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8.1 TESTS ABOUT ONE MEAN
We begin this chapter on tests of statistical hypotheses with an application in which
we define many of the terms associated with testing.

Example
8.1-1

Let X equal the breaking strength of a steel bar. If the bar is manufactured by pro-
cess I, X is N(50, 36), i.e., X is normally distributed with μ = 50 and σ 2 = 36. It is
hoped that if process II (a new process) is used, X will be N(55, 36). Given a large
number of steel bars manufactured by process II, how could we test whether the
five-unit increase in the mean breaking strength was realized?

In this problem, we are assuming that X is N(μ, 36) and μ is equal to 50 or 55.
We want to test the simple null hypothesis H0: μ = 50 against the simple alterna-
tive hypothesis H1: μ = 55. Note that each of these hypotheses completely specifies
the distribution of X. That is, H0 states that X is N(50, 36) and H1 states that X
is N(55, 36). (If the alternative hypothesis had been H1: μ > 50, it would be a
composite hypothesis, because it is composed of all normal distributions with = 36
and means greater than 50.) In order to test which of the two hypotheses, H0 or
H1, is true, we shall set up a rule based on the breaking strengths x1, x2, . . . , xn
of n bars (the observed values of a random sample of size n from this new nor-
mal distribution). The rule leads to a decision to accept or reject H0; hence, it is
necessary to partition the sample space into two parts—say, C and C′—so that if
(x1, x2, . . . , xn) ∈ C, H0 is rejected, and if (x1, x2, . . . , xn) ∈ C′, H0 is accepted
(not rejected). The rejection region C for H0 is called the critical region for the
test. Often, the partitioning of the sample space is specified in terms of the val-
ues of a statistic called the test statistic. In this example, we could let X be the
test statistic and, say, take C = {(x1, x2, . . . , xn) : x ≥ 53}; that is, we will reject
H0 if x ≥ 53. If (x1, x2, . . . , xn) ∈ C when H0 is true, H0 would be rejected when
it is true, a Type I error. If (x1, x2, . . . , xn) ∈ C′ when H1 is true, H0 would be
accepted (i.e., not rejected) when in fact H1 is true, a Type II error. The proba-
bility of a Type I error is called the significance level of the test and is denoted by
α. That is, α = P[(X1,X2, . . . ,Xn) ∈ C;H0] is the probability that (X1,X2, . . . ,Xn)
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356 Chapter 8 Tests of Statistical Hypotheses

falls into C when H0 is true. The probability of a Type II error is denoted by β; that
is, β = P[(X1,X2, . . . ,Xn) ∈ C′;H1] is the probability of accepting (failing to reject)
H0 when it is false.

As an illustration, suppose n = 16 bars were tested and C = {x : x ≥ 53}. Then
X is N(50, 36/16) when H0 is true and is N(55, 36/16) when H1 is true. Thus,

α = P(X ≥ 53;H0) = P

(
X − 50

6/4
≥ 53− 50

6/4
;H0

)

= 1−�(2) = 0.0228

and

β = P(X < 53;H1) = P

(
X − 55

6/4
<

53− 55
6/4

;H1

)

= �

(
−4

3

)
= 1− 0.9087 = 0.0913.

Figure 8.1-1 shows the graphs of the probability density functions ofX whenH0 and
H1, respectively, are true. Note that by changing the critical region, C, it is possible
to decrease (increase) the size of α but this leads to an increase (decrease) in the size
of β. Both α and β can be decreased if the sample size n is increased.

Through another example, we define a p-value obtained in testing a hypothesis
about a mean.

Example
8.1-2

Assume that the underlying distribution is normal with unknown mean μ but known
variance σ 2 = 100. Say we are testing the simple null hypothesis H0: μ = 60
against the composite alternative hypothesis H1: μ > 60 with a sample mean X
based on n = 52 observations. Suppose that we obtain the observed sample mean
of x = 62.75. If we compute the probability of obtaining an X of that value of 62.75
or greater when μ = 60, then we obtain the p-value associated with x = 62.75.
That is,

f(x)
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x

Figure 8.1-1 pdf of X underH0 andH1
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p-value = P(X ≥ 62.75; μ = 60)

= P
(
X − 60

10/
√

52
≥ 62.75− 60

10/
√

52
; μ = 60

)

= 1−�
(

62.75− 60

10/
√

52

)
= 1−�(1.983) = 0.0237.

If this p-value is small, we tend to reject the hypothesis H0: μ = 60. For example,
rejecting H0: μ = 60 if the p-value is less than or equal to α = 0.05 is exactly the
same as rejecting H0 if

x ≥ 60+ (1.645)
(

10√
52

)
= 62.281.

Here

p-value = 0.0237 < α = 0.05 and x = 62.75 > 62.281.

To help the reader keep the definition of p-value in mind, we note that it can be
thought of as that tail-end probability, under H0, of the distribution of the statistic
(hereX) beyond the observed value of the statistic. (See Figure 8.1-2 for the p-value
associated with x = 62.75.)

If the alternative were the two-sided H1: μ �= 60, then the p-value would have
been double 0.0237; that is, then the p-value = 2(0.0237) = 0.0474 because we
include both tails.

When we sample from a normal distribution, the null hypothesis is generally of
the formH0:μ = μ0. There are three possibilities of interest for a composite alterna-
tive hypothesis: (i) that μ has increased, or H1: μ > μ0; (ii) that μ has decreased, or
H1: μ < μ0; and (iii) that μ has changed, but it is not known whether it has increased
or decreased, which leads to the two-sided alternative hypothesis, orH1: μ �= μ0.

To test H0: μ = μ0 against one of these three alternative hypotheses, a random
sample is taken from the distribution and an observed sample mean, x, that is close to
μ0 supportsH0. The closeness of x to μ0 is measured in terms of standard deviations
ofX, σ/

√
n, when σ is known, a measure that is sometimes called the standard error

of the mean. Thus, the test statistic could be defined by

p-value = 0.02370.05
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Figure 8.1-2 Illustration of p-value
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Table 8.1-1 Tests of hypotheses about one mean, variance known

H0 H1 Critical Region

μ = μ0 μ > μ0 z ≥ zα or x ≥ μ0 + zασ/√n
μ = μ0 μ < μ0 z ≤ −zα or x ≤ μ0 − zασ/√n
μ = μ0 μ �= μ0 |z| ≥ zα/2 or |x− μ0| ≥ zα/2σ/√n

Z = X − μ0√
σ 2/n

= X − μ0

σ/
√
n

, (8.1-1)

and the critical regions, at a significance level α, for the three respective alternative
hypotheses would be (i) z ≥ zα , (ii) z ≤ −zα , and (iii) |z| ≥ zα/2. In terms of x, these
three critical regions become (i) x ≥ μ0 + zα(σ/

√
n ), (ii) x ≤ μ0 − zα(σ/

√
n ), and

(iii) |x− μ0| ≥ zα/2(σ/
√
n ).

The three tests and critical regions are summarized in Table 8.1-1. The underly-
ing assumption is that the distribution is N(μ, σ 2) and σ 2 is known.

It is usually the case that the variance σ 2 is not known. Accordingly, we now take
a more realistic position and assume that the variance is unknown. Suppose our null
hypothesis is H0: μ = μ0 and the two-sided alternative hypothesis is H1: μ �= μ0.
Recall from Section 7.1, for a random sample X1,X2, . . . ,Xn taken from a normal
distribution N(μ, σ 2), a confidence interval for μ is based on

T = X − μ√
S2/n

= X − μ
S/
√
n

.

This suggests that T might be a good statistic to use for the test ofH0: μ = μ0 with μ
replaced by μ0. In addition, it is the natural statistic to use if we replace σ 2/n by its
unbiased estimator S2/n in (X − μ0)/

√
σ 2/n in Equation 8.1-1. If μ = μ0, we know

that T has a t distribution with n− 1 degrees of freedom. Thus, with μ = μ0,

P[ |T| ≥ tα/2(n−1)] = P
[
|X − μ0|
S/
√
n

≥ tα/2(n−1)

]
= α.

Accordingly, if x and s are, respectively, the sample mean and sample standard
deviation, then the rule that rejects H0: μ = μ0 and accepts H1: μ �= μ0 if and
only if

|t| = |x− μ0|
s/
√
n
≥ tα/2(n−1)

provides a test of this hypothesis with significance level α. Note that this rule is
equivalent to rejecting H0: μ = μ0 if μ0 is not in the open 100(1 − α)% confidence
interval (

x− tα/2(n−1)
[
s/
√
n
]

, x+ tα/2(n−1)
[
s/
√
n
])

.

Table 8.1-2 summarizes tests of hypotheses for a single mean, along with the
three possible alternative hypotheses, when the underlying distribution is N(μ, σ 2),
σ 2 is unknown, t = (x − μ0)/(s/

√
n ), and n ≤ 30. If n > 30, we use Table 8.1-1 for

approximate tests, with σ replaced by s.
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Table 8.1-2 Tests of hypotheses for one mean, variance unknown

H0 H1 Critical Region

μ = μ0 μ > μ0 t ≥ tα(n− 1) or x ≥ μ0 + tα(n− 1)s/
√
n

μ = μ0 μ < μ0 t ≤ −tα(n− 1) or x ≤ μ0 − tα(n− 1)s/
√
n

μ = μ0 μ �= μ0 |t| ≥ tα/2(n− 1) or |x− μ0| ≥ tα/2(n− 1)s/
√
n

Example
8.1-3

Let X (in millimeters) equal the growth in 15 days of a tumor induced in a mouse.
Assume that the distribution of X is N(μ, σ 2). We shall test the null hypothesis H0:
μ = μ0 = 4.0 mm against the two-sided alternative hypothesis H1: μ �= 4.0. If we
use n = 9 observations and a significance level of α = 0.10, the critical region is

|t| = |x− 4.0|
s/
√

9
≥ tα/2(8) = 1.860.

If we are given that n = 9, x = 4.3, and s = 1.2, we see that

t = 4.3− 4.0

1.2/
√

9
= 0.3

0.4
= 0.75.

Thus,

|t| = |0.75| < 1.860,

and we accept (do not reject) H0: μ = 4.0 at the α = 10% significance level. (See
Figure 8.1-3.) The p-value is the two-sided probability of |T| ≥ 0.75, namely,

p-value = P(|T| ≥ 0.75) = 2P(T ≥ 0.75).

With our t tables with eight degrees of freedom, we cannot find this p-value exactly.
It is about 0.50, because

P(|T| ≥ 0.706) = 2P(T ≥ 0.706) = 0.50.

However, Minitab gives a p-value of 0.4747. (See Figure 8.1-3.)

α/2 = 0.05α/2 = 0.05

p-value

t = 0.75

0.1

0.2

0.3

0.4

−3 −2 −1 3210

0.1

0.2

0.3

0.4

−3 −2 −1 3210

Figure 8.1-3 Test about mean of tumor growths
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REMARK In discussing the test of a statistical hypothesis, the word accept H0 might
better be replaced by do not reject H0. That is, if, in Example 8.1-3, x is close enough
to 4.0 so that we accept μ = 4.0, we do not want that acceptance to imply that μ
is actually equal to 4.0. We want to say that the data do not deviate enough from
μ = 4.0 for us to reject that hypothesis; that is, we do not reject μ = 4.0 with these
observed data. With this understanding, we sometimes use accept, and sometimes
fail to reject or do not reject, the null hypothesis.

The next example illustrates the use of the t statistic with a one-sided alternative
hypothesis.

Example
8.1-4

In attempting to control the strength of the wastes discharged into a nearby river, a
paper firm has taken a number of measures. Members of the firm believe that they
have reduced the oxygen-consuming power of their wastes from a previous mean
μ of 500 (measured in parts per million of permanganate). They plan to test H0:
μ = 500 against H1: μ < 500, using readings taken on n = 25 consecutive days.
If these 25 values can be treated as a random sample, then the critical region, for a
significance level of α = 0.01, is

t = x− 500

s/
√

25
≤ −t0.01(24) = −2.492.

The observed values of the sample mean and sample standard deviation were x =
308.8 and s = 115.15. Since

t = 308.8− 500

115.15/
√

25
= −8.30 < −2.492,

we clearly reject the null hypothesis and accept H1: μ < 500. Note, however, that
although an improvement has been made, there still might exist the question of
whether the improvement is adequate. The one-sided 99% confidence interval for
μ, namely,

[0, 308.8+ 2.492(115.25/
√

25 )] = [0, 366.191],

provides an upper bound for μ and may help the company answer this question.

Oftentimes, there is interest in comparing the means of two different distribu-
tions or populations. We must consider two situations: that in which X and Y are
dependent and that in whichX andY are independent. We consider the independent
case in the next section.

If X and Y are dependent, let W = X − Y, and the hypothesis that μX = μY
would be replaced with the hypothesis H0: μW = 0. For example, suppose that X
and Y equal the resting pulse rate for a person before and after taking an eight-
week program in aerobic dance. We would be interested in testing H0: μW = 0 (no
change) againstH1: μW > 0 (the aerobic dance program decreased the mean resting
pulse rate). Because X and Y are measurements on the same person, X and Y are
clearly dependent. If we can assume that the distribution of W is (approximately)
N(μW , σ 2), then we can choose to use the appropriate t test for a single mean from
Table 8.1-2. This is often called a paired t test.
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Example
8.1-5

Twenty-four girls in the 9th and 10th grades were put on an ultraheavy rope-jumping
program. Someone thought that such a program would increase their speed in the 40-
yard dash. Let W equal the difference in time to run the 40-yard dash—the “before-
program time” minus the “after-program time.” Assume that the distribution of W
is approximatelyN(μW , σ 2

W). We shall test the null hypothesisH0: μW = 0 against the
alternative hypothesis H1: μW > 0. The test statistic and the critical region that has
an α = 0.05 significance level are given by

t = w− 0

sw/
√

24
≥ t0.05(23) = 1.714.

The following data give the difference in time that it took each girl to run the 40-yard
dash, with positive numbers indicating a faster time after the program:

0.28 0.01 0.13 0.33 −0.03 0.07 −0.18 −0.14

−0.33 0.01 0.22 0.29 −0.08 0.23 0.08 0.04

−0.30 −0.08 0.09 0.70 0.33 −0.34 0.50 0.06

For these data, w = 0.0788 and sw = 0.2549. Thus, the observed value of the test
statistic is

t = 0.0788− 0

0.2549/
√

24
= 1.514.

Since 1.514 < 1.714, the null hypothesis is not rejected. Note, however, that
t0.10(23) = 1.319 and t = 1.514 > 1.319. Hence, the null hypothesis would be rejected
at an α = 0.10 significance level. Another way of saying this is that

0.05 < p-value < 0.10.

It would be instructive to draw a figure illustrating this double inequality.

There are two ways of viewing a statistical test. One of these is through the
p-value of the test; this approach is becoming more popular and is included in most
computer printouts, so we mention it again. After observing the test statistic, we can
say that the p-value is the probability, under the hypothesis H0, of the test statistic
being at least as extreme (in the direction of rejection of H0) as the observed one.
That is, the p-value is the tail-end probability. As an illustration, say a golfer averages
about 90 for an 18-hole round, with a standard deviation of 3, and she takes some
lessons to improve. To test her possible improvement, namely, H0: μ = 90, against
H1: μ < 90, she plays n = 16 rounds of golf. Assume a normal distribution with
σ = 3. If the golfer averaged x = 87.9375, then

p-value = P(X ≤ 87.9375) = P
(
X − 90

3/4
≤ 87.9375− 90

3/4

)
= 0.0030.

The fact that the p-value is less than 0.05 is equivalent to the fact that x < 88.77,
because P(X ≤ 88.77; μ = 90) = 0.05. Since x = 87.9375 is an observed value
of a random variable, namely, X, it follows that the p-value, a function of x, is also
an observed value of a random variable. That is, before the random experiment is
performed, the probability that the p-value is less than or equal to α is approxi-
mately equal to α when the null hypothesis is true. Many statisticians believe that
the observed p-value provides an understandable measure of the truth of H0: The
smaller the p-value, the less they believe inH0.
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Two additional examples of the p-value may be based on Examples 8.1-3 and
8.1-4. In two-sided tests for means and proportions, the p-value is the probability
of the extreme values in both directions. With the mouse data (Example 8.1-3), the
p-value is

p-value = P(|T| ≥ 0.75).

In Table VI in Appendix B, we see that if T has a t distribution with eight degrees
of freedom, then P(T ≥ 0.706) = 0.25. Thus, P(|T| ≥ 0.706) = 0.50 and the p-value
will be a little smaller than 0.50. In fact, P(|T| ≥ 0.75) = 0.4747 (a probability that
was found with Minitab), which is not less than α = 0.10; hence, we do not rejectH0
at that significance level. In the example concerned with waste (Example 8.1-4), the
p-value is essentially zero, since P(T ≤ −8.30) ≈ 0, where T has a t distribution with
24 degrees of freedom. Consequently, we rejectH0.

The other way of looking at tests of hypotheses is through the consideration of
confidence intervals, particularly for two-sided alternatives and the corresponding
tests. For example, with the mouse data (Example 8.1-3), a 90% confidence interval
for the unknown mean is

4.3± (1.86)(1.2)/
√

9, or [3.56, 5.04],

since t0.05(8) = 1.86. Note that this confidence interval covers the hypothesized
value μ = 4.0 and we do not reject H0: μ = 4.0. If the confidence interval did not
cover μ = 4.0, then we would have rejected H0: μ = 4.0. Many statisticians believe
that estimation is much more important than tests of hypotheses and accordingly
approach statistical tests through confidence intervals. For one-sided tests, we use
one-sided confidence intervals.

Exercises

8.1-1. Assume that IQ scores for a certain population are
approximately N(μ, 100). To test H0: μ = 110 against the
one-sided alternative hypothesis H1: μ > 110, we take a
random sample of size n = 16 from this population and
observe x = 113.5.

(a) Do we accept or reject H0 at the 5% significance
level?

(b) Do we accept or reject H0 at the 10% significance
level?

(c) What is the p-value of this test?

8.1-2. Assume that the weight of cereal in a “12.6-
ounce box” isN(μ, 0.22). The Food and Drug Association
(FDA) allows only a small percentage of boxes to contain
less than 12.6 ounces. We shall test the null hypothesisH0:
μ = 13 against the alternative hypothesisH1: μ < 13.

(a) Use a random sample of n = 25 to define the test
statistic and the critical region that has a significance
level of α = 0.025.

(b) If x = 12.9, what is your conclusion?

(c) What is the p-value of this test?

8.1-3. Let X equal the Brinell hardness measurement
of ductile iron subcritically annealed. Assume that the
distribution of X is N(μ, 100). We shall test the null
hypothesisH0: μ = 170 against the alternative hypothesis
H1: μ > 170, using n = 25 observations of X.

(a) Define the test statistic and a critical region that has a
significance level of α = 0.05. Sketch a figure showing
this critical region.

(b) A random sample of n = 25 observations ofX yielded
the following measurements:

170 167 174 179 179 156 163 156 187

156 183 179 174 179 170 156 187

179 183 174 187 167 159 170 179

Calculate the value of the test statistic and state your
conclusion clearly.

(c) Give the approximate p-value of this test.

8.1-4. Let X equal the thickness of spearmint gum man-
ufactured for vending machines. Assume that the dis-
tribution of X is N(μ, σ 2). The target thickness is 7.5
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hundredths of an inch. We shall test the null hypothesis
H0: μ = 7.5 against a two-sided alternative hypothesis,
using 10 observations.

(a) Define the test statistic and critical region for an α =
0.05 significance level. Sketch a figure illustrating this
critical region.

(b) Calculate the value of the test statistic and state your
decision clearly, using the following n = 10 thick-
nesses in hundredths of an inch for pieces of gum
that were selected randomly from the production
line:

7.65 7.60 7.65 7.70 7.55

7.55 7.40 7.40 7.50 7.50

(c) Is μ = 7.50 contained in a 95% confidence interval
for μ?

8.1-5. The mean birth weight of infants in the United
States is μ = 3315 grams. Let X be the birth weight
(in grams) of a randomly selected infant in Jerusalem.
Assume that the distribution of X is N(μ, σ 2), where μ
and σ 2 are unknown. We shall test the null hypothesisH0:
μ = 3315 against the alternative hypothesisH1:μ < 3315,
using n = 30 randomly selected Jerusalem infants.

(a) Define a critical region that has a significance level of
α = 0.05.

(b) If the random sample of n = 30 yielded x = 3189 and
s = 488, what would be your conclusion?

(c) What is the approximate p-value of your test?

8.1-6. Let X equal the forced vital capacity (FVC) in
liters for a female college student. (The FVC is the
amount of air that a student can force out of her lungs.)
Assume that the distribution of X is approximately
N(μ, σ 2). Suppose it is known that μ = 3.4 liters. A vol-
leyball coach claims that the FVC of volleyball players is
greater than 3.4. She plans to test her claim with a random
sample of size n = 9.

(a) Define the null hypothesis.

(b) Define the alternative (coach’s) hypothesis.

(c) Define the test statistic.

(d) Define a critical region for which α = 0.05. Draw a
figure illustrating your critical region.

(e) Calculate the value of the test statistic given that the
random sample yielded the following FVCs:

3.4 3.6 3.8 3.3 3.4 3.5 3.7 3.6 3.7

(f) What is your conclusion?

(g) What is the approximate p-value of this test?

8.1-7. Vitamin B6 is one of the vitamins in a multiple vita-
min pill manufactured by a pharmaceutical company. The
pills are produced with a mean of 50 mg of vitamin B6
per pill. The company believes that there is a deteriora-
tion of 1 mg/month, so that after 3 months it expects that
μ = 47. A consumer group suspects that μ < 47 after 3
months.

(a) Define a critical region to test H0: μ = 47 against H1:
μ < 47 at an α = 0.05 significance level based on a
random sample of size n = 20.

(b) If the 20 pills yielded a mean of x = 46.94 with a stan-
dard deviation of s = 0.15, what is your conclusion?

(c) What is the approximate p-value of this test?

8.1-8. A company that manufactures brackets for an
automaker regularly selects brackets from the produc-
tion line and performs a torque test. The goal is for
mean torque to equal 125. Let X equal the torque and
assume that X is N(μ, σ 2). We shall use a sample of size
n = 15 to testH0: μ = 125 against a two-sided alternative
hypothesis.

(a) Give the test statistic and a critical region with signif-
icance level α = 0.05. Sketch a figure illustrating the
critical region.

(b) Use the following observations to calculate the value
of the test statistic and state your conclusion:

128 149 136 114 126 142 124 136

122 118 122 129 118 122 129

8.1-9. The ornamental ground cover Vinca minor is
spreading rapidly through the Hope College Biology
Field Station because it can outcompete the small, native
woody vegetation. In an attempt to discover whether
Vinca minor utilized natural chemical weapons to inhibit
the growth of the native vegetation, Hope biology stu-
dents conducted an experiment in which they treated
33 sunflower seedlings with extracts taken from Vinca
minor roots for several weeks and then measured the
heights of the seedlings. Let X equal the height of one
of these seedlings and assume that the distribution ofX is
N(μ, σ 2). The observed growths (in cm) were

11.5 11.8 15.7 16.1 14.1 10.5 15.2 19.0 12.8 12.4 19.2

13.5 16.5 13.5 14.4 16.7 10.9 13.0 15.1 17.1 13.3 12.4

8.5 14.3 12.9 11.1 15.0 13.3 15.8 13.5 9.3 12.2 10.3

The students also planted some control sunflower
seedlings that had a mean height of 15.7 cm. We shall test
the null hypothesis H0: μ = 15.7 against the alternative
hypothesisH1: μ < 15.7.
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(a) Calculate the value of the test statistic and give limits
for the p-value of this test.

(b) What is your conclusion?

(c) Find an approximate 98% one-sided confidence inter-
val that gives an upper bound for μ.

8.1-10. In a mechanical testing lab, Plexiglass� strips are
stretched to failure. Let X equal the change in length in
mm before breaking. Assume that the distribution ofX is
N(μ, σ 2). We shall test the null hypothesis H0: μ = 5.70
against the alternative hypothesis H1: μ > 5.70, using
n = 8 observations of X.

(a) Define the test statistic and a critical region that has a
significance level of α = 0.05. Sketch a figure showing
this critical region.

(b) A random sample of eight observations of X yielded
the following data:

5.71 5.80 6.03 5.87 6.22 5.92 5.57 5.83

Calculate the value of the test statistic and state your
conclusion clearly.

(c) Give the approximate value of or bounds for the
p-value of this test.

8.1-11. A vendor of milk products produces and sells low-
fat dry milk to a company that uses it to produce baby
formula. In order to determine the fat content of the milk,
both the company and the vendor take an observation
from each lot and test it for fat content in percent. Ten
sets of paired test results are as follows:

Lot Number
Company Test

Results (x)
Vendor Test
Results (y)

1 0.50 0.79

2 0.58 0.71

3 0.90 0.82

4 1.17 0.82

5 1.14 0.73

6 1.25 0.77

7 0.75 0.72

8 1.22 0.79

9 0.74 0.72

10 0.80 0.91

Let μD denote the mean of the difference x − y. Test H0:
μD = 0 against H1: μD > 0, using a paired t test with the
differences. Let α = 0.05.

8.1-12. To test whether a golf ball of brand A can be hit
a greater distance off the tee than a golf ball of brand B,
each of 17 golfers hit a ball of each brand, 8 hitting ball
A before ball B and 9 hitting ball B before ball A. The
results in yards are as follows:

Distance Distance Distance Distance
for for for for

Golfer Ball A Ball B Golfer Ball A Ball B

1 265 252 10 274 260

2 272 276 11 274 267

3 246 243 12 269 267

4 260 246 13 244 251

5 274 275 14 212 222

6 263 246 15 235 235

7 255 244 16 254 255

8 258 245 17 224 231

9 276 259

Assume that the differences of the paired A distance and
B distance are approximately normally distributed, and
test the null hypothesisH0: μD = 0 against the alternative
hypothesis H1: μD > 0, using a paired t test with the 17
differences. Let α = 0.05.

8.1-13. A company that manufactures motors receives
reels of 10,000 terminals per reel. Before using a reel of
terminals, 20 terminals are randomly selected to be tested.
The test is the amount of pressure needed to pull the ter-
minal apart from its mate. This amount of pressure should
continue to increase from test to test as the terminal
is “roughed up.” (Since this kind of testing is destruc-
tive testing, a terminal that is tested cannot be used in a
motor.) LetW equal the difference of the pressures: “test
No. 1 pressure” minus “test No. 2 pressure.” Assume that
the distribution of W is N(μW , σ 2

W). We shall test the null
hypothesis H0: μW = 0 against the alternative hypothesis
H1: μW < 0, using 20 pairs of observations.

(a) Give the test statistic and a critical region that has
a significance level of α = 0.05. Sketch a figure
illustrating this critical region.

(b) Use the following data to calculate the value of the
test statistic, and state your conclusion clearly:



Section 8.2 Tests of the Equality of Two Means 365

Terminal Test 1 Test 2 Terminal Test 1 Test 2

1 2.5 3.8 11 7.3 8.2

2 4.0 3.9 12 7.2 6.6

3 5.2 4.7 13 5.9 6.8

4 4.9 6.0 14 7.5 6.6

5 5.2 5.7 15 7.1 7.5

6 6.0 5.7 16 7.2 7.5

7 5.2 5.0 17 6.1 7.3

8 6.6 6.2 18 6.3 7.1

9 6.7 7.3 19 6.5 7.2

10 6.6 6.5 20 6.5 6.7

(c) What would the conclusion be if α = 0.01?

(d) What is the approximate p-value of this test?

8.1-14. A researcher claims that she can reduce the vari-
ance of N(μ, 100) by a new manufacturing process. If S2

is the variance of a random sample of size n from this new
distribution, she tests H0: σ 2 = 100 against H1: σ 2 < 100
by rejecting H0 if (n − 1)S2/100 ≤ χ2

1−α(n − 1) since
(n − 1)S2/100 is χ2(n− 1) when H0 is true.

(a) If n = 23, s2 = 32.52, and α = 0.025, would she reject
H0?

(b) Based on the same distributional result, what would
be a reasonable test of H0: σ 2 = 100 against a two-
sided alternative hypothesis H1: σ 2 �= 100 when α =
0.05?

8.1-15. Let X1,X2, . . . ,X19 be a random sample of size
n = 19 from the normal distribution N(μ, σ 2).

(a) Find a critical region, C, of size α = 0.05 for testing
H0: σ 2 = 30 against H1: σ 2 = 80.

(b) Find the approximate value of β, the probability of a
Type II error, for the critical region C of part (a).

8.2 TESTS OF THE EQUALITY OF TWO MEANS
Let independent random variables X and Y have normal distributions N(μX , σ 2

X)
and N(μY , σ 2

Y ), respectively. There are times when we are interested in testing
whether the distributions of X and Y are the same. So if the assumption of nor-
mality is valid, we would be interested in testing whether the two means are equal.
(A test for the equality of the two variances is given in the next section.)

When X and Y are independent and normally distributed, we can test hypothe-
ses about their means with the same t statistic that we used to construct a confidence
interval for μX − μY in Section 7.2. Recall that the t statistic used to construct the
confidence interval assumed that the variances of X and Y were equal. (That is why
we shall consider a test for the equality of two variances in the next section.)

We begin with an example and then give a table that lists some hypotheses
and critical regions. A botanist is interested in comparing the growth response of
dwarf pea stems against two different levels of the hormone indoleacetic acid (IAA).
Using 16-day-old pea plants, the botanist obtains 5-mm sections and floats these
sections on solutions with different hormone concentrations to observe the effect
of the hormone on the growth of the pea stem. Let X and Y denote, respectively,
the independent growths that can be attributed to the hormone during the first 26
hours after sectioning for (0.5)(10)−4 and 10−4 levels of concentration of IAA. The
botanist would like to test the null hypothesis H0: μX −μY = 0 against the alterna-
tive hypothesisH1:μX −μY < 0. If we can assume thatX andY are independent and
normally distributed with a common variance, and if we assume respective random
samples of sizes n and m, then we can find a test based on the statistic

T = X − Y√
{[(n− 1)S2

X + (m− 1)S2
Y]/(n+m− 2)}(1/n+ 1/m)

(8.2-1)

= X − Y
SP
√

1/n+ 1/m
,
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where

SP =
√

(n− 1)S2
X + (m− 1)S2

Y

n+m− 2
. (8.2-2)

Now, T has a t distribution with r = n +m − 2 degrees of freedom when H0 is true
and the variances are equal. Thus, the hypothesis H0 will be rejected in favor of H1
if the observed value of T is less than −tα(n+m−2).

Example
8.2-1

In the preceding discussion, the botanist measured the growths of pea stem seg-
ments, in millimeters, for n = 11 observations of X:

0.8 1.8 1.0 0.1 0.9 1.7 1.0 1.4 0.9 1.2 0.5

She did the same withm = 13 observations of Y:

1.0 0.8 1.6 2.6 1.3 1.1 2.4

1.8 2.5 1.4 1.9 2.0 1.2

For these data, x = 1.03, s2x = 0.24, y = 1.66, and s2y = 0.35. The critical region for
testing H0: μX − μY = 0 against H1: μX − μY < 0 is t ≤ −t0.05(22) = −1.717, where
t is the two-sample t found in Equation 8.2-1. Since

t = 1.03− 1.66√{[10(0.24)+ 12(0.35)]/(11+ 13− 2)}(1/11+ 1/13)

= −2.81 < − 1.717,

H0 is clearly rejected at an α = 0.05 significance level. Notice that the approximate
p-value of this test is 0.005, because −t0.005(22) = −2.819. (See Figure 8.2-1.) Notice
also that the sample variances do not differ too much; thus, most statisticians would
use this two-sample t test.

It is instructive to construct box-and-whisker diagrams to gain a visual com-
parison of the two samples. For these two sets of data, the five-number summaries
(minimum, three quartiles, maximum) are

0.1 0.8 1.0 1.4 1.8

T, r = 22 d.f.T, r = 22 d.f

α = 0.05
0.1

0.2

0.3

0.4

−3 −2 −1 3210

0.1

0.2

0.3

0.4

−3 −2 −1 3210

p-value

Figure 8.2-1 Critical region and p-value for pea stem growths
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Y

X

0.5 1.0 1.5 2.0 2.5

Figure 8.2-2 Box plots for pea stem growths

for the X sample and

0.8 1.15 1.6 2.2 2.6

for the Y sample. The two box plots are shown in Figure 8.2-2.

Assuming independent random samples of sizes n and m, let x, y, and s2p rep-
resent the observed unbiased estimates of the respective parameters μX , μY , and
σ 2
X = σ 2

Y of two normal distributions with a common variance. Then α-level tests of
certain hypotheses are given in Table 8.2-1 when σ 2

X = σ 2
Y . If the common-variance

assumption is violated, but not too badly, the test is satisfactory, but the significance
levels are only approximate. The t statistic and sp are given in Equations 8.2-1 and
8.2-2, respectively.

REMARK Again, to emphasize the relationship between confidence intervals and
tests of hypotheses, we note that each of the tests in Table 8.2-1 has a corresponding
confidence interval. For example, the first one-sided test is equivalent to saying that
we reject H0: μX − μY = 0 if zero is not in the one-sided confidence interval with
lower bound

x− y− tα(n+m−2)sp
√

1/n+ 1/m.

Table 8.2-1 Tests of hypotheses for equality of two means

H0 H1 Critical Region

μX = μY μX > μY t ≥ tα(n+m−2) or

x− y ≥ tα(n+m−2)sp
√

1/n+ 1/m

μX = μY μX < μY t ≤ −tα(n+m−2) or

x− y ≤ −tα(n+m−2)sp
√

1/n+ 1/m

μX = μY μX �= μY |t| ≥ tα/2(n+m−2) or

|x− y| ≥ tα/2(n+m−2)sp
√

1/n+ 1/m
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Example
8.2-2

A product is packaged by a machine with 24 filler heads numbered 1 to 24, with the
odd-numbered heads on one side of the machine and the even on the other side. Let
X andY equal the fill weights in grams when a package is filled by an odd-numbered
head and an even-numbered head, respectively. Assume that the distributions of X
and Y areN(μX , σ 2) andN(μY , σ 2), respectively, and thatX and Y are independent.
We would like to test the null hypothesis H0: μX − μY = 0 against the alternative
hypothesis H1: μX − μY �= 0. To perform the test, after the machine has been set
up and is running, we shall select one package at random from each filler head and
weigh it. The test statistic is that given by Equation 8.2-1 with n = m = 12. At an
α = 0.10 significance level, the critical region is |t| ≥ t0.05(22) = 1.717.

For the n = 12 observations of X, namely,

1071 1076 1070 1083 1082 1067

1078 1080 1075 1084 1075 1080

x = 1076.75 and s2x = 29.30. For them = 12 observations of Y, namely,

1074 1069 1075 1067 1068 1079

1082 1064 1070 1073 1072 1075

y = 1072.33 and s2y = 26.24. The calculated value of the test statistic is

t = 1076.75− 1072.33√
11(29.30)+ 11(26.24)

22

(
1
12
+ 1

12

) = 2.05.

Since

|t| = |2.05| = 2.05 > 1.717,

the null hypothesis is rejected at an α = 0.10 significance level. Note, however, that

|t| = 2.05 < 2.074 = t0.025(22),

so that the null hypothesis would not be rejected at an α = 0.05 significance level.
That is, the p-value is between 0.05 and 0.10.

Again, it is instructive to construct box plots on the same graph for these two
sets of data. The box plots in Figure 8.2-3 were constructed with the use of the five-
number summary for the observations of X (1067, 1072, 1077, 1081.5, and 1084) and
the five-number summary for the observations of Y (1064, 1068.25, 1072.5, 1075,
and 1082). It looks like additional sampling would be advisable to test that the filler
heads on the two sides of the machine are filling in a similar manner. If not, some
corrective action needs to be taken.

We would like to give two modifications of tests about two means. First, if we
are able to assume that we know the variances ofX and Y, then the appropriate test
statistic to use for testingH0: μX = μY is

Z = X − Y√
σ 2
X

n
+ σ 2

Y

m

, (8.2-3)
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Y

X

1065 1070 1075 1080 1085

Figure 8.2-3 Box plots for fill weights

which has a standard normal distribution when the null hypothesis is true and,
of course, when the populations are normally distributed. Second, if the vari-
ances are unknown and the sample sizes are large, replace σ 2

X with S2
X and σ 2

Y

with S2
Y in Equation 8.2-3. The resulting statistic will have an approximate N(0, 1)

distribution.

Example
8.2-3

The target thickness for Fruit Flavored Gum and for Fruit Flavored Bubble Gum
is 6.7 hundredths of an inch. Let the independent random variables X and Y equal
the respective thicknesses of these gums in hundredths of an inch, and assume that
their distributions are N(μX , σ 2

X) and N(μY , σ 2
Y ), respectively. Because bubble gum

has more elasticity than regular gum, it seems as if it would be harder to roll it
out to the correct thickness. Thus, we shall test the null hypothesis H0: μX = μY
against the alternative hypothesis H1: μX < μY , using samples of sizes n = 50 and
m = 40.

Because the variances are unknown and the sample sizes are large, the test
statistic that is used is

Z = X − Y√
S2
X

50
+ S

2
Y

40

.

At an approximate significance level of α = 0.01, the critical region is

z ≤ −z0.01 = −2.326.

The observed values of X were

6.85 6.60 6.70 6.75 6.75 6.90 6.85 6.90 6.70 6.85

6.60 6.70 6.75 6.70 6.70 6.70 6.55 6.60 6.95 6.95

6.80 6.80 6.70 6.75 6.60 6.70 6.65 6.55 6.55 6.60

6.60 6.70 6.80 6.75 6.60 6.75 6.50 6.75 6.70 6.65

6.70 6.70 6.55 6.65 6.60 6.65 6.60 6.65 6.80 6.60
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X

Y

6.5 6.6 6.7 6.8 6.9 7.0 7.1

Figure 8.2-4 Box plots for gum thicknesses

for which x = 6.701 and sx = 0.108. The observed values of Y were

7.10 7.05 6.70 6.75 6.90 6.90 6.65 6.60 6.55 6.55

6.85 6.90 6.60 6.85 6.95 7.10 6.95 6.90 7.15 7.05

6.70 6.90 6.85 6.95 7.05 6.75 6.90 6.80 6.70 6.75

6.90 6.90 6.70 6.70 6.90 6.90 6.70 6.70 6.90 6.95

for which y = 6.841 and sy = 0.155. Since the calculated value of the test statistic is

z = 6.701− 6.841√
0.1082/50+ 0.1552/40

= −4.848 < −2.326,

the null hypothesis is clearly rejected.
The box-and-whisker diagrams in Figure 8.2-4 were constructed with the use of

the five-number summary of the observations of X (6.50, 6.60, 6.70, 6.75, and 6.95)
and the five-number summary of the observations of Y (6.55, 6.70, 6.90, 6.94, and
7.15). This graphical display also confirms our conclusion.

REMARK To have satisfactory tests, our assumptions must be satisfied reasonably
well. As long as the underlying distributions have finite means and variances and
are not highly skewed, the normal assumptions are not too critical, as X and Y
have approximate normal distributions by the central limit theorem. As distribu-
tions become nonnormal and highly skewed, the sample mean and sample variance
become more dependent, and that causes problems in using the Student’s t as an
approximating distribution for T. In these cases, some of the nonparametric methods
described later could be used. (See Section 8.4.)

When the distributions are close to normal, but the variances seem to differ
by a great deal, the t statistic should again be avoided, particularly if the sample
sizes are also different. In that case, use Z or the modification produced by substi-
tuting the sample variances for the distribution variances. In the latter situation, if
n and m are large enough, there is no problem. With small n and m, most statisti-
cians would use Welch’s suggestion (or other modifications of it); that is, they would
use an approximating Student’s t distribution with r degrees of freedom, where r is
given by Equation 7.2-1. We actually give a test for the equality of variances that
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could be employed to decide whether to use T or a modification of Z. However,
most statisticians do not place much confidence in this test of σ 2

X = σ 2
Y and would

use a modification of Z (possibly Welch’s) if they suspected that the variances dif-
fered greatly. Alternatively, nonparametric methods described in Section 8.4 could
be used.

Exercises

(In some of the exercises that follow, we must make
assumptions such as the existence of normal distributions
with equal variances.)

8.2-1. The botanist in Example 8.2-1 is really interested
in testing for synergistic interaction. That is, given the
two hormones gibberellin (GA3) and indoleacetic acid
(IAA), let X1 and X2 equal the growth responses (in
mm) of dwarf pea stem segments to GA3 and IAA,
respectively and separately. Also, let X = X1 + X2 and
let Y equal the growth response when both hormones
are present. Assuming that X is N(μX , σ 2) and Y is
N(μY , σ 2), the botanist is interested in testing the hypoth-
esis H0: μX = μY against the alternative hypothesis of
synergistic interaction H1: μX < μY .

(a) Using n = m = 10 observations of X and Y, define
the test statistic and the critical region. Sketch a fig-
ure of the t pdf and show the critical region on your
figure. Let α = 0.05.

(b) Given n = 10 observations of X, namely,

2.1 2.6 2.6 3.4 2.1 1.7 2.6 2.6 2.2 1.2

andm = 10 observations of Y, namely,

3.5 3.9 3.0 2.3 2.1 3.1 3.6 1.8 2.9 3.3

calculate the value of the test statistic and state your
conclusion. Locate the test statistic on your figure.

(c) Construct two box plots on the same figure. Does this
confirm your conclusion?

8.2-2. Let X and Y denote the weights in grams of male
and female common gallinules, respectively. Assume that
X is N(μX , σ 2

X) and Y is N(μY , σ 2
Y ).

(a) Given n = 16 observations of X and m = 13 observa-
tions of Y, define a test statistic and a critical region
for testing the null hypothesis H0: μX = μY against
the one-sided alternative hypothesisH1:μX > μY . Let
α = 0.01. (Assume that the variances are equal.)

(b) Given that x = 415.16, s2x = 1356.75, y = 347.40, and
s2y = 692.21, calculate the value of the test statistic and
state your conclusion.

(c) Although we assumed that σ 2
X = σ 2

Y , let us say we sus-
pect that that equality is not valid. Thus, use the test
proposed by Welch.

8.2-3. Let X equal the weight in grams of a Low-Fat
Strawberry Kudo and Y the weight of a Low-Fat Blue-
berry Kudo. Assume that the distributions ofX and Y are
N(μX , σ 2

X) and N(μY , σ 2
Y ), respectively. Let

21.7 21.0 21.2 20.7 20.4 21.9 20.2 21.6 20.6

be n = 9 observations of X, and let

21.5 20.5 20.3 21.6 21.7 21.3 23.0

21.3 18.9 20.0 20.4 20.8 20.3

be m = 13 observations of Y. Use these observations to
answer the following questions:

(a) Test the null hypothesis H0: μX = μY against a two-
sided alternative hypothesis. You may select the sig-
nificance level. Assume that the variances are equal.

(b) Construct and interpret box-and-whisker diagrams to
support your conclusions.

8.2-4. Among the data collected for the World Health
Organization air quality monitoring project is a measure
of suspended particles, in μg/m3. Let X and Y equal
the concentration of suspended particles in μg/m3 in the
city centers (commercial districts), of Melbourne and
Houston, respectively. Using n = 13 observations of X
and m = 16 observations of Y, we shall test H0: μX = μY
againstH1: μX < μY .

(a) Define the test statistic and critical region, assuming
that the variances are equal. Let α = 0.05.

(b) If x = 72.9, sx = 25.6, y = 81.7, and sy = 28.3,
calculate the value of the test statistic and state your
conclusion.

(c) Give bounds for the p-value of this test.

8.2-5. Some nurses in county public health conducted a
survey of women who had received inadequate prena-
tal care. They used information from birth certificates to
select mothers for the survey. The mothers selected were
divided into two groups: 14 mothers who said they had
five or fewer prenatal visits and 14 mothers who said
they had six or more prenatal visits. Let X and Y equal
the respective birth weights of the babies from these two
sets of mothers, and assume that the distribution of X is
N(μX , σ 2) and the distribution of Y is N(μY , σ 2).
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(a) Define the test statistic and critical region for test-
ing H0: μX − μY = 0 against H1: μX − μY < 0. Let
α = 0.05.

(b) Given that the observations of X were

49 108 110 82 93 114 134

114 96 52 101 114 120 116

and the observations of Y were

133 108 93 119 119 98 106

131 87 153 116 129 97 110

calculate the value of the test statistic and state your
conclusion.

(c) Approximate the p-value.

(d) Construct box plots on the same figure for these two
sets of data. Do the box plots support your conclu-
sion?

8.2-6. Let X and Y equal the forces required to pull
stud No. 3 and stud No. 4 out of a window that has
been manufactured for an automobile. Assume that the
distributions of X and Y are N(μX , σ 2

X) and N(μY , σ 2
Y ),

respectively.

(a) If m = n = 10 observations are selected randomly,
define a test statistic and a critical region for test-
ing H0: μX − μY = 0 against a two-sided alternative
hypothesis. Let α = 0.05. Assume that the variances
are equal.

(b) Given n = 10 observations of X, namely,

111 120 139 136 138 149 143 145 111 123

andm = 10 observations of Y, namely,

152 155 133 134 119 155 142 146 157 149

calculate the value of the test statistic and state your
conclusion clearly.

(c) What is the approximate p-value of this test?

(d) Construct box plots on the same figure for these two
sets of data. Do the box plots confirm your decision in
part (b)?

8.2-7. Let X and Y equal the number of milligrams of
tar in filtered and nonfiltered cigarettes, respectively.
Assume that the distributions of X and Y are N(μX , σ 2

X)
andN(μY , σ 2

Y ), respectively. We shall test the null hypoth-
esis H0: μX − μY = 0 against the alternative hypothesis
H1: μX − μY < 0, using random samples of sizes n = 9
andm = 11 observations of X and Y, respectively.

(a) Define the test statistic and a critical region that
has an α = 0.01 significance level. Sketch a figure
illustrating this critical region.

(b) Given n = 9 observations of X, namely,

0.9 1.1 0.1 0.7 0.4 0.9 0.8 1.0 0.4

and m = 11 observations of Y, namely,

1.5 0.9 1.6 0.5 1.4 1.9 1.0 1.2 1.3 1.6 2.1

calculate the value of the test statistic and state your
conclusion clearly. Locate the value of the test statistic
on your figure.

8.2-8. Let X and Y denote the tarsus lengths of male and
female grackles, respectively. Assume thatX isN(μX , σ 2

X)
and Y is N(μY , σ 2

Y ). Given that n = 25, x = 33.80,
s2x = 4.88, m = 29, y = 31.66, and s2y = 5.81, test the
null hypothesis H0: μX = μY against H1: μX > μY with
α = 0.01.

8.2-9. When a stream is turbid, it is not completely clear
due to suspended solids in the water. The higher the tur-
bidity, the less clear is the water. A stream was studied
on 26 days, half during dry weather (say, observations of
X) and the other half immediately after a significant rain-
fall (say, observations ofY). Assume that the distributions
of X and Y are N(μX , σ 2) and N(μY , σ 2), respectively.
The following turbidities were recorded in units of NTUs
(nephelometric turbidity units):

x: 2.9 14.9 1.0 12.6 9.4 7.6 3.6

3.1 2.7 4.8 3.4 7.1 7.2

y: 7.8 4.2 2.4 12.9 17.3 10.4 5.9

4.9 5.1 8.4 10.8 23.4 9.7

(a) Test the null hypothesis H0: μX = μY against H1:
μX < μY . Give bounds for the p-value and state your
conclusion.

(b) Draw box-and-whisker diagrams on the same graph.
Does this figure confirm your answer?

8.2-10. Plants convert carbon dioxide (CO2) in the atmo-
sphere, along with water and energy from sunlight, into
the energy they need for growth and reproduction.
Experiments were performed under normal atmospheric
air conditions and in air with enriched CO2 concentra-
tions to determine the effect on plant growth. The plants
were given the same amount of water and light for a four-
week period. The following table gives the plant growths
in grams:

Normal Air 4.67 4.21 2.18 3.91 4.09 5.24 2.94 4.71

4.04 5.79 3.80 4.38

Enriched Air 5.04 4.52 6.18 7.01 4.36 1.81 6.22 5.70

On the basis of these data, determine whether CO2-
enriched atmosphere increases plant growth.

8.2-11. Let X equal the fill weight in April and Y the fill
weight in June for an 8-pound box of bleach. We shall test
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the null hypothesisH0:μX−μY = 0 against the alternative
hypothesis H1: μX − μY > 0 given that n = 90 observa-
tions of X yielded x = 8.10 and sx = 0.117 and m = 110
observations of Y yielded y = 8.07 and sy = 0.054.

(a) What is your conclusion if α = 0.05?
Hint: Do the variances seem to be equal?

(b) What is the approximate p-value of this test?

8.2-12. Let X and Y denote the respective lengths of
male and female green lynx spiders. Assume that the
distributions of X and Y are N(μX , σ 2

X) and N(μY , σ 2
Y ),

respectively, and that σ 2
Y > σ 2

X . Thus, use the modifica-
tion of Z to test the hypothesis H0: μX − μY = 0 against
the alternative hypothesisH1: μX − μY < 0.

(a) Define the test statistic and a critical region that has a
significance level of α = 0.025.

(b) Using the data given in Exercise 7.2-5, calculate the
value of the test statistic and state your conclusion.

(c) Draw two box-and-whisker diagrams on the same fig-
ure. Does your figure confirm the conclusion of this
exercise?

8.2-13. Students looked at the effect of a certain fertilizer
on plant growth. The students tested this fertilizer on one
group of plants (Group A) and did not give fertilizer to
a second group (Group B). The growths of the plants, in
mm, over six weeks were as follows:

Group A: 55 61 33 57 17 46 50 42 71 51 63

Group B: 31 27 12 44 9 25 34 53 33 21 32

(a) Test the null hypothesis that the mean growths
are equal against the alternative that the fertilizer
enhanced growth. Assume that the variances are
equal.

(b) Construct box plots of the two sets of growths on
the same graph. Does this confirm your answer to
part (a)?

8.2-14. An ecology laboratory studied tree dispersion
patterns for the sugar maple, whose seeds are dispersed
by the wind, and the American beech, whose seeds are
dispersed by mammals. In a plot of area 50 m by 50 m,
they measured distances between like trees, yielding the
following distances in meters for 19 American beech trees
and 19 sugar maple trees:

American beech: 5.00 5.00 6.50 4.25 4.25 8.80 6.50

7.15 6.15 2.70 2.70 11.40 9.70

6.10 9.35 2.85 4.50 4.50 6.50

sugar maple: 6.00 4.00 6.00 6.45 5.00 5.00 5.50

2.35 2.35 3.90 3.90 5.35 3.15

2.10 4.80 3.10 5.15 3.10 6.25

(a) Test the null hypothesis that the means are equal
against the one-sided alternative that the mean for
the distances between beech trees is greater than that
between maple trees.

(b) Construct two box plots to confirm your answer.

8.2-15. Say X and Y are independent random variables
with distributions that are N(μX , σ 2

X) and N(μY , σ 2
Y ). We

wish to test H0: σ 2
X = σ 2

Y againstH1: σ 2
X > σ 2

Y .

(a) Argue that, if H0 is true, the ratio of the two vari-
ances of the samples of sizes n and m, S2

X/S
2
Y , has an

F(n−1,m−1) distribution.

(b) If n = m = 31, x = 8.153, s2x = 1.410, y = 5.917,
s2y = 0.4399, s2x/s

2
y = 3.2053, and α = 0.01, show that

H0 is rejected and H1 is accepted since 3.2053 > 2.39.

(c) Where did the 2.39 come from?

8.2-16. To measure air pollution in a home, let X and
Y equal the amount of suspended particulate matter (in
μg/m3) measured during a 24-hour period in a home in
which there is no smoker and a home in which there is a
smoker, respectively. We shall test the null hypothesisH0:
σ 2
X/σ

2
Y = 1 against the one-sided alternative hypothesis

H1: σ 2
X/σ

2
Y > 1.

(a) If a random sample of size n = 9 yielded x = 93
and sx = 12.9 while a random sample of size m = 11
yielded y = 132 and sy = 7.1, define a critical region
and give your conclusion if α = 0.05.

(b) Now test H0: μX = μY against H1: μX < μY if
α = 0.05.

8.2-17. Consider the distributions N(μX , 400) and
N(μY , 225). Let θ = μX − μY . Say x and y denote the
observed means of two independent random samples,
each of size n, from the respective distributions. Say we
reject H0: θ = 0 and accept H1: θ > 0 if x − y ≥ c. Let
K(θ) be the power function of the test. Find n and c so
that K(0) = 0.05 and K(10) = 0.90, approximately.

8.3 TESTS ABOUT PROPORTIONS
Suppose a manufacturer of a certain printed circuit observes that approximately a
proportion p = 0.06 of the circuits fail. An engineer and statistician working together
suggest some changes that might improve the design of the product. To test this new



374 Chapter 8 Tests of Statistical Hypotheses

procedure, it was agreed that n = 200 circuits would be produced by the proposed
method and then checked. Let Y equal the number of these 200 circuits that fail.
Clearly, if the number of failures, Y, is such that Y/200 is about equal to 0.06, then
it seems that the new procedure has not resulted in an improvement. Also, on the
one hand, if Y is small, so that Y/200 is about 0.02 or 0.03, we might believe that the
new method is better than the old. On the other hand, if Y/200 is 0.09 or 0.10, the
proposed method has perhaps caused a greater proportion of failures.

What we need to establish is a formal rule that tells us when to accept the new
procedure as an improvement. In addition, we must know the consequences of this
rule. As an example of such a rule, we could accept the new procedure as an improve-
ment if Y ≤ 7 or Y/n ≤ 0.035. We do note, however, that the probability of failure
could still be about p = 0.06 even with the new procedure, and yet we could observe
7 or fewer failures in n = 200 trials. That is, we could erroneously accept the new
method as being an improvement when, in fact, it was not. This decision is a mistake
we call a Type I error. By contrast, the new procedure might actually improve the
product so that p is much smaller, say, p = 0.03, and yet we could observe y = 9
failures, so that y/200 = 0.045. Thus, we could, again erroneously, not accept the
new method as resulting in an improvement when, in fact, it had. This decision is a
mistake we call a Type II error. We must study the probabilities of these two types
of errors to understand fully the consequences of our rule.

Let us begin by modeling the situation. If we believe that these trials, con-
ducted under the new procedure, are independent, and that each trial has about
the same probability of failure, then Y is binomial b(200,p). We wish to make a sta-
tistical inference about p using the unbiased estimator p̂ = Y/200. Of course, we
could construct a one-sided confidence interval—say, one that has 95% confidence
of providing an upper bound for p—and obtain[

0, p̂+ 1.645

√
p̂ (1− p̂ )

200

]
.

This inference is appropriate and many statisticians simply make it. If the limits of
this confidence interval contain 0.06, they would not say that the new procedure is
necessarily better, at least until more data are taken. If, however, the upper limit
of the confidence interval is less than 0.06, then those same statisticians would feel
95% confident that the true p is now less than 0.06. Hence, they would support the
conclusion that the new procedure has improved the manufacturing of the printed
circuits in question.

While this use of confidence intervals is highly appropriate, and later we indi-
cate the relationship of confidence intervals to tests of hypotheses, every student
of statistics should also have some understanding of the basic concepts in the latter
area. Here, in our illustration, we are testing whether the probability of failure has
or has not decreased from 0.06 when the new manufacturing procedure is used. The
null hypothesis is H0: p = 0.06 and the alternative hypothesis is H1: p < 0.06. Since,
in our illustration, we make a Type I error if Y ≤ 7 when, in fact, p = 0.06, we can
calculate the probability of this error. We denote that probability by α and call it the
significance level of the test. Under our assumptions, it is

α = P(Y ≤ 7; p = 0.06) =
7∑

y=0

(
200
y

)
(0.06)y(0.94)200−y.

Since n is rather large and p is small, these binomial probabilities can be approxi-
mated very well by Poisson probabilities with λ = 200(0.06) = 12. That is, from the
Poisson table, the probability of a Type I error is
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α ≈
7∑

y=0

12ye−12

y! = 0.090.

Thus, the approximate significance level of this test is α = 0.090. (Using the binomial
distribution, we find that the exact value of α is 0.0829, which you can easily verify
with Minitab.)

This value of α is reasonably small. However, what about the probability of a
Type II error in case p has been improved to, say, 0.03? This error occurs if Y > 7
when, in fact, p = 0.03; hence, its probability, denoted by β, is

β = P(Y > 7; p = 0.03) =
200∑
y=8

(
200
y

)
(0.03)y(0.97)200−y.

Again, we use the Poisson approximation, here with λ = 200(0.03) = 6, to obtain

β ≈ 1−
7∑

y=0

6ye−6

y! = 1− 0.744 = 0.256.

(The binomial distribution tells us that the exact probability is 0.2539, so the approx-
imation is very good.) The engineer and the statistician who created the new
procedure probably are not too pleased with this answer. That is, they might note
that if their new procedure of manufacturing circuits has actually decreased the
probability of failure to 0.03 from 0.06 (a big improvement), there is still a good
chance, 0.256, that H0: p = 0.06 is accepted and their improvement rejected. In
Section 8.5, more will be said about modifying tests so that satisfactory values of the
probabilities of the two types of errors, namely, α and β, can be obtained; however,
to decrease both of them, we need larger sample sizes.

Without worrying more about the probability of the Type II error here, we
present a frequently used procedure for testing H0: p = p0, where p0 is some
specified probability of success. This test is based upon the fact that the number
of successes Y in n independent Bernoulli trials is such that Y/n has an approximate
normal distribution N[p0,p0(1 − p0)/n], provided that H0: p = p0 is true and n is
large. Suppose the alternative hypothesis is H1: p > p0; that is, it has been hypothe-
sized by a research worker that something has been done to increase the probability
of success. Consider the test of H0: p = p0 against H1: p > p0 that rejects H0 and
accepts H1 if and only if

Z = Y/n− p0√
p0(1− p0)/n

≥ zα .

That is, if Y/n exceeds p0 by zα standard deviations of Y/n, we reject H0 and accept
the hypothesis H1: p > p0. Since, under H0, Z is approximately N(0, 1), the approx-
imate probability of this occurring when H0: p = p0 is true is α. So the significance
level of this test is approximately α.

If the alternative is H1: p < p0 instead of H1: p > p0, then the appropriate
α-level test is given by Z ≤ −zα . Hence, if Y/n is smaller than p0 by zα standard
deviations of Y/n, we accept H1: p < p0.

Example
8.3-1

It was claimed that many commercially manufactured dice are not fair because the
“spots” are really indentations, so that, for example, the 6-side is lighter than the
1-side. Let p equal the probability of rolling a 6 with one of these dice. To test H0:
p = 1/6 against the alternative hypothesis H1: p > 1/6, several such dice will be
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rolled to yield a total of n = 8000 observations. Let Y equal the number of times
that 6 resulted in the 8000 trials. The test statistic is

Z = Y/n− 1/6√
(1/6)(5/6)/n

= Y/8000− 1/6√
(1/6)(5/6)/8000

.

If we use a significance level of α = 0.05, the critical region is

z ≥ z0.05 = 1.645.

The results of the experiment yielded y = 1389, so the calculated value of the test
statistic is

z = 1389/8000− 1/6√
(1/6)(5/6)/8000

= 1.67.

Since

z = 1.67 > 1.645,

the null hypothesis is rejected, and the experimental results indicate that these dice
favor a 6 more than a fair die would. (You could perform your own experiment to
check out other dice.)

There are times when a two-sided alternative is appropriate; that is, here we
test H0: p = p0 against H1: p �= p0. For example, suppose that the pass rate in the
usual beginning statistics course is p0. There has been an intervention (say, some new
teaching method) and it is not known whether the pass rate will increase, decrease, or
stay about the same. Thus, we test the null (no-change) hypothesis H0: p = p0 against
the two-sided alternative H1: p �= p0. A test with the approximate significance level
α for doing this is to reject H0: p = p0 if

|Z| = |Y/n− p0|√
p0(1− p0)/n

≥ zα/2,

since, under H0, P(|Z| ≥ zα/2) ≈ α. These tests of approximate significance level α
are summarized in Table 8.3-1. The rejection region for H0 is often called the critical
region of the test, and we use that terminology in the table.

The p-value associated with a test is the probability, under the null hypothesis
H0, that the test statistic (a random variable) is equal to or exceeds the observed
value (a constant) of the test statistic in the direction of the alternative hypothesis.

Table 8.3-1 Tests of hypotheses for one proportion

H0 H1 Critical Region

p = p0 p > p0 z = y/n− p0√
p0(1− p0)/n

≥ zα

p = p0 p < p0 z = y/n− p0√
p0(1− p0)/n

≤ −zα

p = p0 p �= p0 |z| = |y/n− p0|√
p0(1− p0)/n

≥ zα/2
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Rather than select the critical region ahead of time, the p-value of a test can be
reported and the reader then makes a decision. In Example 8.3-1, the value of the
test statistic was z = 1.67. Because the alternative hypothesis was H1: p > 1/6, the
p-value is

P(Z ≥ 1.67) = 0.0475.

Note that this p-value is less than α = 0.05, which would lead to the rejection of H0
at an α = 0.05 significance level. If the alternative hypothesis were two sided, H1:
p �= 1/6, then the p-value would be P(|Z| ≥ 1.67) = 0.095 and would not lead to the
rejection of H0 at α = 0.05.

Often there is interest in tests about p1 and p2, the probabilities of success for
two different distributions or the proportions of two different populations having a
certain characteristic. For example, if p1 and p2 denote the respective proportions of
homeowners and renters who vote in favor of a proposal to reduce property taxes, a
politician might be interested in testing H0: p1 = p2 against the one-sided alternative
hypothesis H1: p1 > p2.

Let Y1 and Y2 represent, respectively, the numbers of observed successes in n1
and n2 independent trials with probabilities of success p1 and p2. Recall that the
distribution of p̂1 = Y1/n1 is approximately N[p1,p1(1 − p1)/n1] and the distribu-
tion of p̂2 = Y2/n2 is approximately N[p2,p2(1 − p2)/n2]. Thus, the distribution of
p̂1− p̂2 = Y1/n1−Y2/n2 is approximately N[p1−p2,p1(1−p1)/n1+p2(1−p2)/n2].
It follows that the distribution of

Z = Y1/n1 − Y2/n2 − (p1 − p2)√
p1(1− p1)/n1 + p2(1− p2)/n2

(8.3-1)

is approximately N(0, 1). To test H0: p1 − p2 = 0 or, equivalently, H0: p1 = p2,
let p = p1 = p2 be the common value under H0. We shall estimate p with p̂ =
(Y1+Y2)/(n1+ n2). Replacing p1 and p2 in the denominator of Equation 8.3-1 with
this estimate, we obtain the test statistic

Z = p̂1 − p̂2 − 0√
p̂ (1− p̂ )(1/n1 + 1/n2)

,

which has an approximate N(0, 1) distribution for large sample sizes when the null
hypothesis is true.

The three possible alternative hypotheses and their critical regions are summa-
rized in Table 8.3-2.

Table 8.3-2 Tests of Hypotheses for two proportions

H0 H1 Critical Region

p1 = p2 p1 > p2 z = p̂1 − p̂2√
p̂ (1− p̂ )(1/n1 + 1/n2)

≥ zα

p1 = p2 p1 < p2 z = p̂1 − p̂2√
p̂ (1− p̂ )(1/n1 + 1/n2)

≤ −zα

p1 = p2 p1 �= p2 |z| = |̂p1 − p̂2|√
p̂ (1− p̂ )(1/n1 + 1/n2)

≥ zα/2
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REMARK In testing both H0: p = p0 and H0: p1 = p2, statisticians sometimes use
different denominators for z. For tests of single proportions,

√
p0(1− p0)/n can be

replaced by
√

(y/n)(1− y/n)/n, and for tests of the equality of two proportions, the
following denominator can be used:

√
p̂1(1− p̂1)

n1
+ p̂2(1− p̂2)

n2
.

We do not have a strong preference one way or the other since the two methods pro-
vide about the same numerical result. The substitutions do provide better estimates
of the standard deviations of the numerators when the null hypotheses are clearly
false. There is some advantage to this result if the null hypothesis is likely to be false.
In addition, the substitutions tie together the use of confidence intervals and tests of
hypotheses. For example, if the null hypothesis is H0: p = p0, then the alternative
hypothesis H1: p < p0 is accepted if

z = p̂− p0√
p̂ (1− p̂ )

n

≤ −zα .

This formula is equivalent to the statement that

p0 /∈
[

0, p̂+ zα

√
p̂ (1− p̂ )

n

)
,

where the latter is a one-sided confidence interval providing an upper bound for p.
Or if the alternative hypothesis is H1: p �= p0, then H0 is rejected if

|̂p− p0|√
p̂ (1− p̂ )

n

≥ zα/2.

This inequality is equivalent to

p0 /∈
(
p̂− zα/2

√
p̂ (1− p̂ )

n
, p̂+ zα/2

√
p̂ (1− p̂ )

n

)
,

where the latter is a confidence interval for p. However, using the forms given in
Tables 8.3-1 and 8.3-2, we do get better approximations to α-level significance tests.
Thus, there are trade-offs, and it is difficult to say that one is better than the other.
Fortunately, the numerical answers are about the same.

In the second situation in which the estimates of p1 and p2 are the observed
p̂1 = y1/n1 and p̂2 = y2/n2, we have, with large values of n1 and n2, an approximate
95% confidence interval for p1 − p2 given by

y1

n1
− y2

n2
± 1.96

√
(y1/n1)(1− y1/n1)

n1
+ (y2/n2)(1− y2/n2)

n2
.
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If p1 − p2 = 0 is not in this interval, we reject H0: p1 − p2 = 0 at the α = 0.05
significance level. This is equivalent to saying that we reject H0: p1 − p2 = 0 if∣∣∣∣y1

n1
− y2

n2

∣∣∣∣√
(y1/n1)(1− y1/n1)

n1
+ (y2/n2)(1− y2/n2)

n2

≥ 1.96.

In general, if the estimator θ̂ (often, the maximum likelihood estimator) of θ has
an approximate (sometimes exact) normal distribution N(θ , σ 2

θ̂
), then H0: θ = θ0 is

rejected in favor of H1: θ �= θ0 at the approximate (sometimes exact) α significance
level if

θ0 /∈ ( θ̂ − zα/2 σθ̂ , θ̂ + zα/2 σθ̂ )

or, equivalently,

|θ̂ − θ0|
σθ̂

≥ zα/2.

Note that σθ̂ often depends upon some unknown parameter that must be estimated
and substituted in σθ̂ to obtain σ̂θ̂ . Sometimes σθ̂ or its estimate is called the stan-
dard error of θ̂ . This was the case in our last illustration when, with θ = p1 − p2 and
θ̂ = p̂1 − p̂2, we substituted y1/n1 for p1 and y2/n2 for p2 in√

p1(1− p1)
n1

+ p2(1− p2)
n2

to obtain the standard error of p̂1 − p̂2 = θ̂ .

Exercises

8.3-1. Let Y be b(100,p). To test H0: p = 0.08 against H1:
p < 0.08, we reject H0 and accept H1 if and only if Y ≤ 6.

(a) Determine the significance level α of the test.

(b) Find the probability of the Type II error if, in fact,
p = 0.04.

8.3-2. A bowl contains two red balls, two white balls, and
a fifth ball that is either red or white. Let p denote the
probability of drawing a red ball from the bowl. We shall
test the simple null hypothesis H0: p = 3/5 against the
simple alternative hypothesis H1: p = 2/5. Draw four
balls at random from the bowl, one at a time and with
replacement. Let X equal the number of red balls drawn.

(a) Define a critical region C for this test in terms of X.

(b) For the critical region C defined in part (a), find the
values of α and β.

8.3-3. Let Y be b(192,p). We reject H0: p = 0.75 and
accept H1: p > 0.75 if and only if Y ≥ 152. Use the normal
approximation to determine

(a) α = P(Y ≥ 152;p = 0.75).

(b) β = P(Y < 152) when p = 0.80.

8.3-4. Let p denote the probability that, for a particu-
lar tennis player, the first serve is good. Since p = 0.40,
this player decided to take lessons in order to increase
p. When the lessons are completed, the hypothesis H0:
p = 0.40 will be tested against H1: p > 0.40 on the basis
of n = 25 trials. Let y equal the number of first serves
that are good, and let the critical region be defined by
C = {y : y ≥ 13}.
(a) Determine α = P(Y ≥ 13;p = 0.40). Use Table II in

the appendix.

(b) Find β = P(Y < 13) when p = 0.60; that is, β =
P(Y ≤ 12;p = 0.60). Use Table II.

8.3-5. If a newborn baby has a birth weight that is less
than 2500 grams (5.5 pounds), we say that the baby has
a low birth weight. The proportion of babies with a low
birth weight is an indicator of lack of nutrition for the
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mothers. For the United States, approximately 7% of
babies have a low birth weight. Let p equal the propor-
tion of babies born in the Sudan who weigh less than 2500
grams. We shall test the null hypothesis H0: p = 0.07
against the alternative hypothesis H1: p > 0.07. In a ran-
dom sample of n = 209 babies, y = 23 weighed less than
2500 grams.

(a) What is your conclusion at a significance level of
α = 0.05?

(b) What is your conclusion at a significance level of
α = 0.01?

(c) Find the p-value for this test.

8.3-6. It was claimed that 75% of all dentists recommend
a certain brand of gum for their gum-chewing patients.
A consumer group doubted this claim and decided to
test H0: p = 0.75 against the alternative hypothesis H1:
p < 0.75, where p is the proportion of dentists who recom-
mend that brand of gum. A survey of 390 dentists found
that 273 recommended the given brand of gum.

(a) Which hypothesis would you accept if the significance
level is α = 0.05?

(b) Which hypothesis would you accept if the significance
level is α = 0.01?

(c) Find the p-value for this test.

8.3-7. The management of the Tigers baseball team
decided to sell only low-alcohol beer in their ballpark to
help combat rowdy fan conduct. They claimed that more
than 40% of the fans would approve of this decision. Let
p equal the proportion of Tiger fans on opening day who
approved of the decision. We shall test the null hypoth-
esis H0: p = 0.40 against the alternative hypothesis H1:
p > 0.40.

(a) Define a critical region that has an α = 0.05 signifi-
cance level.

(b) If, out of a random sample of n = 1278 fans, y = 550
said that they approved of the new policy, what is your
conclusion?

8.3-8. Let p equal the proportion of drivers who use a
seat belt in a state that does not have a mandatory seat
belt law. It was claimed that p = 0.14. An advertising
campaign was conducted to increase this proportion. Two
months after the campaign, y = 104 out of a random sam-
ple of n = 590 drivers were wearing their seat belts. Was
the campaign successful?

(a) Define the null and alternative hypotheses.

(b) Define a critical region with an α = 0.01 significance
level.

(c) What is your conclusion?

8.3-9. According to a population census in 1986, the per-
centage of males who are 18 or 19 years old and are
married was 3.7%. We shall test whether this percentage
increased from 1986 to 1988.

(a) Define the null and alternative hypotheses.

(b) Define a critical region that has an approximate sig-
nificance level of α = 0.01. Sketch a standard normal
pdf to illustrate this critical region.

(c) If y = 20 out of a random sample of n = 300 males,
each 18 or 19 years old, were married (U.S. Bureau
of the Census, Statistical Abstract of the United States:
1988), what is your conclusion? Show the calculated
value of the test statistic on your figure in part (b).

8.3-10. Because of tourism in the state, it was proposed
that public schools in Michigan begin after Labor Day. To
determine whether support for this change was greater
than 65%, a public poll was taken. Let p equal the pro-
portion of Michigan adults who favor a post–Labor Day
start. We shall test H0: p = 0.65 against H1: p > 0.65.

(a) Define a test statistic and an α = 0.025 critical region.

(b) Given that 414 out of a sample of 600 favor a post–
Labor Day start, calculate the value of the test statis-
tic.

(c) Find the p-value and state your conclusion.

(d) Find a 95% one-sided confidence interval that gives a
lower bound for p.

8.3-11. A machine shop that manufactures toggle levers
has both a day and a night shift. A toggle lever is defec-
tive if a standard nut cannot be screwed onto the threads.
Let p1 and p2 be the proportion of defective levers among
those manufactured by the day and night shifts, respec-
tively. We shall test the null hypothesis, H0: p1 = p2,
against a two-sided alternative hypothesis based on two
random samples, each of 1000 levers taken from the
production of the respective shifts.

(a) Define the test statistic and a critical region that has
an α = 0.05 significance level. Sketch a standard
normal pdf illustrating this critical region.

(b) If y1 = 37 and y2 = 53 defectives were observed
for the day and night shifts, respectively, calculate
the value of the test statistic. Locate the calculated
test statistic on your figure in part (a) and state your
conclusion.

8.3-12. Let p equal the proportion of yellow candies in a
package of mixed colors. It is claimed that p = 0.20.

(a) Define a test statistic and critical region with a signifi-
cance level of α = 0.05 for testing H0: p = 0.20 against
a two-sided alternative hypothesis.
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(b) To perform the test, each of 20 students counted the
number of yellow candies, y, and the total number of
candies, n, in a 48.1-gram package, yielding the follow-
ing ratios, y/n: 8/56, 13/55, 12/58, 13/56, 14/57, 5/54,
14/56, 15/57, 11/54, 13/55, 10/57, 8/59, 10/54, 11/55,
12/56, 11/57, 6/54, 7/58, 12/58, 14/58. If each individual
tests H0: p = 0.20, what proportion of the students
rejected the null hypothesis?

(c) If we may assume that the null hypothesis is true, what
proportion of the students would you have expected
to reject the null hypothesis?

(d) For each of the 20 ratios in part (b), a 95% con-
fidence interval for p can be calculated. What pro-
portion of these 95% confidence intervals contain
p = 0.20?

(e) If the 20 results are pooled so that
∑20

i=1 yi equals the
number of yellow candies and

∑20
i=1 ni equals the total

sample size, do we reject H0: p = 0.20?

8.3-13. Let pm and pf be the respective proportions of
male and female white-crowned sparrows that return to
their hatching site. Give the endpoints for a 95% con-
fidence interval for pm − pf if 124 out of 894 males
and 70 out of 700 females returned (The Condor, 1992,
pp. 117–133). Does your result agree with the conclu-
sion of a test of H0: p1 = p2 against H1: p1 �= p2 with
α = 0.05?

8.3-14. For developing countries in Africa and the
Americas, let p1 and p2 be the respective proportions of
babies with a low birth weight (below 2500 grams). We
shall test H0: p1 = p2 against the alternative hypothesis
H1: p1 > p2.

(a) Define a critical region that has an α = 0.05 signifi-
cance level.

(b) If respective random samples of sizes n1 = 900 and
n2 = 700 yielded y1 = 135 and y2 = 77 babies with a
low birth weight, what is your conclusion?

(c) What would your decision be with a significance level
of α = 0.01?

(d) What is the p-value of your test?

8.3-15. Each of six students has a deck of cards and
selects a card randomly from his or her deck.

(a) Show that the probability of at least one match is
equal to 0.259.

(b) Now let each of the students randomly select an inte-
ger from 1–52, inclusive. Let p equal the probability
of at least one match. Test the null hypothesis H0: p =
0.259 against an appropriate alternative hypothesis.
Give a reason for your alternative.

(c) Perform this experiment a large number of times.
What is your conclusion?

8.3-16. Let p be the fraction of engineers who do
not understand certain basic statistical concepts.
Unfortunately, in the past, this number has been high,
about p = 0.73. A new program to improve the knowl-
edge of statistical methods has been implemented, and
it is expected that under this program p would decrease
from the aforesaid 0.73 value. To test H0: p = 0.73 against
H1: p < 0.73, 300 engineers in the new program were
tested and 204 (i.e., 68%) did not comprehend certain
basic statistical concepts. Compute the p-value to deter-
mine whether this result indicates progress. That is, can
we reject H0 is favor of H1? Use α = 0.05.

8.4 THE WILCOXON TESTS
As mentioned earlier in the text, at times it is clear that the normality assumptions
are not met and that other procedures, sometimes referred to as nonparametric
or distribution-free methods, should be considered. For example, suppose some
hypothesis, say, H0: m = m0, against H1: m �= m0, is made about the unknown
median, m, of a continuous-type distribution. From the data, we could construct a
100(1 − α)% confidence interval for m, and if m0 is not in that interval, we would
reject H0 at the α significance level.

Now let X be a continuous-type random variable and let m denote the median
of X. To test the hypothesis H0: m = m0 against an appropriate alternative hypoth-
esis, we could also use a sign test. That is, if X1,X2, . . . ,Xn denote the observations
of a random sample from this distribution, and if we let Y equal the number of neg-
ative differences among X1 − m0,X2 − m0, . . . ,Xn − m0, then Y has the binomial
distribution b(n, 1/2) under H0 and is the test statistic for the sign test. If Y is too
large or too small, we reject H0: m = m0.
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Example
8.4-1

Let X denote the length of time in seconds between two calls entering a call center.
Let m be the unique median of this continuous-type distribution. We test the null
hypothesis H0: m = 6.2 against the alternative hypothesis H1: m < 6.2. Table II in
Appendix B tells us that if Y is the number of lengths of time between calls in a
random sample of size 20 that are less than 6.2, then the critical region C = {y : y ≥
14} has a significance level of α = 0.0577. A random sample of size 20 yielded the
following data:

6.8 5.7 6.9 5.3 4.1 9.8 1.7 7.0

2.1 19.0 18.9 16.9 10.4 44.1 2.9 2.4

4.8 18.9 4.8 7.9

Since y = 9, the null hypothesis is not rejected.

The sign test can also be used to test the hypothesis that two possibly dependent
continuous-type random variables X and Y are such that p = P(X > Y) = 1/2.
To test the hypothesis H0: p = 1/2 against an appropriate alternative hypothesis,
consider the independent pairs (X1,Y1), (X2,Y2), . . . , (Xn,Yn). Let W denote the
number of pairs for which Xk−Yk > 0. When H0 is true, W is b(n, 1/2), and the test
can be based upon the statistic W. For example, say X is the length of the right foot
of a person and Y the length of the corresponding left foot. Thus, there is a natural
pairing, and here H0: p = P(X > Y) = 1/2 suggests that either foot of a particular
individual is equally likely to be longer.

One major objection to the sign test is that it does not take into account the mag-
nitude of the differences X1−m0, . . . ,Xn−m0. We now discuss a test ofWilcoxon that
does take into account the magnitude of the differences |Xk − m0|, k = 1, 2, . . . ,n.
However, in addition to assuming that the random variable X is of the continuous
type, we must also assume that the pdf of X is symmetric about the median in order
to find the distribution of this new statistic. Because of the continuity assumption,
we assume, in the discussion which follows, that no two observations are equal and
that no observation is equal to the median.

We are interested in testing the hypothesis H0: m = m0, where m0 is some
given constant. With our random sample X1,X2, . . . ,Xn, we rank the absolute
values |X1 − m0|, |X2 − m0|, . . . , |Xn − m0| in ascending order according to mag-
nitude. That is, for k = 1, 2, . . . , n, we let Rk denote the rank of |Xk − m0| among
|X1−m0|, |X2−m0|, . . . , |Xn−m0|. Note that R1,R2, . . . ,Rn is a permutation of the
first n positive integers, 1, 2, . . . , n. Now, with each Rk, we associate the sign of the
difference Xk − m0; that is, if Xk − m0 > 0, we use Rk, but if Xk − m0 < 0, we
use −Rk. The Wilcoxon statistic W is the sum of these n signed ranks, and therefore
is often called the Wilcoxon signed rank statistic.

Example
8.4-2

Suppose the lengths of n = 10 sunfish are

xi : 5.0 3.9 5.2 5.5 2.8 6.1 6.4 2.6 1.7 4.3

We shall test H0: m = 3.7 against the alternative hypothesis H1: m > 3.7. Thus,
we have

xk −m0: 1.3, 0.2, 1.5, 1.8, −0.9, 2.4, 2.7, −1.1, −2.0, 0.6

|xk −m0|: 1.3, 0.2, 1.5, 1.8, 0.9, 2.4, 2.7, 1.1, 2.0, 0.6

Ranks: 5, 1, 6, 7, 3, 9, 10, 4, 8, 2

Signed Ranks: 5, 1, 6, 7, −3, 9, 10, −4, −8, 2
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Therefore, the Wilcoxon statistic is equal to

W = 5+ 1+ 6+ 7− 3+ 9+ 10− 4− 8+ 2 = 25.

Incidentally, the positive answer seems reasonable because the number of the 10
lengths that are less than 3.7 is 3, which is the statistic used in the sign test.

If the hypothesis H0: m = m0 is true, about one half of the differences would
be negative and thus about one half of the signs would be negative. Hence, it seems
that the hypothesis H0: m = m0 is supported if the observed value of W is close to
zero. If the alternative hypothesis is H1: m > m0, we would reject H0 if the observed
W = w is too large, since, in this case, the larger deviations |Xk−m0|would usually be
associated with observations for which xk−m0 > 0. That is, the critical region would
be of the form {w : w ≥ c1}. If the alternative hypothesis is H1: m < m0, the critical
region would be of the form {w : w ≤ c2}. Of course, the critical region would be of
the form {w : w ≤ c3 or w ≥ c4} for a two-sided alternative hypothesis H1: m �= m0.
In order to find the values of c1, c2, c3, and c4 that yield desired significance levels, it
is necessary to determine the distribution of W under H0. Accordingly, we consider
certain characteristics of this distribution.

When H0: m = m0 is true,

P(Xk < m0) = P(Xk > m0) = 1
2

, k = 1, 2, . . . ,n.

Hence, the probability is 1/2 that a negative sign is associated with the rank Rk
of |Xk − m0|. Moreover, the assignments of these n signs are independent because
X1,X2, . . . ,Xn are mutually independent. In addition, W is a sum that contains the
integers 1, 2, . . . ,n, each with a positive or negative sign. Since the underlying distri-
bution is symmetric, it seems intuitively obvious that W has the same distribution as
the random variable

V =
n∑

k=1

Vk,

where V1,V2, . . . ,Vn are independent and

P(Vk = k) = P(Vk = −k) = 1
2

, k = 1, 2, . . . ,n.

That is, V is a sum that contains the integers 1, 2, . . . , n, and these integers receive
their algebraic signs by independent assignments.

Since W and V have the same distribution, their means and variances are equal,
and we can easily find those of V. Now, the mean of Vk is

E(Vk) = −k
(

1
2

)
+ k
(

1
2

)
= 0;

thus,

E(W) = E(V) =
n∑

k=1

E(Vk) = 0.

The variance of Vk is

Var(Vk) = E(V2
k) = (−k)2

(
1
2

)
+ (k)2

(
1
2

)
= k2.
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Hence,

Var(W) = Var(V) =
n∑

k=1

Var(Vk) =
n∑

k=1

k2 = n(n+ 1)(2n+ 1)
6

.

We shall not try to find the distribution of W in general, since that pmf does
not have a convenient expression. However, we demonstrate how we could find the
distribution of W (or V) with enough patience and computer support. Recall that
the moment-generating function of Vi is

Mk(t) = et(−k)
(

1
2

)
+ et(+k)

(
1
2

)
= e−kt + ekt

2
, k = 1, 2, . . . , n.

Let n = 2; then the moment-generating function of V1 + V2 is

M(t) = E[et(V1+V2)].

From the independence of V1 and V2, we obtain

M(t) = E(etV1 )E(etV2 )

=
(
e−t + et

2

)(
e−2t + e2t

2

)

= e−3t + e−t + et + e3t

4
.

This means that each of the points −3,−1, 1, 3 in the support of V1 + V2 has
probability 1/4.

Next let n = 3; then the moment-generating function of V1 + V2 + V3 is

M(t) = E[et(V1+V2+V3)]

= E[et(V1+V2)]E(etV3 )

=
(
e−3t + e−t + et + e3t

4

)(
e−3t + e3t

2

)

= e−6t + e−4t + e−2t + 2e0 + e2t + e4t + e6t

8
.

Thus, the points −6,−4,−2, 0, 2, 4, and 6 in the support of V1 + V2 + V3 have the
respective probabilities 1/8, 1/8, 1/8, 2/8, 1/8, 1/8, and 1/8. Obviously, this proce-
dure can be continued for n = 4, 5, 6, . . . , but it is rather tedious. Fortunately,
however, even though V1,V2, . . . ,Vn are not identically distributed random vari-
ables, the sum V of them still has an approximate normal distribution for large
samples. To obtain this normal approximation for V (or W), a more general form
of the central limit theorem, due to Liapounov, can be used which allows us to say
that the standardized random variable

Z = W − 0√
n(n+ 1)(2n+ 1)/6

is approximately N(0, 1) when H0 is true. We accept this theorem without proof,
so that we can use this normal distribution to approximate probabilities such as
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P(W ≥ c;H0) ≈ P(Z ≥ zα ;H0) when the sample size n is sufficiently large. The
next example illustrates this approximation.

Example
8.4-3

The moment-generating function of W or of V is given by

M(t) =
n∏

i=1

e−kt + ekt

2
.

Using a computer algebra system such as Maple, we can expand M(t) and find the
coefficients of ekt, which is equal to P(W = k). In Figure 8.4-1, we have drawn
a probability histogram for the distribution of W along with the approximating
N[0, n(n + 1)(2n + 1)/6] pdf for n = 4 (a poor approximation) and for n = 10.
It is important to note that the widths of the rectangles in the probability histogram
are equal to 2, so the “half-unit correction for continuity” mentioned in Section 5.7
now is equal to 1.

Example
8.4-4

Let m be the median of a symmetric distribution of the continuous type. To test the
hypothesis H0: m = 160 against the alternative hypothesis H1: m > 160, we take a
random sample of size n = 16. For an approximate significance level of α = 0.05, H0
is rejected if the computed W = w is such that

z = w√
16(17)(33)/6

≥ 1.645,

or

w ≥ 1.645

√
16(17)(33)

6
= 63.626.

Say the observed values of a random sample are 176.9, 158.3, 152.1, 158.8, 172.4,
169.8, 159.7, 162.7, 156.6, 174.5, 184.4, 165.2, 147.8, 177.8, 160.1, and 160.5. In
Table 8.4-1, the magnitudes of the differences |xk − 160| have been ordered and
ranked. Those differences xk − 160 which were negative have been underlined, and
the ranks are under the ordered values. For this set of data,

w = 1− 2+ 3− 4− 5+ 6+ · · · + 16 = 60.

0.01

0.03

0.05

0.07

5 10

(a) n = 4 (b) n = 10

−10 −5 0

0.005

0.010

0.015

0.020

10 30 50−50 −30 −10

Figure 8.4-1 The Wilcoxon distribution
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Table 8.4-1 Ordered absolute differences from 160

0.1 0.3 0.5 1.2 1.7 2.7 3.4 5.2

1 2 3 4 5 6 7 8

7.9 9.8 12.2 12.4 14.5 16.9 17.8 24.4

9 10 11 12 13 14 15 16

Since 60 < 63.626, H0 is not rejected at the 0.05 significance level. It is interest-
ing to note that H0 would have been rejected at α = 0.10, since, with a unit correction
made for continuity, the approximate p-value is

p-value = P(W ≥ 60)

= P

(
W − 0√

(16)(17)(33)/6
≥ 59− 0√

(16)(17)(33)/6

)
≈ P(Z ≥ 1.525) = 0.0636.

(Maple produces a p-value equal to 4,251/65,536 = 0.0649.) Such a p-value would
indicate that the data are too few to reject H0, but if the pattern continues, we shall
most certainly reject H0 with a larger sample size.

Although theoretically we could ignore the possibilities that xk = m0 for some
k and that |xk −m0| = |xj −m0| for some k �= j, these situations do occur in appli-
cations. Usually, in practice, if xk = m0 for some k, that observation is deleted and
the test is performed with a reduced sample size. If the absolute values of the differ-
ences from m0 of two or more observations are equal, each observation is assigned
the average of the corresponding ranks. The change this causes in the distribution
of W is not very great, provided that the number of ties is relatively small; thus, we
continue using the same normal approximation.

We now give an example that has some tied observations.

Example
8.4-5

We consider some paired data for percentage of body fat measured at the beginning
and the end of a semester. Let m equal the median of the differences, x − y. We
shall use the Wilcoxon statistic to test the null hypothesis H0: m = 0 against the
alternative hypothesis H1: m > 0 with the differences given below. Since there are
n = 25 nonzero differences, we reject H0 if

z = w− 0√
(25)(26)(51)/6

≥ 1.645

or, equivalently, if

w ≥ 1.645

√
(25)(26)(51)

6
= 122.27

at an approximate α = 0.05 significance level. The 26 differences are

1.8 −3.1 0.1 1.1 0.6 −5.1 9.2 0.2 0.4

0.0 1.9 −0.4 −1.5 1.4 −1.0 2.2 0.8 −0.4

2.0 −5.8 −3.4 −2.3 3.0 2.7 0.2 3.2
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Table 8.4-2 Ordered absolute values, changes in percentage of body fat

0.1 0.2 0.2 0.4 0.4 0.4 0.6 0.8 1.0 1.1 1.4 1.5 1.8

1 2.5 2.5 5 5 5 7 8 9 10 11 12 13

1.9 2.0 2.2 2.3 2.7 3.0 3.1 3.2 3.4 5.1 5.8 9.2

14 15 16 17 18 19 20 21 22 23 24 25

Table 8.4-2 lists the ordered nonzero absolute values, with those that were origi-
nally negative underlined. The rank is under each observation. Note that in the case
of ties, the average of the ranks of the tied measurements is given.

The value of the Wilcoxon statistic is

w = 1+ 2.5+ 2.5+ 5− 5− 5+ · · · + 25 = 51.

Since 51 < 122.27, we fail to reject the null hypothesis. The approximate p-value of
this test, using the continuity correction, is

p-value = P(W ≥ 51)

≈ P

(
Z ≥ 50− 0√

(25)(26)(51)/6

)
= P(Z ≥ 0.673) = 0.2505.

Another method due to Wilcoxon for testing the equality of two distributions
of the continuous type uses the magnitudes of the observations. For this test, it is
assumed that the respective cdfs F and G have the same shape and spread but pos-
sibly different locations; that is, there exists a constant c such that F(x) = G(x + c)
for all x. To proceed with the test, place the combined sample of x1, x2, . . . , xn1 and
y1, y2, . . . , yn2 in increasing order of magnitude. Assign the ranks 1, 2, 3, . . . ,n1 + n2
to the ordered values. In the case of ties, assign the average of the ranks associated
with the tied values. Let w equal the sum of the ranks of y1, y2, . . . , yn2 . If the dis-
tribution of Y is shifted to the right of that of X, the values of Y would tend to
be larger than the values of X and w would usually be larger than expected when
F(z) = G(z). If mX and mY are the respective medians, the critical region for testing
H0: mX = mY against H1: mX < mY would be of the form w ≥ c. Similarly, if the
alternative hypothesis is mX > mY , the critical region would be of the form w ≤ c.

We shall not derive the distribution of W. However, if n1 and n2 are both greater
than 7, and there are no ties, a normal approximation can be used. With F(z) = G(z),
the mean and variance of W are

μW = n2(n1 + n2 + 1)
2

and

Var(W) = n1n2(n1 + n2 + 1)
12

,

and the statistic

Z = W − n2(n1 + n2 + 1)/2√
n1n2(n1 + n2 + 1)/12

is approximately N(0, 1).
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Example
8.4-6

The weights of of the contents of n1 = 8 and n2 = 8 tins of cinnamon pack-
aged by companies A and B, respectively, selected at random, yielded the following
observations of X and Y:

x: 117.1 121.3 127.8 121.9 117.4 124.5 119.5 115.1

y: 123.5 125.3 126.5 127.9 122.1 125.6 129.8 117.2

The critical region for testing H0: mX = mY against H1: mX < mY is of the form
w ≥ c. Since n1 = n2 = 8, at an approximate α = 0.05 significance level H0 is
rejected if

z = w− 8(8+ 8+ 1)/2√
[(8)(8)(8+ 8+ 1)]/12

≥ 1.645,

or

w ≥ 1.645

√
(8)(8)(17)

12
+ 4(17) = 83.66.

To calculate the value of W, it is sometimes helpful to construct a back-to-back
stem-and-leaf display. In such a display, the stems are put in the center and the leaves
go to the left and the right. (See Table 8.4-3.)

Reading from this two-sided stem-and-leaf display, we show the combined sam-
ple in Table 8.4-4, with the Company B (y) weights underlined. The ranks are given
beneath the values.

From Table 8.4-4, the computed W is

w = 3+ 8+ 9+ 11+ 12+ 13+ 15+ 16 = 87 > 83.66.

Table 8.4-3 Back-to-back
stem-and-leaf diagram
of weights of cinnamon

x Leaves Stems y Leaves

51 11f

74 71 11s 72

95 11•
19 13 12∗

12t 21 35

45 12f 53 56

78 12s 65 79

12• 98

Multiply numbers by 10−1.
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Table 8.4-4 Combined ordered samples

115.1 117.1 117.2 117.4 119.5 121.3 121.9 122.1

1 2 3 4 5 6 7 8

123.5 124.5 125.3 125.6 126.5 127.8 127.9 129.8

9 10 11 12 13 14 15 16

Thus, H0 is rejected. Finally, making a half-unit correction for continuity, we see that
the p-value of this test is

p-value = P(W ≥ 87)

= P
(
W − 68√

90.667
≥ 86.5− 68√

90.667

)
≈ P(Z ≥ 1.943) = 0.0260.

Exercises

8.4-1. It is claimed that the median weight m of certain
loads of candy is 40,000 pounds.

(a) Use the following 13 observations and the Wilcoxon
statistic to test the null hypothesis H0: m = 40,000
against the one-sided alternative hypothesis H1: m <

40,000 at an approximate significance level of α =
0.05:

41,195 39,485 41,229 36,840 38,050 40,890 38,345

34,930 39,245 31,031 40,780 38,050 30,906

(b) What is the approximate p-value of this test?

(c) Use the sign test to test the same hypothesis.

(d) Calculate the p-value from the sign test and compare
it with the p-value obtained from the Wilcoxon test.

8.4-2. A course in economics was taught to two groups
of students, one in a classroom situation and the other
online. There were 24 students in each group. The stu-
dents were first paired according to cumulative grade
point averages and background in economics, and then
assigned to the courses by a flip of a coin. (The procedure
was repeated 24 times.) At the end of the course each class
was given the same final examination. Use the Wilcoxon
test to test the hypothesis that the two methods of teach-
ing are equally effective against a two-sided alternative.
The differences in the final scores for each pair of students
were as follows (the online student’s score was subtracted
from the corresponding classroom student’s score):

14 −4 −6 −2 −1 18

6 12 8 −4 13 7

2 6 21 7 −2 11

−3 −14 −2 17 −4 −5

8.4-3. Let X equal the weight (in grams) of a Hershey’s
grape-flavored Jolly Rancher. Denote the median of X
by m. We shall test H0: m = 5.900 against H1: m > 5.900.
A random sample of size n = 25 yielded the following
ordered data:

5.625 5.665 5.697 5.837 5.863 5.870 5.878 5.884 5.908

5.967 6.019 6.020 6.029 6.032 6.037 6.045 6.049

6.050 6.079 6.116 6.159 6.186 6.199 6.307 6.387

(a) Use the sign test to test the hypothesis.

(b) Use the Wilcoxon test statistic to test the hypothesis.

(c) Use a t test to test the hypothesis.

(d) Write a short comparison of the three tests.

8.4-4. The outcomes on n = 10 simulations of a Cauchy
random variable were−1.9415, 0.5901,−5.9848,−0.0790,
−0.7757, −1.0962, 9.3820, −74.0216, −3.0678, and 3.8545.
For the Cauchy distribution, the mean does not exist, but
for this one, the median is believed to equal zero. Use the
Wilcoxon test and these data to test H0: m = 0 against the
alternative hypothesis H1: m �= 0. Let α ≈ 0.05.
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8.4-5. Let x equal a student’s GPA in the fall semester
and y the same student’s GPA in the spring semester. Let
m equal the median of the differences, x − y. We shall
test the null hypothesis H0: m = 0 against an appropriate
alternative hypothesis that you select on the basis of your
past experience. Use a Wilcoxon test and the following 15
observations of paired data to test H0:

x y x y

2.88 3.22 3.98 3.76

3.67 3.49 4.00 3.96

2.76 2.54 3.39 3.52

2.34 2.17 2.59 2.36

2.46 2.53 2.78 2.62

3.20 2.98 2.85 3.06

3.17 2.98 3.25 3.16

2.90 2.84

8.4-6. Let m equal the median of the posttest grip
strengths in the right arms of male freshmen in a study
of health dynamics. We shall use observations on n = 15
such students to test the null hypothesis H0: m = 50
against the alternative hypothesis H1: m > 50.

(a) Using the Wilcoxon statistic, define a critical region
that has an approximate significance level of α = 0.05.

(b) Given the observed values

58.0 52.5 46.0 57.5 52.0 45.5 65.5 71.0

57.0 54.0 48.0 58.0 35.5 44.0 53.0

what is your conclusion?

(c) What is the p-value of this test?

8.4-7. Let X equal the weight in pounds of a “1-pound”
bag of carrots. Let m equal the median weight of a popu-
lation of these bags. Test the null hypothesis H0: m = 1.14
against the alternative hypothesis H1: m > 1.14.

(a) With a sample of size n = 14, use the Wilcoxon
statistic to define a critical region. Use α ≈ 0.10.

(b) What would be your conclusion if the observed
weights were

1.12 1.13 1.19 1.25 1.06 1.31 1.12

1.23 1.29 1.17 1.20 1.11 1.18 1.23

(c) What is the p-value of your test?

8.4-8. A pharmaceutical company is interested in testing
the effect of humidity on the weight of pills that are sold in
aluminum packaging. Let X and Y denote the respective

weights of pills and their packaging (in grams), when the
packaging is good and when it is defective, after the pill
has spent 1 week in a chamber containing 100% humidity
and heated to 30 ◦C.

(a) Use the Wilcoxon test to test H0: mX = mY against
H0: mX −mY < 0 on the following random samples of
n1 = 12 observations of X and n2 = 12 observations
of Y:

x: 0.7565 0.7720 0.7776 0.7750 0.7494 0.7615

0.7741 0.7701 0.7712 0.7719 0.7546 0.7719

y: 0.7870 0.7750 0.7720 0.7876 0.7795 0.7972

0.7815 0.7811 0.7731 0.7613 0.7816 0.7851

What is the p-value?

(b) Construct and interpret a q–q plot of these data. Hint:
This is a q–q plot of the empirical distribution of X
against that of Y.

8.4-9. Let us compare the failure times of a certain type
of light bulb produced by two different manufacturers, X
and Y, by testing 10 bulbs selected at random from each
of the outputs. The data, in hundreds of hours used before
failure, are

x: 5.6 4.6 6.8 4.9 6.1 5.3 4.5 5.8 5.4 4.7

y: 7.2 8.1 5.1 7.3 6.9 7.8 5.9 6.7 6.5 7.1

(a) Use the Wilcoxon test to test the equality of medians
of the failure times at the approximate 5% signifi-
cance level. What is the p-value?

(b) Construct and interpret a q–q plot of these data. Hint:
This is a q–q plot of the empirical distribution of X
against that of Y.

8.4-10. Let X and Y denote the heights of blue spruce
trees, measured in centimeters, growing in two large
fields. We shall compare these heights by measuring 12
trees selected at random from each of the fields. Take
α ≈ 0.05, and use the statistic W—the sum of the ranks of
the observations of Y in the combined sample—to test the
hypothesis H0: mX = mY against the alternative hypoth-
esis H1: mX < mY on the basis of the following n1 = 12
observations of X and n2 = 12 observations of Y.

x: 90.4 77.2 75.9 83.2 84.0 90.2

87.6 67.4 77.6 69.3 83.3 72.7

y: 92.7 78.9 82.5 88.6 95.0 94.4

73.1 88.3 90.4 86.5 84.7 87.5

8.4-11. Let X and Y equal the sizes of grocery orders
from, respectively, a south-side and a north-side food
store of the same chain. We shall test the null hypothesis
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H0: mX = mY against a two-sided alternative, using the
following ordered observations:

x: 5.13 8.22 11.81 13.77 15.36

23.71 31.39 34.65 40.17 75.58

y: 4.42 6.47 7.12 10.50 12.12

12.57 21.29 33.14 62.84 72.05

(a) Use the Wilcoxon test when α = 0.05. What is the
p-value of this two-sided test?

(b) Construct a q–q plot and interpret it. Hint: This is a
q–q plot of the empirical distribution of X against that
of Y.

8.4-12. A charter bus line has 48-passenger and 38-
passenger buses. Let m48 and m38 denote the median
number of miles traveled per day by the respective
buses. With α = 0.05, use the Wilcoxon statistic to
test H0: m48 = m38 against the one-sided alternative H1:
m48 > m38. Use the following data, which give the num-
bers of miles traveled per day for respective random
samples of sizes 9 and 11:

48-passenger buses: 331 308 300 414 253

323 452 396 104

38-passenger buses: 248 393 260 355 279 184

386 450 432 196 197

8.4-13. A company manufactures and packages soap
powder in 6-pound boxes. The quality assurance depart-
ment was interested in comparing the fill weights of
packages from the east and west lines. Taking random
samples from the two lines, the department obtained the
following weights:

East line (x): 6.06 6.04 6.11 6.06 6.06

6.07 6.06 6.08 6.05 6.09

West line (y): 6.08 6.03 6.04 6.07 6.11

6.08 6.08 6.10 6.06 6.04

(a) Let mX and mY denote the median weights for the east
and west lines, respectively. Test H0: mX = mY against
a two-sided alternative hypothesis, using the Wilcoxon
test with α ≈ 0.05. Find the p-value of this two-sided
test.

(b) Construct and interpret a q–q plot of these data.

8.4-14. In Exercise 8.2-13, data are given that show the
effect of a certain fertilizer on plant growth. The growths
of the plants in mm over six weeks are repeated here,
where Group A received fertilizer and Group B did not:

Group A: 55 61 33 57 17 46 50 42 71 51 63

Group B: 31 27 12 44 9 25 34 53 33 21 32

We shall test the hypothesis that fertilizer enhanced
the growth of the plants.

(a) Construct a back-to-back stem-and-leaf display in
which the stems are put down the center of the dia-
gram and the Group A leaves go to the left while the
Group B leaves go to the right.

(b) Calculate the value of the Wilcoxon statistic and give
your conclusion.

(c) How does this result compare with that using the t test
in Exercise 8.2-13?

8.4-15. With α = 0.05, use the Wilcoxon statistic to test
H0: mX = mY against a two-sided alternative. Use the fol-
lowing observations of X and Y, which have been ordered
for your convenience:

x: −2.3864 −2.2171 −1.9148 −1.9097 −1.4883

−1.2007 −1.1077 −0.3601 0.4325 1.0598

1.3035 1.5241 1.7133 1.7656 2.4912

y: −1.7613 −0.9391 −0.7437 −0.5530 −0.2469

0.0647 0.2031 0.3219 0.3579 0.6431

0.6557 0.6724 0.6762 0.9041 1.3571

8.4-16. Data were collected during a step-direction
experiment in the biomechanics laboratory at Hope
College. The goal of the study is to establish differences
in stepping responses between healthy young and healthy
older adults. In one part of the experiment, the subjects
are told in what direction they should take a step. Then,
when given a signal, the subject takes a step in that direc-
tion, and the time it takes for them to lift their foot to
take the step is measured. The direction is repeated a few
times throughout the testing, and for each subject, a mean
of all the “liftoff” times in a certain direction is calculated.
The mean liftoff times (in thousandths of a second) for
the anterior direction, ordered for your convenience, are
as follows:

Young Subjects 397 433 450 468 485 488 498 504 561

565 569 576 577 579 581 586 696

Older Subjects 463 538 549 573 588 590 594 626 627

653 674 728 818 835 863 888 936

(a) Construct a back-to-back stem-and-leaf display. Use
stems 3•, 4∗, . . . , 9∗.

(b) Use the Wilcoxon statistic to test the null hypoth-
esis that the response times are equal against the
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alternative that the times for the young subjects are
less than that for the older subjects.

(c) What outcome does a t test give?

8.4-17. Some measurements in mm were made on a
species of spiders, named Sosippus floridanus, that are
native to Florida. There are 10 female spiders and 10 male
spiders. The body lengths and the lengths of their front
and back legs are repeated here:

Female
body

lengths

Female
front
legs

Female
back
legs

Male
body

lengths

Male
front
legs

Male
back
legs

11.06 15.03 19.29 12.26 21.22 25.54

13.87 17.96 22.74 11.66 18.62 23.94

12.93 17.56 21.28 12.53 18.62 23.94

15.08 21.22 25.54 13.00 19.95 25.80

17.82 22.61 28.86 11.79 19.15 25.40

14.14 20.08 25.14 12.46 19.02 25.27

12.26 16.49 20.22 10.65 17.29 22.21

17.82 18.75 24.61 10.39 17.02 21.81

20.17 23.01 28.46 12.26 18.49 23.41

16.88 22.48 28.59 14.07 22.61 28.86

In this exercise, we shall use the Wilcoxon statistic
to compare the sizes of the female and male spiders. For

each of the following instructions, construct back-to-back
stem-and-leaf displays:

(a) Test the null hypothesis that the body lengths of
female and male spiders are equal against the alter-
native hypothesis that female spiders are longer.

(b) Test the null hypothesis that the lengths of the front
legs of the female and male spiders are equal against
a two-sided alternative.

(c) Test the null hypothesis that the lengths of the back
legs of the female and male spiders are equal against
a two-sided alternative.

8.4-18. In Exercise 8.2-10, growth data are given for
plants in normal air and for plants in CO2-enriched air.
Those data are repeated here:

Normal Air (x) 4.67 4.21 2.18 3.91 4.09 5.24 2.94 4.71

4.04 5.79 3.80 4.38

Enriched Air (y) 5.04 4.52 6.18 7.01 4.36 1.81 6.22 5.70

In this exercise, we shall test the null hypothesis that the
medians are equal, namely, H0: mX = mY , against the
alternative hypothesis H1: mX < mY . You may select the
significance level. However, give the approximate p-value
or state clearly why you arrived at a particular conclusion,
for each of the tests. Show your work.

(a) What is your conclusion from the Wilcoxon test?

(b) What was your conclusion from the t test in
Exercise 8.2-10?

(c) Write a comparison of these two tests.

8.5 POWER OF A STATISTICAL TEST
In Chapter 8, we gave several tests of fairly common statistical hypotheses in such a
way that we described the significance level α and the p-values of each. Of course,
those tests were based on good (sufficient) statistics of the parameters, when the
latter exist. In this section, we consider the probability of making the other type of
error: accepting the null hypothesis H0 when the alternative hypothesis H1 is true.
This consideration leads to ways to find most powerful tests of the null hypothesis
H0 against the alternative hypothesis H1.

The first example introduces a new concept using a test about p, the probability
of success. The sample size is kept small so that Table II in Appendix B can be used
to find probabilities. The application is one that you can actually perform.

Example
8.5-1

Assume that when given a name tag, a person puts it on either the right or left side.
Let p equal the probability that the name tag is placed on the right side. We shall
test the null hypothesis H0: p = 1/2 against the composite alternative hypothesis
H1: p < 1/2. (Included with the null hypothesis are those values of p which are
greater than 1/2; that is, we could think of H0 as H0: p ≥ 1/2.) We shall give name
tags to a random sample of n = 20 people, denoting the placements of their name



Section 8.5 Power of a Statistical Test 393

tags with Bernoulli random variables, X1,X2, . . . ,X20, where Xi= 1 if a person places
the name tag on the right and Xi = 0 if a person places the name tag on the left. For
our test statistic, we can then use Y = ∑20

i=1 Xi, which has the binomial distribution
b(20,p). Say the critical region is defined by C = {y : y ≤ 6} or, equivalently, by
{(x1, x2, . . . , x20) :

∑20
i=1 xi ≤ 6}. Since Y is b(20, 1/2) if p = 1/2, the significance level

of the corresponding test is

α = P
(
Y ≤ 6; p = 1

2

)
=

6∑
y=0

(
20
y

)(
1
2

)20

= 0.0577,

from Table II in Appendix B. Of course, the probability β of a Type II error has
different values, with different values of p selected from the composite alternative
hypothesis H1: p < 1/2. For example, with p = 1/4,

β = P
(

7 ≤ Y ≤ 20; p = 1
4

)
=

20∑
y=7

(
20
y

)(
1
4

)y(3
4

)20−y
= 0.2142,

whereas with p = 1/10,

β = P
(

7 ≤ Y ≤ 20; p = 1
10

)
=

20∑
y=7

(
20
y

)(
1
10

)y( 9
10

)20−y
= 0.0024.

Instead of considering the probability β of accepting H0 when H1 is true, we could
compute the probability K of rejecting H0 when H1 is true. After all, β and K = 1−β
provide the same information. Since K is a function of p, we denote this explicitly by
writing K(p). The probability

K(p) =
6∑

y=0

(
20
y

)
py(1− p)20−y, 0 < p ≤ 1

2
,

is called the power function of the test. Of course, α = K(1/2) = 0.0577, 1−K(1/4) =
0.2142, and 1 − K(1/10) = 0.0024. The value of the power function at a specified
p is called the power of the test at that point. For instance, K(1/4) = 0.7858 and
K(1/10) = 0.9976 are the powers at p = 1/4 and p = 1/10, respectively. An accept-
able power function assumes small values when H0 is true and larger values when p
differs much from p = 1/2. (See Figure 8.5-1 for a graph of this power function.)

In Example 8.5-1, we introduced the new concept of the power function of a
test. We now show how the sample size can be selected so as to create a test with
appropriate power.

Example
8.5-2

Let X1,X2, . . . ,Xn be a random sample of size n from the normal distribution
N(μ, 100), which we can suppose is a possible distribution of scores of students in
a statistics course that uses a new method of teaching (e.g., computer-related mate-
rials). We wish to decide between H0: μ = 60 (the no-change hypothesis because,
let us say, this was the mean by the previous method of teaching) and the research
worker’s hypothesis H1: μ > 60. Let us consider a sample of size n = 25. Of course,
the sample mean X is the maximum likelihood estimator of μ; thus, it seems reason-
able to base our decision on this statistic. Initially, we use the rule to reject H0 and
accept H1 if and only if x ≥ 62. What are the consequences of this test? These are
summarized in the power function of the test.
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p

K(p)
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Figure 8.5-1 Power function: K(p) = P(Y ≤ 6; p),
where Y is b(20,p)

We first find the probability of rejectingH0: μ = 60 for various values of μ ≥ 60.
The probability of rejecting H0 is given by

K(μ) = P(X ≥ 62;μ),

because this test calls for the rejection of H0: μ = 60 when x ≥ 62. When the new
process has the general mean μ, X has the normal distribution N(μ, 100/25 = 4).
Accordingly,

K(μ) = P
(
X − μ

2
≥ 62− μ

2
; μ

)

= 1− �

(
62− μ

2

)
, 60 ≤ μ,

is the probability of rejectingH0: μ = 60 by using this particular test. Several values
ofK(μ) are given in Table 8.5-1. Figure 8.5-2 depicts the graph of the functionK(μ).

Table 8.5-1 Values of the
power
function

μ K(μ)

60 0.1587

61 0.3085

62 0.5000

63 0.6915

64 0.8413

65 0.9332

66 0.9772

K(μ)

α

β

μ

0.2

0.4

0.6

0.8

1.0

58 60 62 64 66 68

Figure 8.5-2 Power function
K(μ) = 1− �([62− μ]/2)



Section 8.5 Power of a Statistical Test 395

The probability K(μ) of rejecting H0: μ = 60 is called the power function of
the test. At the value μ1 of the parameter, K(μ1) is the power at μ1. The power at
μ = 60 is K(60) = 0.1587, and this is the probability of rejecting H0: μ = 60 when
H0 is true. That is, K(60) = 0.1587 = α is the probability of a Type I error and is
called the significance level of the test.

The power at μ = 65 is K(65) = 0.9332, and this is the probability of making
the correct decision (namely, rejecting H0: μ = 60 when μ = 65). Hence, we are
pleased that here it is large. When μ = 65, 1 − K(65) = 0.0668 is the probability of
not rejecting H0: μ = 60 when μ = 65; that is, it is the probability of a Type II error
and is denoted by β = 0.0668. These α- and β-values are displayed in Figure 8.5-2.
Clearly, the probability β = 1−K(μ1) of a Type II error depends on which value—
say, μ1—is taken in the alternative hypothesis H1: μ > 60. Thus, while β = 0.0668
when μ = 65, β is equal to 1−K(63) = 0.3085 when μ = 63.

Frequently, statisticians like to have the significance level α smaller than
0.1587—say, around 0.05 or less—because it is a probability of an error, namely, a
Type I error. Thus, if we would like α = 0.05, then, with n = 25, we can no longer
use the critical region x ≥ 62; rather, we use x ≥ c, where c is selected such that

K(60) = P(X ≥ c; μ = 60) = 0.05.

However, when μ = 60, X is N(60, 4), and it follows that

K(60) = P
(
X − 60

2
≥ c− 60

2
; μ = 60

)

= 1−�
(
c− 60

2

)
= 0.05.

From Table Va in Appendix B, we have

c− 60
2

= 1.645 = z0.05 and c = 60+ 3.29 = 63.29.

Although this change reduces α from 0.1587 to 0.05, it increases β at μ = 65 from
0.0668 to

β = 1− P(X ≥ 63.29; μ = 65)

= 1− P
(
X − 65

2
≥ 63.29− 65

2
; μ = 65

)
= �(−0.855) = 0.1963.

In general, without changing the sample size or the type of test of the hypothesis,
a decrease in α causes an increase in β, and a decrease in β causes an increase
in α. Both probabilities α and β of the two types of errors can be decreased only
by increasing the sample size or, in some way, constructing a better test of the
hypothesis.

For example, if n = 100 and we desire a test with significance level α = 0.05,
then, since X is N(μ, 100/100 = 1),

α = P(X ≥ c; μ = 60) = 0.05

means that

P

(
X − 60

1
≥ c− 60

1
; μ = 60

)
= 0.05
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and c− 60 = 1.645. Thus, c = 61.645. The power function is

K(μ) = P(X ≥ 61.645; μ)

= P
(
X − μ

1
≥ 61.645− μ

1
; μ

)
= 1−�(61.645− μ).

In particular, this means that at μ = 65,

β = 1−K(μ) = �(61.645− 65) = �(−3.355) = 0.0004;

so, with n = 100, both α and β have decreased from their respective original values
of 0.1587 and 0.0668 when n = 25.

Rather than guess at the value of n, an ideal power function determines the
sample size. Let us use a critical region of the form x ≥ c. Further, suppose that we
want α = 0.025 and, when μ = 65, β = 0.05. Thus, since X is N(μ, 100/n), it follows
that

0.025 = P(X ≥ c; μ = 60) = 1−�
(
c− 60
10/
√
n

)
and

0.05 = 1− P(X ≥ c; μ = 65) = �

(
c− 65
10/
√
n

)
.

That is,

c− 60
10/
√
n
= 1.96 and

c− 65
10/
√
n
= −1.645.

Solving these equations simultaneously for c and 10/
√
n, we obtain

c = 60+ 1.96
5

3.605
= 62.718;

10√
n
= 5

3.605
.

Hence,
√
n = 7.21 and n = 51.98.

Since n must be an integer, we would use n = 52 and thus obtain α ≈ 0.025 and
β ≈ 0.05.

The next example is an extension of Example 8.5-1.

Example
8.5-3

To test H0: p = 1/2 against H1: p < 1/2, we take a random sample of Bernoulli
trials,X1,X2, . . . ,Xn, and use for our test statisticY =∑n

i=1Xi, which has a binomial
distribution b(n,p). Let the critical region be defined by C = {y : y ≤ c}. The power
function for this test is defined by K(p) = P(Y ≤ c; p). We shall find the values
of n and c so that K(1/2) ≈ 0.05 and K(1/4) ≈ 0.90. That is, we would like the
significance level to be α = K(1/2) = 0.05 and the power at p = 1/4 to equal 0.90.
We proceed as follows: Since

0.05 = P
(
Y ≤ c; p = 1

2

)
= P
(

Y − n/2√
n(1/2)(1/2)

≤ c− n/2√
n(1/2)(1/2)

)
,
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it follows that

(c− n/2)/
√
n/4 ≈ −1.645;

and since

0.90 = P
(
Y ≤ c; p = 1

4

)
= P
(

Y − n/4√
n(1/4)(3/4)

≤ c− n/4√
n(1/4)(3/4)

)
,

it follows that

(c− n/4)/
√

3n/16 ≈ 1.282.

Therefore,

n
4
≈ 1.645

√
n
4
+ 1.282

√
3n
16

and
√
n ≈ 4(1.378) = 5.512.

Thus, n is approximately 30.4, and we round upward to 31. From either of the first
two approximate equalities, we find that c is about equal to 10.9. Using n = 31 and
c = 10.9 means that K(1/2) = 0.05 and K(1/4) = 0.90 are only approximate. In fact,
since Y must be an integer, we could let c = 10.5. Then, with n = 31,

α = K
(

1
2

)
= P
(
Y ≤ 10.5; p = 1

2

)
≈ 0.0362;

K
(

1
4

)
= P
(
Y ≤ 10.5; p = 1

4

)
≈ 0.8730.

Or we could let c = 11.5 and n = 32, in which case

α = K
(

1
2

)
= P
(
Y ≤ 11.5; p = 1

2

)
≈ 0.0558;

K
(

1
4

)
= P
(
Y ≤ 11.5; p = 1

4

)
≈ 0.9235.

Exercises

8.5-1. A certain size of bag is designed to hold 25 pounds
of potatoes. A farmer fills such bags in the field. Assume
that the weight X of potatoes in a bag is N(μ, 9). We shall
test the null hypothesisH0: μ = 25 against the alternative
hypothesis H1: μ < 25. Let X1,X2,X3,X4 be a random
sample of size 4 from this distribution, and let the critical
region C for this test be defined by x ≤ 22.5, where x is
the observed value of X.

(a) What is the power function K(μ) of this test? In par-
ticular, what is the significance level α = K(25) for
your test?

(b) If the random sample of four bags of potatoes yielded
the values x1 = 21.24, x2 = 24.81, x3 = 23.62, and
x4 = 26.82, would your test lead you to accept or
reject H0?

(c) What is the p-value associated with x in part (b)?

8.5-2. LetX equal the number of milliliters of a liquid in a
bottle that has a label volume of 350 ml. Assume that the
distribution ofX isN(μ, 4). To test the null hypothesisH0:
μ = 355 against the alternative hypothesis H1: μ < 355,
let the critical region be defined by C = {x : x ≤ 354.05},
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where x is the sample mean of the contents of a random
sample of n = 12 bottles.

(a) Find the power function K(μ) for this test.

(b) What is the (approximate) significance level of the
test?

(c) Find the values ofK(354.05) andK(353.1), and sketch
the graph of the power function.

(d) Use the following 12 observations to state your con-
clusion from this test:

350 353 354 356 353 352
354 355 357 353 354 355

(e) What is the approximate p-value of the test?

8.5-3. Assume that SAT mathematics scores of students
who attend small liberal arts colleges are N(μ, 8100). We
shall test H0: μ = 530 against the alternative hypothesis
H1: μ < 530. Given a random sample of size n = 36 SAT
mathematics scores, let the critical region be defined by
C = {x : x ≤ 510.77}, where x is the observed mean of the
sample.

(a) Find the power function, K(μ), for this test.

(b) What is the value of the significance level of the test?

(c) What is the value of K(510.77)?

(d) Sketch the graph of the power function.

(e) What is the p-value associated with (i) x = 507.35;
(ii) x = 497.45?

8.5-4. Let X be N(μ, 100). To test H0: μ = 80 against
H1: μ > 80, let the critical region be defined by C =
{(x1, x2, . . . , x25) : x ≥ 83}, where x is the sample mean
of a random sample of size n = 25 from this distribution.

(a) What is the power function K(μ) for this test?

(b) What is the significance level of the test?

(c) What are the values of K(80), K(83), and K(86)?

(d) Sketch the graph of the power function.

(e) What is the p-value corresponding to x = 83.41?

8.5-5. Let X equal the yield of alfalfa in tons per acre
per year. Assume that X is N(1.5, 0.09). It is hoped that
a new fertilizer will increase the average yield. We shall
test the null hypothesisH0:μ = 1.5 against the alternative
hypothesisH1: μ > 1.5. Assume that the variance contin-
ues to equal σ 2 = 0.09 with the new fertilizer. Using X,
the mean of a random sample of size n, as the test statistic,
rejectH0 if x ≥ c. Find n and c so that the power function
K(μ) = P(X ≥ c : μ) is such that α = K(1.5) = 0.05 and
K(1.7) = 0.95.

8.5-6. Let X equal the butterfat production (in pounds)
of a Holstein cow during the 305-day milking period fol-
lowing the birth of a calf. Assume that the distribution of
X is N(μ, 1402). To test the null hypothesis H0: μ = 715

against the alternative hypothesis H1: μ < 715, let the
critical region be defined by C = {x : x ≤ 668.94}, where
x is the sample mean of n = 25 butterfat weights from 25
cows selected at random.

(a) Find the power function K(μ) for this test.

(b) What is the significance level of the test?

(c) What are the values of K(668.94) and K(622.88)?

(d) Sketch a graph of the power function.

(e) What conclusion do you draw from the following 25
observations of X?

425 710 661 664 732 714 934 761 744

653 725 657 421 573 535 602 537 405

874 791 721 849 567 468 975

(f) What is the approximate p-value of the test?

8.5-7. In Exercise 8.5-6, let C = {x : x ≤ c} be the criti-
cal region. Find values for n and c so that the significance
level of this test is α = 0.05 and the power at μ = 650 is
0.90.

8.5-8. Let X have a Bernoulli distribution with pmf

f (x; p) = px(1− p)1−x, x = 0, 1, 0 ≤ p ≤ 1.

We would like to test the null hypothesis H0: p ≤ 0.4
against the alternative hypothesis H1: p > 0.4. For the
test statistic, use Y = ∑n

i=1Xi, where X1,X2, . . . ,Xn is a
random sample of size n from this Bernoulli distribution.
Let the critical region be of the form C = {y : y ≥ c}.
(a) Let n = 100. On the same set of axes, sketch the

graphs of the power functions corresponding to the
three critical regions, C1 = {y : y ≥ 40}, C2 = {y :
y ≥ 50}, and C3 = {y : y ≥ 60}. Use the normal
approximation to compute the probabilities.

(b) Let C = {y : y ≥ 0.45n}. On the same set of axes,
sketch the graphs of the power functions corres-
ponding to the three samples of sizes 10, 100, and
1000.

8.5-9. Let p denote the probability that, for a particu-
lar tennis player, the first serve is good. Since p = 0.40,
this player decided to take lessons in order to increase
p. When the lessons are completed, the hypothesis
H0: p = 0.40 will be tested against H1: p > 0.40 on the
basis of n = 25 trials. Let y equal the number of first
serves that are good, and let the critical region be defined
by C = {y : y ≥ 14}.
(a) Find the power function K(p) for this test.

(b) What is the value of the significance level, α =
K(0.40)? Use Table II in Appendix B.

(c) Evaluate K(p) at p = 0.45, 0.50, 0.60, 0.70, 0.80, and
0.90. Use Table II.
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(d) Sketch the graph of the power function.

(e) If y = 15 following the lessons, wouldH0 be rejected?

(f) What is the p-value associated with y = 15?

8.5-10. Let X1,X2, . . . ,X8 be a random sample of size
n = 8 from a Poisson distribution with mean λ. Reject
the simple null hypothesis H0: λ = 0.5, and accept H1:
λ > 0.5, if the observed sum

∑8
i=1 xi ≥ 8.

(a) Compute the significance level α of the test.

(b) Find the power function K(λ) of the test as a sum of
Poisson probabilities.

(c) Using Table III in Appendix B, determine K(0.75),
K(1), and K(1.25).

8.5-11. Let p equal the fraction defective of a certain
manufactured item. To test H0: p = 1/26 against H1:
p > 1/26, we inspect n items selected at random and

let Y be the number of defective items in this sample.
We reject H0 if the observed y ≥ c. Find n and c so
that α = K(1/26) ≈ 0.05 and K(1/10) ≈ 0.90, where
K(p) = P(Y ≥ c; p). Hint: Use either the normal or
Poisson approximation to help solve this exercise.

8.5-12. Let X1,X2,X3 be a random sample of size n = 3
from an exponential distribution with mean θ > 0. Reject
the simple null hypothesisH0: θ = 2, and accept the com-
posite alternative hypothesis H1: θ < 2, if the observed
sum
∑3
i=1 xi ≤ 2.

(a) What is the power function K(θ), written as an inte-
gral?

(b) Using integration by parts, define the power function
as a summation.

(c) With the help of Table III in Appendix B, determine
α = K(2), K(1), K(1/2), and K(1/4).

8.6 BEST CRITICAL REGIONS
In this section, we consider the properties a satisfactory hypothesis test (or critical
region) should possess. To introduce our investigation, we begin with a nonstatistical
example.

Example
8.6-1

Say that you have α dollars with which to buy books. Further, suppose that you are
not interested in the books themselves, but only in filling as much of your book-
shelves as possible. How do you decide which books to buy? Does the following
approach seem reasonable? First of all, take all the available free books. Then start
choosing those books for which the cost of filling an inch of bookshelf is smallest.
That is, choose those books for which the ratio c/w is a minimum, where w is the
width of the book in inches and c is the cost of the book. Continue choosing books
this way until you have spent the α dollars.

To see how Example 8.6-1 provides the background for selecting a good critical
region of size α, let us consider a test of the simple hypothesis H0: θ = θ0 against a
simple alternative hypothesis H1: θ = θ1. In this discussion, we assume that the ran-
dom variables X1,X2, . . . ,Xn under consideration have a joint pmf of the discrete
type, which we here denote by L(θ ; x1, x2, . . . , xn). That is,

P(X1 = x1,X2 = x2, . . . ,Xn = xn) = L(θ ; x1, x2, . . . , xn).

A critical region C of size α is a set of points (x1, x2, . . . , xn) with probability α when
θ = θ0. For a good test, this set C of points should have a large probability when
θ = θ1, because, under H1: θ = θ1, we wish to reject H0: θ = θ0. Accordingly, the
first point we would place in the critical region C is the one with the smallest ratio:

L(θ0; x1, x2, . . . , xn)
L(θ1; x1, x2, . . . , xn)

.
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That is, the “cost” in terms of probability under H0: θ = θ0 is small compared
with the probability that we can “buy” if θ = θ1. The next point to add to C would
be the one with the next-smallest ratio. We would continue to add points to C in this
manner until the probability of C, under H0: θ = θ0, equals α. In this way, for the
given significance level α, we have achieved the region C with the largest probability
when H1: θ = θ1 is true. We now formalize this discussion by defining a best critical
region and proving the well-known Neyman–Pearson lemma.

Definition 8.6-1
Consider the test of the simple null hypothesis H0: θ = θ0 against the simple
alternative hypothesis H1: θ = θ1. Let C be a critical region of size α; that is,
α = P(C; θ0). Then C is a best critical region of size α if, for every other critical
region D of size α = P(D; θ0), we have

P(C; θ1) ≥ P(D; θ1).

That is, when H1: θ = θ1 is true, the probability of rejecting H0: θ = θ0 with the
use of the critical region C is at least as great as the corresponding probability
with the use of any other critical regionD of size α.

Thus, a best critical region of size α is the critical region that has the great-
est power among all critical regions of size α. The Neyman–Pearson lemma gives
sufficient conditions for a best critical region of size α.

Theorem
8.6-1

(Neyman–Pearson Lemma) Let X1,X2, . . . ,Xn be a random sample of size n from
a distribution with pdf or pmf f (x; θ), where θ0 and θ1 are two possible values of θ .
Denote the joint pdf or pmf of X1,X2, . . . ,Xn by the likelihood function

L(θ) = L(θ ; x1, x2, . . . , xn) = f (x1; θ)f (x2; θ) · · · f (xn; θ).

If there exist a positive constant k and a subset C of the sample space such that

(a) P[(X1,X2, . . . ,Xn) ∈ C; θ0] = α,

(b)
L(θ0)
L(θ1)

≤ k for (x1, x2, . . . , xn) ∈ C, and

(c)
L(θ0)
L(θ1)

≥ k for (x1, x2, . . . , xn) ∈ C′,

then C is a best critical region of size α for testing the simple null hypothesis H0:
θ = θ0 against the simple alternative hypothesis H1: θ = θ1.

Proof We prove the theorem when the random variables are of the continuous
type; for discrete-type random variables, replace the integral signs by summation
signs. To simplify the exposition, we shall use the following notation:∫

B
L(θ) =

∫
· · ·
B

∫
L(θ ; x1, x2, . . . , xn) dx1 dx2 · · · dxn.

Assume that there exists another critical region of size α—say,D—such that, in this
new notation,

α =
∫
C
L(θ0) =

∫
D
L(θ0).
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Then we have

0 =
∫
C
L(θ0)−

∫
D
L(θ0)

=
∫
C∩D′

L(θ0)+
∫
C∩D

L(θ0)−
∫
C∩D

L(θ0)−
∫
C′∩D

L(θ0).

Hence,

0 =
∫
C∩D′

L(θ0)−
∫
C′∩D

L(θ0).

By hypothesis (b), kL(θ1) ≥ L(θ0) at each point in C and therefore in C∩D′; thus,

k
∫
C∩D′

L(θ1) ≥
∫
C∩D′

L(θ0).

By hypothesis (c), kL(θ1) ≤ L(θ0) at each point in C′ and therefore in C′ ∩D; thus,
we obtain

k
∫
C′∩D

L(θ1) ≤
∫
C′∩D

L(θ0).

Consequently,

0 =
∫
C∩D′

L(θ0)−
∫
C′∩D

L(θ0) ≤ (k)
{∫
C∩D′

L(θ1)−
∫
C′∩D

L(θ1)
}

.

That is,

0 ≤ (k)
{∫
C∩D′

L(θ1)+
∫
C∩D

L(θ1)−
∫
C∩D

L(θ1)−
∫
C′∩D

L(θ1)
}

or, equivalently,

0 ≤ (k)
{∫
C
L(θ1)−

∫
D
L(θ1)

}
.

Thus, ∫
C
L(θ1) ≥

∫
D
L(θ1);

that is, P(C; θ1) ≥ P(D; θ1). Since that is true for every critical region D of size α,
C is a best critical region of size α. �

For a realistic application of the Neyman–Pearson lemma, consider the next
example, in which the test is based on a random sample from a normal distribution.

Example
8.6-2

Let X1,X2, . . . ,Xn be a random sample from the normal distribution N(μ, 36). We
shall find the best critical region for testing the simple hypothesisH0: μ = 50 against
the simple alternative hypothesisH1: μ = 55. Using the ratio of the likelihood func-
tions, namely, L(50)/L(55), we shall find those points in the sample space for which
this ratio is less than or equal to some positive constant k. That is, we shall solve the
following inequality:
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L(50)
L(55)

=
(72π)−n/2 exp

[
−
(

1
72

) n∑
i= 1

(xi − 50)2

]

(72π)−n/2 exp

[
−
(

1
72

) n∑
i= 1

(xi − 55)2

]

= exp

[
−
(

1
72

)(
10

n∑
i= 1

xi + n502 − n552

)]
≤ k.

If we take the natural logarithm of each member of the inequality, we find that

−10
n∑
i= 1

xi − n502 + n552 ≤ (72) ln k.

Thus,

1
n

n∑
i= 1

xi ≥ − 1
10n

[n502 − n552 + (72) lnk]

or, equivalently,

x ≥ c,
where c = −(1/10n)[n502 − n552 + (72) ln k]. Hence, L(50)/L(55) ≤ k is equivalent
to x ≥ c. According to the Neyman–Pearson lemma, a best critical region is

C = {(x1, x2, . . . , xn) : x ≥ c},
where c is selected so that the size of the critical region is α. Say n = 16 and c = 53.
Then, since X is N(50, 36/16) under H0, we have

α = P(X ≥ 53; μ = 50)

= P
(
X − 50

6/4
≥ 3

6/4
; μ = 50

)
= 1−�(2) = 0.0228.

This last example illustrates what is often true, namely, that the inequality

L(θ0)/L(θ1) ≤ k
can be expressed in terms of a function u(x1, x2, . . . , xn), say,

u(x1, . . . , xn) ≤ c1

or

u(x1, . . . , xn) ≥ c2,

where c1 or c2 is selected so that the size of the critical region is α. Thus, the test
can be based on the statistic u(x1, . . . , xn). As an example, if we want α to be a given
value—say, 0.05—we could then choose our c1 or c2. In Example 8.6-2, with α = 0.05,
we want
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0.05 = P(X ≥ c; μ = 50)

= P
(
X − 50

6/4
≥ c− 50

6/4
; μ = 50

)
= 1−�

(
c− 50

6/4

)
.

Hence, it must be true that (c− 50)/(3/2) = 1.645, or, equivalently,

c = 50+ 3
2

(1.645) ≈ 52.47.

Example
8.6-3

Let X1,X2, . . . ,Xn denote a random sample of size n from a Poisson distribution
with mean λ. A best critical region for testingH0: λ = 2 againstH1: λ = 5 is given by

L(2)
L(5)

= 2
xie−2n

x1!x2! · · · xn!
x1!x2! · · · xn!

5
xie−5n
≤ k.

This inequality can be written as(
2
5

)
xi
e3n ≤ k, or (
xi) ln

(
2
5

)
+ 3n ≤ lnk.

Since ln(2/5) < 0, the latter inequality is the same as

n∑
i= 1

xi ≥ lnk− 3n
ln(2/5)

= c.

If n = 4 and c = 13, then

α = P
( 4∑
i= 1

Xi ≥ 13; λ = 2

)
= 1− 0.936 = 0.064,

from Table III in Appendix B, since
∑4
i= 1Xi has a Poisson distribution with mean 8

when λ = 2.

When H0: θ = θ0 and H1: θ = θ1 are both simple hypotheses, a critical region
of size α is a best critical region if the probability of rejecting H0 when H1 is true
is a maximum compared with all other critical regions of size α. The test using the
best critical region is called a most powerful test, because it has the greatest value
of the power function at θ = θ1 compared with that of other tests with significance
level α. If H1 is a composite hypothesis, the power of a test depends on each simple
alternative inH1.

Definition 8.6-2
A test defined by a critical region C of size α is a uniformly most powerful test
if it is a most powerful test against each simple alternative in H1. The critical
region C is called a uniformly most powerful critical region of size α.

Let us consider again Example 8.6-2 when the alternative hypothesis is
composite.
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Example
8.6-4

Let X1,X2, . . . ,Xn be a random sample from N(μ, 36). We have seen that, in test-
ing H0: μ = 50 against H1: μ = 55, a best critical region C is defined by C =
{(x1, x2, . . . , xn) : x ≥ c}, where c is selected so that the significance level is α. Now
consider testing H0: μ = 50 against the one-sided composite alternative hypothesis
H1: μ > 50. For each simple hypothesis in H1—say, μ = μ1—the quotient of the
likelihood functions is

L(50)
L(μ1)

=
(72π)−n/2 exp

[
−
(

1
72

) n∑
i= 1

(xi − 50)2

]

(72π)−n/2 exp

[
−
(

1
72

) n∑
i= 1

(xi − μ1)2

]

= exp

[
− 1

72

{
2(μ1 − 50)

n∑
i= 1

xi + n(502 − μ2
1)

}]
.

Now, L(50)/L(μ1) ≤ k if and only if

x ≥ (−72) ln(k)
2n(μ1 − 50)

+ 50+ μ1

2
= c.

Thus, the best critical region of size α for testing H0: μ = 50 against H1: μ = μ1,
where μ1 > 50, is given by C = {(x1, x2, . . . , xn) : x ≥ c}, where c is selected such
that P(X ≥ c; H0 : μ = 50) = α. Note that the same value of c can be used for
each μ1 > 50, but (of course) k does not remain the same. Since the critical region
C defines a test that is most powerful against each simple alternative μ1 > 50, this
is a uniformly most powerful test, and C is a uniformly most powerful critical region
of size α. Again, if α = 0.05, then c ≈ 52.47.

Example
8.6-5

Let Y have the binomial distribution b(n,p). To find a uniformly most powerful test
of the simple null hypothesisH0: p = p0 against the one-sided alternative hypothesis
H1: p > p0, consider, with p1 > p0,

L(p0)
L(p1)

=

(
n
y

)
py0(1− p0)n−y(

n
y

)
py1(1− p1)n−y

≤ k.

This is equivalent to [
p0(1− p1)
p1(1− p0)

]y [1− p0

1− p1

]n
≤ k

and

y ln
[
p0(1− p1)
p1(1− p0)

]
≤ lnk− n ln

[
1− p0

1− p1

]
.

Since p0 < p1, we have p0(1− p1) < p1(1− p0). Thus, ln[p0(1− p1)/p1(1− p0)] < 0.
It follows that

y
n
≥ lnk− n ln[(1− p0)/(1− p1)]

n ln[p0(1− p1)/p1(1− p0)]
= c

for each p1 > p0.
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It is interesting to note that if the alternative hypothesis is the one-sided H1:
p < p0, then a uniformly most powerful test is of the form (y/n) ≤ c. Thus, the tests
of H0: p = p0 against the one-sided alternatives given in Table 8.3-1 are uniformly
most powerful.

Exercise 8.6-5 will demonstrate that uniformly most powerful tests do not
always exist; in particular, they usually do not exist when the composite alternative
hypothesis is two sided.

REMARK We close this section with one easy but important observation: If a suffi-
cient statistic Y = u(X1,X2, . . . ,Xn) exists for θ , then, by the factorization theorem
(Definition 6.7-1),

L(θ0)
L(θ1)

= φ[u(x1, x2, . . . , xn); θ0] h(x1, x2, . . . , xn)
φ[u(x1, x2, . . . , xn); θ1] h(x1, x2, . . . , xn)

= φ[u(x1, x2, . . . , xn); θ0)
φ[u(x1, x2, . . . , xn); θ1]

.

Thus, L(θ0)/L(θ1) ≤ k provides a critical region that is a function of the obser-
vations x1, x2, . . . xn only through the observed value of the sufficient statistic
y = u(x1, x2, . . . , xn). Hence, best critical and uniformly most powerful critical
regions are based upon sufficient statistics when they exist.

Exercises

8.6-1. Let X1,X2, . . . ,Xn be a random sample from a
normal distribution N(μ, 64).

(a) Show that C = {(x1, x2, . . . , xn) : x ≤ c} is a
best critical region for testing H0: μ = 80 against
H1: μ = 76.

(b) Find n and c so that α ≈ 0.05 and β ≈ 0.05.

8.6-2. Let X1,X2, . . . ,Xn be a random sample from
N(0, σ 2).

(a) Show that C = {(x1, x2, . . . , xn) :
∑n
i= 1 x

2
i ≥ c} is

a best critical region for testing H0: σ 2 = 4 against
H1: σ 2 = 16.

(b) If n = 15, find the value of c so that α = 0.05. Hint:
Recall that

∑n
i= 1X

2
i /σ

2 is χ2(n).

(c) If n = 15 and c is the value found in part (b), find
the approximate value of β = P(

∑n
i= 1X

2
i < c;

σ 2 = 16).

8.6-3. Let X have an exponential distribution with a
mean of θ ; that is, the pdf of X is f (x; θ) = (1/θ)e−x/θ ,
0 < x <∞. Let X1,X2, . . . ,Xn be a random sample from
this distribution.

(a) Show that a best critical region for testing H0: θ = 3
against H1: θ = 5 can be based on the statistic∑n
i= 1Xi.

(b) If n = 12, use the fact that (2/θ)
∑12
i= 1Xi is χ2(24) to

find a best critical region of size α = 0.10.

(c) If n = 12, find a best critical region of size α = 0.10
for testing H0: θ = 3 againstH1: θ = 7.

(d) If H1: θ > 3, is the common region found in parts (b)
and (c) a uniformly most powerful critical region of
size α = 0.10?

8.6-4. Let X1,X2, . . . ,Xn be a random sample of
Bernoulli trials b(1,p).

(a) Show that a best critical region for testingH0: p = 0.9
against H1: p = 0.8 can be based on the statistic
Y =∑n

i= 1Xi, which is b(n, p).

(b) If C = {(x1, x2, . . . , xn) :
∑n
i= 1 xi ≤ n(0.85)} and

Y = ∑n
i= 1Xi, find the value of n such that α =

P[Y ≤ n(0.85); p = 0.9 ] ≈ 0.10. Hint: Use the
normal approximation for the binomial distribution.

(c) What is the approximate value of β = P[Y >

n(0.85); p = 0.8 ] for the test given in part (b)?



406 Chapter 8 Tests of Statistical Hypotheses

(d) Is the test of part (b) a uniformly most powerful test
when the alternative hypothesis isH1: p < 0.9?

8.6-5. Let X1,X2, . . . ,Xn be a random sample from the
normal distribution N(μ, 36).

(a) Show that a uniformly most powerful critical region
for testing H0: μ = 50 against H1: μ < 50 is given by
C2 = {x : x ≤ c}.

(b) With this result and that of Example 8.6-4, argue that
a uniformly most powerful test for testing H0: μ = 50
againstH1: μ �= 50 does not exist.

8.6-6. Let X1,X2, . . . ,Xn be a random sample from the
normal distribution N(μ, 9). To test the hypothesis H0:
μ = 80 against H1: μ �= 80, consider the following three
critical regions: C1 = {x : x ≥ c1}, C2 = {x : x ≤ c2}, and
C3 = {x : |x− 80| ≥ c3}.
(a) If n = 16, find the values of c1, c2, c3 such that the

size of each critical region is 0.05. That is, find c1, c2,
c3 such that

0.05 = P(X ∈ C1; μ = 80) = P(X ∈ C2; μ = 80)

= P(X ∈ C3; μ = 80).

(b) On the same graph paper, sketch the power functions
for these three critical regions.

8.6-7. Let X1,X2, . . . ,X10 be a random sample of size 10
from a Poisson distribution with mean μ.

(a) Show that a uniformly most powerful critical region
for testing H0: μ = 0.5 against H1: μ > 0.5 can be
defined with the use of the statistic

∑10
i= 1Xi.

(b) What is a uniformly most powerful critical region of
size α = 0.068? Recall that

∑10
i= 1Xi has a Poisson

distribution with mean 10μ.

(c) Sketch the power function of this test.

8.6-8. Consider a random sample X1,X2, . . . ,Xn from a
distribution with pdf f (x; θ) = θ(1 − x)θ−1, 0 < x <

1, where 0 < θ . Find the form of the uniformly most
powerful test ofH0: θ = 1 againstH1: θ > 1.

8.6-9. Let X1,X2, . . . ,X5 be a random sample from the
Bernoulli distribution p(x; θ) = θx(1 − θ)1−x. We reject
H0: θ = 1/2 and accept H1: θ < 1/2 if Y =∑5

i= 1Xi ≤ c.
Show that this is a uniformly most powerful test and find
the power function K(θ) if c = 1.

8.7* LIKELIHOOD RATIO TESTS
In this section, we consider a general test-construction method that is applicable
when either or both of the null and alternative hypotheses—say, H0 and H1—are
composite. We continue to assume that the functional form of the pdf is known,
but that it depends on one or more unknown parameters. That is, we assume that
the pdf of X is f (x; θ), where θ represents one or more unknown parameters. We
let � denote the total parameter space—that is, the set of all possible values of the
parameter θ given by either H0 or H1. These hypotheses will be stated as

H0 : θ ∈ ω, H1 : θ ∈ ω′,
where ω is a subset of � and ω′ is the complement of ω with respect to �. The test
will be constructed with the use of a ratio of likelihood functions that have been
maximized in ω and �, respectively. In a sense, this is a natural generalization of
the ratio appearing in the Neyman–Pearson lemma when the two hypotheses were
simple.

Definition 8.7-1
The likelihood ratio is the quotient

λ = L(ω̂)

L(�̂)
,

where L(ω̂) is the maximum of the likelihood function with respect to θ when
θ ∈ ω and L(�̂) is the maximum of the likelihood function with respect to θ
when θ ∈ �.
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Because λ is the quotient of nonnegative functions, λ ≥ 0. In addition, since
ω ⊂ �, it follows that L(ω̂) ≤ L(�̂) and hence λ ≤ 1. Thus, 0 ≤ λ ≤ 1. If the
maximum of L in ω is much smaller than that in �, it would seem that the data
x1, x2, . . . , xn do not support the hypothesis H0: θ ∈ ω. That is, a small value of the
ratio λ = L(ω̂)/L(�̂) would lead to the rejection of H0. In contrast, a value of the
ratio λ that is close to 1 would support the null hypothesis H0. This reasoning leads
us to the next definition.

Definition 8.7-2
To test H0: θ ∈ ω against H1: θ ∈ ω′, the critical region for the likelihood ratio
test is the set of points in the sample space for which

λ = L(ω̂)

L(�̂)
≤ k,

where 0 < k < 1 and k is selected so that the test has a desired significance
level α.

The next example illustrates these definitions.

Example
8.7-1

Assume that the weight X in ounces of a “10-pound” bag of sugar is N(μ, 5). We
shall test the hypothesisH0: μ = 162 against the alternative hypothesisH1: μ �= 162.
Thus, � = {μ : −∞ < μ < ∞} and ω = {162}. To find the likelihood ratio, we need
L(ω̂) and L(�̂). When H0 is true, μ can take on only one value, namely, μ = 162.
Hence, L(ω̂) = L(162). To find L(�̂), we must find the value of μ that maximizes
L(μ). Recall that μ̂ = x is the maximum likelihood estimate ofμ. ThenL(�̂) = L(x),
and the likelihood ratio λ = L(ω̂)/L(�̂) is given by

λ =
(10π)−n/2 exp

[
−
(

1
10

) n∑
i= 1

(xi − 162)2

]

(10π)−n/2 exp

[
−
(

1
10

) n∑
i= 1

(xi − x)2

]

=
exp

[
−
(

1
10

) n∑
i= 1

(xi − x)2 −
( n

10

)
(x− 162)2

]

exp

[
−
(

1
10

) n∑
i= 1

(xi − x)2

]

= exp
[
− n

10
(x− 162)2

]
.

On the one hand, a value of x close to 162 would tend to support H0, and in that
case λ is close to 1. On the other hand, an x that differs from 162 by too much would
tend to support H1. (See Figure 8.7-1 for the graph of this likelihood ratio when
n = 5.)

A critical region for a likelihood ratio is given by λ ≤ k, where k is selected so
that the significance level of the test is α. Using this criterion and simplifying the
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Figure 8.7-1 The likelihood ratio for testing
H0 : μ = 162

inequality as we do when we use the Neyman–Pearson lemma, we find that λ ≤ k is
equivalent to each of the following inequalities:

−
( n

10

)
(x− 162)2 ≤ lnk,

(x− 162)2 ≥ −
(

10
n

)
lnk,

|x− 162|√
5/
√
n
≥
√−(10/n) lnk√

5/
√
n

= c.

Since Z = (X − 162)/(
√

5/
√
n ) is N(0, 1) when H0: μ = 162 is true, let c = zα/2.

Thus, the critical region is

C =
{
x :
|x− 162|√

5/
√
n
≥ zα/2

}
.

To illustrate, if α = 0.05, then z0.025 = 1.96.

As illustrated in Example 8.7-1, the inequality λ ≤ k can often be expressed in
terms of a statistic whose distribution is known. Also, note that although the likeli-
hood ratio test is an intuitive test, it leads to the same critical region as that given by
the Neyman–Pearson lemma when H0 and H1 are both simple hypotheses.

Suppose now that the random sample X1,X2, . . . ,Xn arises from the normal
population N(μ, σ 2), where both μ and σ 2 are unknown. Let us consider the likeli-
hood ratio test of the null hypothesis H0: μ = μ0 against the two-sided alternative
hypothesis H1: μ �= μ0. For this test,

ω = {(μ, σ 2) : μ = μ0, 0 < σ 2 <∞}

and

� = {(μ, σ 2) : −∞ < μ <∞, 0 < σ 2 <∞}.
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If (μ, σ 2) ∈ �, then the observed maximum likelihood estimates are μ̂ = x and
σ̂ 2 = (1/n)

∑n
i= 1(xi − x)2.

Thus,

L(�̂) =

⎡⎢⎢⎣ 1

2π
(

1
n

)∑n
i= 1 (xi − x)2

⎤⎥⎥⎦
n/2

exp

⎡⎢⎢⎣− ∑n
i= 1 (xi − x)2(

2
n

)∑n
i= 1 (xi − x)2

⎤⎥⎥⎦

=
[

ne−1

2π
∑n
i= 1 (xi − x)2

]n/2
.

Similarly, if (μ, σ 2) ∈ ω, then the observed maximum likelihood estimates are
μ̂ = μ0 and σ̂ 2 = (1/n)

∑n
i= 1(xi − μ0)2. Hence,

L(ω̂) =

⎡⎢⎢⎣ 1

2π
(

1
n

)∑n
i= 1 (xi − μ0)2

⎤⎥⎥⎦
n/2

exp

⎡⎢⎢⎣− ∑n
i= 1 (xi − μ0)2(

2
n

)∑n
i= 1 (xi − μ0)2

⎤⎥⎥⎦

=
[

ne−1

2π
∑n
i= 1 (xi − μ0)2

]n/2
.

The likelihood ratio λ = L(ω̂)/L(�̂) for this test is

λ =

[
ne−1

2π
∑n
i= 1 (xi − μ0)2

]n/2
[

ne−1

2π
∑n
i= 1 (xi − x)2

]n/2 =
[ ∑n

i= 1 (xi − x)2∑n
i= 1 (xi − μ0)2

]n/2
.

However, note that

∑
n
i= 1 (xi − μ0)2 =

∑
n
i= 1 (xi − x+ x− μ0)2 =

∑
n
i= 1 (xi − x)2 + n( x− μ0)2.

If this substitution is made in the denominator of λ, we have

λ =
[ ∑n

i= 1 (xi − x)2∑n
i= 1 (xi − x)2 + n( x− μ0)2

]n/2

=

⎡⎢⎢⎢⎣ 1

1+ n( x− μ0)2∑n
i= 1 (xi − x)2

⎤⎥⎥⎥⎦
n/2

.
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Note that λ is close to 1 when x is close to μ0 and λ is small when x and μ0 differ by
a great deal. The likelihood ratio test, given by the inequality λ ≤ k, is the same as

1

1+ n( x− μ0)2∑n
i= 1 (xi − x )2

≤ k2/n

or, equivalently,

n( x− μ0)2

1
n− 1

∑n
i= 1 (xi − x )2

≥ (n− 1)(k−2/n − 1).

When H0 is true,
√
n(X − μ0)/σ is N(0, 1) and

∑n
i= 1(Xi − X )2/σ 2 has an

independent chi-square distribution χ2(n−1). Hence, under H0,

T =
√
n(X − μ0)/σ√∑n

i= 1 (Xi −X )2/[σ 2(n− 1)]
=

√
n(X − μ0)√∑n

i= 1 (Xi −X )2/(n− 1)
= X − μ0

S/
√
n

has a t distribution with r = n − 1 degrees of freedom. In accordance with the
likelihood ratio test criterion,H0 is rejected if the observed

T2 ≥ (n− 1)(k−2/n − 1).

That is, we reject H0: μ = μ0 and accept H1: μ �= μ0 at the α level of significance if
the observed |T| ≥ tα/2(n − 1).

Note that this test is exactly the same as that listed in Table 8.1-2 for testing H0:
μ = μ0 against H1: μ �= μ0. That is, the test listed there is a likelihood ratio test. As
a matter of fact, all six of the tests given in Tables 8.1-2 and 8.2-1 are likelihood ratio
tests. Thus, the examples and exercises associated with those tables are illustrations
of the use of such tests.

The final development of this section concerns a test about the variance of a
normal population. Let X1,X2, . . . ,Xn be a random sample from N(μ, σ 2), where μ
and σ 2 are unknown. We wish to test H0: σ 2 = σ 2

0 against H1: σ 2 �= σ 2
0 . For this

purpose, we have

ω = {(μ, σ 2) : −∞ < μ <∞, σ 2 = σ 2
0 }

and

� = {(μ, σ 2) : −∞ < μ <∞, 0 < σ 2 <∞}.
As in the test concerning the mean, we obtain

L(�̂) =
[

ne−1

2π
∑n
i= 1 (xi − x)2

]n/2
.

If (μ, σ 2) ∈ ω, then μ̂ = x and σ̂ 2 = σ 2
0 ; thus,

L(ω̂) =
(

1

2πσ 2
0

)n/2
exp

[
−
∑n
i= 1 (xi − x )2

2σ 2
0

]
.
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Accordingly, the likelihood ratio test λ = L(ω̂)/L(�̂) is

λ =
(w
n

)n/2
exp
(
−w

2
+ n

2

)
≤ k,

where w =∑n
i= 1(xi − x )2/σ 2

0 . Solving this inequality for w, we obtain a solution of
the formw ≤ c1 orw ≥ c2, where the constants c1 and c2 are appropriate functions of
the constants k and n so as to achieve the desired significance level α. However these
values of c1 and c2 do not place probability α/2 in each of the two regionsw ≤ c1 and
w ≥ c2. SinceW =∑n

i= 1(Xi−X )2/σ 2
0 is χ2(n− 1) ifH0: σ 2 = σ 2

0 is true, most statis-
ticians modify this test slightly by taking c1 = χ2

1−α/2(n − 1) and c2 = χ2
α/2(n − 1).

As a matter of fact, most tests involving normal assumptions are likelihood ratio
tests or modifications of them; included are tests involving regression and analysis
of variance (see Chapter 9).

REMARK Note that likelihood ratio tests are based on sufficient statistics when
they exist, as was also true of best critical and uniformly most powerful critical
regions.

Exercises

8.7-1. In Example 8.7-1, suppose that n = 20 and x =
161.1.

(a) Is H0 accepted if α = 0.10?

(b) Is H0 accepted if α = 0.05?

(c) What is the p-value of this test?

8.7-2. Assume that the weight X in ounces of a “10-
ounce” box of cornflakes isN(μ, 0.03). LetX1,X2, . . . ,Xn
be a random sample from this distribution.

(a) To test the hypothesisH0: μ ≥ 10.35 against the alter-
native hypothesis H1: μ < 10.35, what is the critical
region of size α = 0.05 specified by the likelihood
ratio test criterion? Hint: Note that if μ ≥ 10.35 and
x < 10.35, then μ̂ = 10.35.

(b) If a random sample of n = 50 boxes yielded a sam-
ple mean of x = 10.31, is H0 rejected? Hint: Find the
critical value zα when H0 is true by taking μ = 10.35,
which is the extreme value in μ ≥ 10.35.

(c) What is the p-value of this test?

8.7-3. Let X1,X2, . . . ,Xn be a random sample of size n
from the normal distribution N(μ, 100).

(a) To test H0: μ = 230 against H1: μ > 230, what is
the critical region specified by the likelihood ratio test
criterion?

(b) Is this test uniformly most powerful?

(c) If a random sample of n = 16 yielded x = 232.6, is H0
accepted at a significance level of α = 0.10?

(d) What is the p-value of this test?

8.7-4. Let X1,X2, . . . ,Xn be a random sample of size n
from the normal distributionN(μ, σ 2

0 ), where σ 2
0 is known

but μ is unknown.

(a) Find the likelihood ratio test for H0: μ = μ0 against
H1: μ �= μ0. Show that this critical region for a
test with significance level α is given by |X − μ0| >
zα/2σ0/

√
n.

(b) Test H0: μ = 59 against H1: μ �= 59 when σ 2 = 225
and a sample of size n = 100 yielded x = 56.13. Let
α = 0.05.

(c) What is the p-value of this test? Note that H1 is a
two-sided alternative.

8.7-5. It is desired to test the hypothesis H0: μ = 30
against the alternative hypothesis H1: μ �= 30, where μ
is the mean of a normal distribution and σ 2 is unknown.
If a random sample of size n = 9 has x = 32.8 and s = 4,
is H0 accepted at an α = 0.05 significance level? What is
the approximate p-value of this test?

8.7-6. To test H0: μ = 335 against H1: μ < 335 under
normal assumptions, a random sample of size 17 yielded
x = 324.8 and s = 40. Is H0 accepted at an α = 0.10
significance level?

8.7-7. Let X have a normal distribution in which μ and
σ 2 are both unknown. It is desired to test H0: μ = 1.80
against H1: μ > 1.80 at an α = 0.10 significance level. If
a random sample of size n = 121 yielded x = 1.84 and
s = 0.20, is H0 accepted or rejected? What is the p-value
of this test?
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8.7-8. Let X1,X2, . . . ,Xn be a random sample from an
exponential distribution with mean θ . Show that the like-
lihood ratio test of H0: θ = θ0 against H1: θ �= θ0 has a
critical region of the form

∑n
i= 1 xi ≤ c1 or

∑n
i= 1 xi ≥ c2.

How would you modify this test so that chi-square tables
can be used easily?

8.7-9. Let independent random samples of sizes n and m
be taken respectively from two normal distributions with
unknown means μX and μY and unknown variances σ 2

X

and σ 2
Y .

(a) Show that when σ 2
X = σ 2

Y , the likelihood ratio for test-
ing H0: μX = μY against H1: μX �= μY is a function of
the usual two-sample t statistic.

(b) Show that the likelihood ratio for testing H0: σ 2
X =

σ 2
Y against H1: σ 2

X �= σ 2
Y is a function of the usual

two-sample F statistic.

8.7-10. Referring back to Exercise 6.4-19, find the likeli-
hood ratio test of H0: γ = 1, μ unspecified, against all
alternatives.

8.7-11. Let Y1,Y2, . . . ,Yn be n independent random
variables with normal distributions N(βxi, σ 2), where
x1, x2, . . . , xn are known and not all equal and β and σ 2

are unknown parameters.

(a) Find the likelihood ratio test forH0: β = 0 againstH1:
β �= 0.

(b) Can this test be based on a statistic with a well-known
distribution?

HISTORICAL COMMENTS Most of the tests presented in this section result from
the use of methods found in the theories of Jerzy Neyman and Egon Pearson, a son
of Karl Pearson. Neyman and Pearson formed a team, particularly in the 1920s and
1930s, which produced theoretical results that were important contributions to the
area of testing statistical hypotheses.

Neyman and Pearson knew, in testing hypotheses, that they needed a critical
region that had high probability when the alternative was true, but they did not
have a procedure to find the best one. Neyman was thinking about this late one
day when his wife told him they had to attend a concert. He kept thinking of this
problem during the concert and finally, in the middle of the concert, the solution
came to him: Select points in the critical region for which the ratio of the pdf under
the alternative hypothesis to that under the null hypothesis is as large as possible.
Hence, the Neyman–Pearson lemma was born. Sometimes solutions occur at the
strangest times.

Shortly after Wilcoxon proposed his two-sample test, Mann and Whitney sug-
gested a test based on the estimate of the probability P(X < Y). In this test, they
let U equal the number of times that Xi < Yj, i = 1, 2, . . . ,n1 and j = 1, 2, . . . , n2.
Using the data in Example 8.4-6, we find that the computed U is u = 51 among all
n1n2 = (8)(8) = 64 pairs of (X,Y). Thus, the estimate of P(X < Y) is 51/64 or, in
general, u/n1n2. At the time of the Mann–Whitney suggestion, it was noted that U
was just a linear function of Wilcoxon’s W and hence really provided the same test.
That relationship is

U =W − n2(n2 + 1)
2

,

which in our special case is

51 = 87− 8(9)
2
= 87− 36.

Thus, we often read about the test of Mann, Whitney, and Wilcoxon. From this obser-
vation, this test could be thought of as one testing H0: P(X < Y) = 1/2 against the
alternative H1: P(X < Y) > 1/2 with critical region of the form w ≥ c.

Note that the two-sample Wilcoxon test is much less sensitive to extreme val-
ues than is the Student’s t test based on X − Y. Therefore, if there is considerable
skewness or contamination, these proposed distribution-free tests are much safer. In
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particular, that of Wilcoxon is quite good and does not lose too much power in case
the distributions are close to normal ones. It is important to note that the one-sample
Wilcoxon test requires symmetry of the underlying distribution, but the two-sample
Wilcoxon test does not and thus can be used for skewed distributions.

From theoretical developments beyond the scope of this text, the two Wilcoxon
tests are strong competitors of the usual one- and two-sample tests based upon nor-
mality assumptions, so the Wilcoxon tests should be considered if those assumptions
are questioned.

Computer programs, including Minitab, will calculate the value of the Wilcoxon
or Mann–Whitney statistic. However, it is instructive to do these tests by hand so
that you can see what is being calculated!


