, also justifies the control limits in the p chart. Suppose the number of defec-
tives among n items that are selected randomly—say, D—has a binomial distribution
b(n,p). Then the limits p±3√p(1− p)/n should include almost all of theD/n-values.
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However, pmust be approximated by observing k values ofD—say,D1,D2, . . . ,Dk—
and computing what is called p in the statistical quality control literature,
namely,

p = D1 +D2 + · · · +Dk
kn

.

Thus, the LCL and UCL for the fraction defective, D/n, are respectively given by

LCL = p− 3
√
p(1− p)/n

and

UCL = p+ 3
√
p(1− p)/n.

If the process is in control, almost all D/n-values are between the LCL and UCL.
Still, this may not be satisfactory and improvements might be needed to decrease
p. If it is satisfactory, however, let the process continue under these common causes
of variation until a point, D/n, outside the control limits would indicate that some
special cause has changed the variation. [Incidentally, if D/n is below the LCL, this
might very well indicate that some type of change for the better has been made, and
we want to find out why. In general, outlying statistics can often suggest that good
(as well as bad) breakthroughs have been made.]

The next example gives the results of a simple experiment that you can easily
duplicate.

Example
9.7-3

LetDi equal the number of yellow candies in a 1.69-ounce bag. Because the number
of pieces of candy varies slightly from bag to bag, we shall use an average value for
n when we construct the control limits. Table 9.7-3 lists, for 20 packages, the number
of pieces of candy in the package, the number of yellow ones, and the proportion of
yellow ones.

For these data,

20∑
i=1

ni = 1124 and
20∑
i=1

Di = 219.

It follows that

p = 219
1124

= 0.195 and n = 1124
20

≈ 56.

Thus, the LCL and UCL are respectively given by

LCL = p− 3
√
p(1− p)/56 = 0.195− 3

√
0.195(0.805)/56 = 0.036

and

UCL = p+ 3
√
p(1− p)/56 = 0.195+ 3

√
0.195(0.805)/56 = 0.354.

The control chart for p is depicted in Figure 9.7-4. (For your information the “true”
value for p is 0.20.)

Consider the following explanation of the c chart: Suppose the number of
flaws, say, C, on some product has a Poisson distribution with parameter λ. If λ is
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Table 9.7-3 Data on yellow candies

Package ni Di Di/ni Package ni Di Di/ni

1 56 8 0.14 11 57 10 0.18

2 55 13 0.24 12 59 8 0.14

3 58 12 0.21 13 54 10 0.19

4 56 13 0.23 14 55 11 0.20

5 57 14 0.25 15 56 12 0.21

6 54 5 0.09 16 57 11 0.19

7 56 14 0.25 17 54 6 0.11

8 57 15 0.26 18 58 7 0.12

9 54 11 0.20 19 58 12 0.21

10 55 13 0.24 20 58 14 0.24
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 p 

Figure 9.7-4 The p chart

sufficiently large, as in Example 5.7-5, we consider approximating the discrete
Poisson distribution with the continuousN(λ, λ) distribution. Thus, the interval from
λ− 3√λ to λ+ 3√λ contains virtually all of the C-values. Since λ is unknown, how-
ever, it must be approximated by c, the average of the k values, c1, c2, . . . , ck. Hence
the two control limits for C are computed as

LCL = c− 3√c and UCL = c+ 3√c.
The remarks made about the x and p charts apply to the c chart as well, but we must
remember that each c-value is the number of flaws on one manufactured item, not
an average x or a fraction defectiveD/n.
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Exercises

9.7-1. It is important to control the viscosity of liquid
dishwasher soap so that it flows out of the container but
does not run out too rapidly. Thus, samples are taken
randomly throughout the day and the viscosity is mea-
sured. Use the following 20 sets of 5 observations for this
exercise:

Observations x s R

158 147 158 159 169 158.20 7.79 22

151 166 151 143 169 156.00 11.05 26

153 174 151 164 185 165.40 14.33 34

168 140 180 176 154 163.60 16.52 40

160 187 145 164 158 162.80 15.29 42

169 153 149 144 157 154.40 9.48 25

156 183 157 140 162 159.60 15.47 43

158 160 180 154 160 162.40 10.14 26

164 168 154 158 164 161.60 5.55 14

159 153 170 158 170 162.00 7.65 17

150 161 169 166 154 160.00 7.97 19

157 138 155 134 165 149.80 13.22 31

161 172 156 145 153 157.40 10.01 27

143 152 152 156 163 153.20 7.26 20

179 157 135 172 143 157.20 18.63 44

154 165 145 152 145 152.20 8.23 20

171 189 144 154 147 161.00 18.83 45

187 147 159 167 151 162.20 15.85 40

153 168 148 188 152 161.80 16.50 40

165 155 140 157 176 158.60 13.28 36

(a) Calculate the values of x, s, and R.

(b) Use the values of A3 and s to construct an x chart.

(c) Construct an s chart.

(d) Use the values of A2 and R to construct an x chart.

(e) Construct an R chart.

(f) Do the charts indicate that viscosity is in statistical
control?

9.7-2. It is necessary to control the percentage of solids
in a product, so samples are taken randomly throughout
the day and the percentage of solids is measured. Use the
following 20 sets of 5 observations for this exercise:

Observations x s R

69.8 71.3 65.6 66.3 70.1 68.62 2.51 5.7

71.9 69.6 71.9 71.1 71.7 71.24 0.97 2.3

71.9 69.8 66.8 68.3 64.4 68.24 2.86 7.5

64.2 65.1 63.7 66.2 61.9 64.22 1.61 4.3

66.1 62.9 66.9 67.3 63.3 65.30 2.06 4.4

63.4 67.2 67.4 65.5 66.2 65.94 1.61 4.0

67.5 67.3 66.9 66.5 65.5 66.74 0.79 2.0

63.9 64.6 62.3 66.2 67.2 64.84 1.92 4.9

66.0 69.8 69.7 71.0 69.8 69.26 1.90 5.0

66.0 70.3 65.5 67.0 66.8 67.12 1.88 4.8

67.6 68.6 66.5 66.2 70.4 67.86 1.71 4.2

68.1 64.3 65.2 68.0 65.1 66.14 1.78 3.8

64.5 66.6 65.2 69.3 62.0 65.52 2.69 7.3

67.1 68.3 64.0 64.9 68.2 66.50 1.96 4.3

67.1 63.8 71.4 67.5 63.7 66.70 3.17 7.7

60.7 63.5 62.9 67.0 69.6 64.74 3.53 8.9

71.0 68.6 68.1 67.4 71.7 69.36 1.88 4.3

69.5 61.5 63.7 66.3 68.6 65.92 3.34 8.0

66.7 75.2 79.0 75.3 79.2 75.08 5.07 12.5

77.3 67.2 69.3 67.9 65.6 69.46 4.58 11.7

(a) Calculate the values of x, s, and R.

(b) Use the values of A3 and s to construct an x chart.

(c) Construct an s chart.

(d) Use the values of A2 and R to construct an x chart.

(e) Construct an R chart.

(f) Do the charts indicate that the percentage of solids in
this product is in statistical control?

9.7-3. It is important to control the net weight of a pack-
aged item; thus, items are selected randomly throughout



476 Chapter 9 More Tests

the day from the production line and their weights are
recorded. Use the following 20 sets of 5 weights (in grams)
for this exercise (note that a weight recorded here is the
actual weight minus 330):

Observations x s R

7.97 8.10 7.73 8.26 7.30 7.872 0.3740 0.96

8.11 7.26 7.99 7.88 8.88 8.024 0.5800 1.62

7.60 8.23 8.07 8.51 8.05 8.092 0.3309 0.91

8.44 4.35 4.33 4.48 3.89 5.098 1.8815 4.55

5.11 4.05 5.62 4.13 5.01 4.784 0.6750 1.57

4.79 5.25 5.19 5.23 3.97 4.886 0.5458 1.28

4.47 4.58 5.35 5.86 5.61 5.174 0.6205 1.39

5.82 4.51 5.38 5.01 5.54 5.252 0.5077 1.31

5.06 4.98 4.13 4.58 4.35 4.620 0.3993 0.93

4.74 3.77 5.05 4.03 4.29 4.376 0.5199 1.28

4.05 3.71 4.73 3.51 4.76 4.152 0.5748 1.25

3.94 5.72 5.07 5.09 4.61 4.886 0.6599 1.78

4.63 3.79 4.69 5.13 4.66 4.580 0.4867 1.34

4.30 4.07 4.39 4.63 4.47 4.372 0.2079 0.56

4.05 4.14 4.01 3.95 4.05 4.040 0.0693 0.19

4.20 4.50 5.32 4.42 5.24 4.736 0.5094 1.12

4.54 5.23 4.32 4.66 3.86 4.522 0.4999 1.37

5.02 4.10 5.08 4.94 5.18 4.864 0.4360 1.08

4.80 4.73 4.82 4.69 4.27 4.662 0.2253 0.55

4.55 4.76 4.45 4.85 4.02 4.526 0.3249 0.83

(a) Calculate the values of x, s, and R.

(b) Use the values of A3 and s to construct an x chart.

(c) Construct an s chart.

(d) Use the values of A2 and R to construct an x chart.

(e) Construct an R chart.

(f) Do the charts indicate that these fill weights are in
statistical control?

9.7-4. A company has been producing bolts that are
about p = 0.02 defective, and this is satisfactory. To mon-
itor the quality of the process, 100 bolts are selected at
random each hour and the number of defective bolts
counted. With p = 0.02, compute the UCL and LCL of
the p chart. Then suppose that, over the next 24 hours,
the following numbers of defective bolts are observed:

4 1 1 0 5 2 1 3 4 3 1 0 0 4 1 1 6 2 0 0 2 8 7 5

Would any action have been required during this time?

9.7-5. To give some indication of how the values in
Table 9.7-1 are calculated, values of A3 are found in this
exercise. Let X1,X2, . . . ,Xn be a random sample of size n
from the normal distribution N(μ, σ 2). Let S2 equal the
sample variance of this random sample.

(a) Use the fact that Y = (n − 1)S2/σ 2 has a distribution
that is χ2(n−1) to show that E[S2] = σ 2.

(b) Using the χ2(n−1) pdf, find the value of E(√Y).
(c) Show that

E
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2

)
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2

) S
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(d) Verify that
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2

)
⎤⎥⎥⎦ = A3,

found in Table 9.7-1 for n = 5 and n = 6. Thus, A3 s
approximates 3σ/

√
n.

9.7-6. In a woolen mill, 100-yard pieces are inspected. In
the last 20 observations, the following numbers of flaws
were found:

2 4 0 1 0 3 4 1 1 2 4 0 0 1 0 3 2 3 5 0

(a) Compute the control limits of the c chart and draw
this control chart.

(b) Is the process in statistical control?

9.7-7. In the past, n = 50 fuses are tested each hour and
p = 0.03 have been found defective. Calculate the UCL
and LCL. After a production error, say the true p shifts to
p = 0.05.
(a) What is the probability that the next observation

exceeds the UCL?

(b) What is the probability that at least one of the next
five observations exceeds the UCL? Hint: Assume
independence and compute the probability that none
of the next five observations exceeds the UCL.

9.7-8. Snee (see References) has measured the thickness
of the “ears” of paint cans. (The “ear” of a paint can is the
tab that secures the lid of the the can.) At periodic inter-
vals, samples of five paint cans are taken from a hopper
that collects the production from two machines, and the
thickness of each ear is measured. The results (in inches
× 1000) of 30 such samples are as follows:
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Observations x s R

29 36 39 34 34 34.4 3.64692 10

29 29 28 32 31 29.8 1.64317 4

34 34 39 38 37 36.4 2.30217 5

35 37 33 38 41 36.8 3.03315 8

30 29 31 38 29 31.4 3.78153 9

34 31 37 39 36 35.4 3.04959 8

30 35 33 40 36 34.8 3.70135 10

28 28 31 34 30 30.2 2.48998 6

32 36 38 38 35 35.8 2.48998 6

35 30 37 35 31 33.6 2.96648 7

35 30 35 38 35 34.6 2.88097 8

38 34 35 35 31 34.6 2.50998 7

34 35 33 30 34 33.2 1.92354 5

40 35 34 33 35 35.4 2.70185 7

34 35 38 35 30 34.4 2.88097 8

35 30 35 29 37 33.2 3.49285 8

40 31 38 35 31 35.0 4.06202 9

35 36 30 33 32 33.2 2.38747 6

35 34 35 30 36 34.0 2.34521 6

35 35 31 38 36 35.0 2.54951 7

32 36 36 32 36 34.4 2.19089 4

36 37 32 34 34 34.6 1.94936 5

29 34 33 37 35 33.6 2.96648 8

36 36 35 37 37 36.2 0.83666 2

36 30 35 33 31 33.0 2.54951 6

35 30 29 38 35 33.4 3.78153 9

Observations x s R

35 36 30 34 36 34.2 2.48998 6

35 30 36 29 35 33.0 3.24037 7

38 36 35 31 31 34.2 3.11448 7

30 34 40 28 30 32.4 4.77493 12

(a) Calculate the values of x, s, and R.

(b) Use the values of A3 and s to construct an x chart.

(c) Construct an s chart.

(d) Use the values of A2 and R to construct an x chart.

(e) Construct an R chart.

(f) Do the charts indicate that these fill weights are in
statistical control?

9.7-9. Ledolter and Hogg (see References) report that,
in the production of stainless steel pipes, the number of
defects per 100 feet should be controlled. From 15 ran-
domly selected pipes of length 100 feet, the following data
on the number of defects were observed:

6 10 8 1 7 9 7 4 5 10 3 4 9 8 5

(a) Compute the control limits of the c chart and draw
this control chart.

(b) Is the process in statistical control?

9.7-10. Suppose we find that the number of blemishes in
50-foot tin strips averages about c = 1.4. Calculate the
control limits. Say the process has gone out of control and
this average has increased to 3.

(a) What is the probability that the next observation will
exceed the UCL?

(b) What is the probability that at least 1 of the next 10
observations will exceed the UCL?

HISTORICAL COMMENTS Chi-square tests were the invention of Karl Pearson,
except that he had it wrong in the case in which parameters are estimated. When
R. A. Fisher was a brash young man, he told his senior, Pearson, that he should
reduce the number of degrees of freedom of the chi-square distribution by 1 for
every parameter that was estimated. Pearson never believed this (of course, Fisher
was correct), and, as editor of the very prestigious journal Biometrika, Pearson
blocked Fisher in his later professional life from publishing in that journal. Fisher
was disappointed, and the two men battled during their lifetimes; however, later
Fisher saw this conflict to be to his advantage, as it made him consider applied
journals in which to publish, and thus he became a better, more well-rounded
scientist.
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Another important item in this chapter is the analysis of variance (ANOVA).
This is just the beginning of what is called the design of experiments, developed
by R. A. Fisher. In our simple cases in this section, he shows how to test for the
best levels of factors in the one-factor and two-factor cases. We study a few impor-
tant generalizations in Section 9.5. The analysis of designed experiments was a huge
contribution by Fisher.

Quality improvement made a substantial change in manufacturing beginning in
the 1920s, with Walter A. Shewhart’s control charts. In fairness, it should be noted
that the British started a similar program about the same time. Statistical quality
control, as described in Section 9.7, really had a huge influence during World War II,
with many universities giving short courses in the subject. These courses continued
after the war, but the development of the importance of total quality improvement
lagged behind. W. Edwards Deming complained that the Japanese used his quality
ideas beginning in the 1950s, but the Americans did not adopt them until 1980. That
year NBC televised a program entitled If Japan Can, Why Can’t We?, and Deming
was the “star” of that broadcast. He related that the next day his phone “started
ringing off the hook.” Various companies requested that he spend one day with them
to get them started on the right path. According to Deming, they all wanted “instant
pudding,” and he noted that he had asked the Japanese to give him five years to
make the improvements he pioneered. Actually, using his philosophy, many of these
companies did achieve substantial results in quality sooner than that. However, it
was after the NBC program that Deming started his famous four-day courses, and
he taught his last one in December of 1993, about 10 days before his death at the
age of 93.

Many of these quality efforts in the 1970s and 1980s used the name “Total
Quality Management” or, later, “Continuous Process Improvements.” However, it
wasMotorola’s Six Sigma program, which started in the late 1980s and has continued
for over 20 years since then, that has had the biggest impact. In addition toMotorola,
GE, Allied, and a large number of companies have used this system. In our opinion,
Six Sigma is the leading development in the quality improvement effort.


