
Chapte rChapte r

7Interval Estimation

7.1 Confidence Intervals for Means
7.2 Confidence Intervals for the Difference

of Two Means
7.3 Confidence Intervals for Proportions
7.4 Sample Size

7.5 Distribution-Free Confidence Intervals
for Percentiles

7.6* More Regression
7.7* Resampling Methods

7.1 CONFIDENCE INTERVALS FOR MEANS
Given a random sample X1,X2, . . . ,Xn from a normal distribution N(μ, σ 2), we
shall now consider the closeness of X, the unbiased estimator of μ, to the unknown
mean μ. To do this, we use the error structure (distribution) of X, namely, that X is
N(μ, σ 2/n) (see Corollary 5.5-1), to construct what is called a confidence interval for
the unknown parameter μ when the variance σ 2 is known. For the probability 1−α,
we can find a number zα/2 from Table V in Appendix B such that

P

(
−zα/2 ≤ X − μ

σ/
√
n
≤ zα/2

)
= 1− α.

For example, if 1 − α = 0.95, then zα/2 = z0.025 = 1.96, and if 1 − α = 0.90, then
zα/2 = z0.05 = 1.645. Now, recalling that σ > 0, we see that the following inequalities
are equivalent:

−zα/2 ≤ X − μ
σ/
√
n
≤ zα/2,

−zα/2
(
σ√
n

)
≤ X − μ ≤ zα/2

(
σ√
n

)
,

−X − zα/2
(
σ√
n

)
≤ −μ ≤ −X + zα/2

(
σ√
n

)
,

X + zα/2
(
σ√
n

)
≥ μ ≥ X − zα/2

(
σ√
n

)
.
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302 Chapter 7 Interval Estimation

Thus, since the probability of the first of these is 1−α, the probability of the last
must also be 1− α, because the latter is true if and only if the former is true. That is,
we have

P
[
X − zα/2

(
σ√
n

)
≤ μ ≤ X + zα/2

(
σ√
n

)]
= 1− α.

So the probability that the random interval[
X − zα/2

(
σ√
n

)
, X + zα/2

(
σ√
n

)]
includes the unknown mean μ is 1− α.

Once the sample is observed and the sample mean computed to equal x, the
interval [ x − zα/2(σ/√n ), x + zα/2(σ/√n )] becomes known. Since the probability
that the random interval covers μ before the sample is drawn is equal to 1 − α,
we now call the computed interval, x ± zα/2(σ/√n ) (for brevity), a 100(1 − α)%
confidence interval for the unknown mean μ. For example, x±1.96(σ/

√
n ) is a 95%

confidence interval for μ. The number 100(1− α)%, or equivalently, 1− α, is called
the confidence coefficient.

We see that the confidence interval for μ is centered at the point estimate x
and is completed by subtracting and adding the quantity zα/2(σ/

√
n ). Note that as n

increases, zα/2(σ/
√
n ) decreases, resulting in a shorter confidence interval with the

same confidence coefficient 1−α. A shorter confidence interval gives a more precise
estimate of μ, regardless of the confidence we have in the estimate of μ. Statisticians
who are not restricted by time, money, effort, or the availability of observations can
obviously make the confidence interval as short as they like by increasing the sample
size n. For a fixed sample size n, the length of the confidence interval can also be
shortened by decreasing the confidence coefficient 1 − α. But if this is done, we
achieve a shorter confidence interval at the expense of losing some confidence.

Example
7.1-1

Let X equal the length of life of a 60-watt light bulb marketed by a certain manufac-
turer. Assume that the distribution ofX isN(μ, 1296). If a random sample of n = 27
bulbs is tested until they burn out, yielding a sample mean of x = 1478 hours, then a
95% confidence interval for μ is[
x− z0.025

(
σ√
n

)
, x+ z0.025

(
σ√
n

)]
=
[
1478− 1.96

(
36√
27

)
, 1478+ 1.96

(
36√
27

)]
= [1478− 13.58, 1478+ 13.58]

= [1464.42, 1491.58].

The next example will help to give a better intuitive feeling for the interpretation
of a confidence interval.

Example
7.1-2

Let x be the observed sample mean of five observations of a random sample from
the normal distribution N(μ, 16). A 90% confidence interval for the unknown mean
μ is [

x− 1.645

√
16
5
, x+ 1.645

√
16
5

]
.
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Figure 7.1-1 Confidence intervals using z and t

For a particular sample, this interval either does or does not contain the mean μ.
However, if many such intervals were calculated, about 90% of them should contain
the mean μ. Fifty random samples of size 5 from the normal distribution N(50, 16)
were simulated on a computer. A 90% confidence interval was calculated for each
random sample, as if the mean were unknown. Figure 7.1-1(a) depicts each of these
50 intervals as a line segment. Note that 45 (or 90%) of them contain the mean,
μ = 50. In other simulations of 50 confidence intervals, the number of 90% con-
fidence intervals containing the mean could be larger or smaller. [In fact, if W is a
random variable that counts the number of 90% confidence intervals containing the
mean, then the distribution ofW is b(50, 0.90).]

If we cannot assume that the distribution from which the sample arose is nor-
mal, we can still obtain an approximate confidence interval forμ. By the central limit
theorem, provided that n is large enough, the ratio (X−μ)/(σ/√n ) has the approx-
imate normal distribution N(0, 1) when the underlying distribution is not normal. In
this case,

P

(
−zα/2 ≤ X − μ

σ/
√
n
≤ zα/2

)
≈ 1− α,

and [
x− zα/2

(
σ√
n

)
, x+ zα/2

(
σ√
n

)]
is an approximate 100(1− α)% confidence interval for μ.

The closeness of the approximate probability 1 − α to the exact probability
depends on both the underlying distribution and the sample size. When the under-
lying distribution is unimodal (has only one mode), symmetric, and continuous, the
approximation is usually quite good even for small n, such as n = 5. As the under-
lying distribution becomes “less normal” (i.e., badly skewed or discrete), a larger
sample size might be required to keep a reasonably accurate approximation. But, in
almost all cases, an n of at least 30 is usually adequate.

Example
7.1-3

Let X equal the amount of orange juice (in grams per day) consumed by an
American. Suppose it is known that the standard deviation of X is σ = 96. To esti-
mate the mean μ of X, an orange growers’ association took a random sample of
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n = 576 Americans and found that they consumed, on the average, x = 133 grams
of orange juice per day. Thus, an approximate 90% confidence interval for μ is

133± 1.645
(

96√
576

)
, or [133− 6.58, 133+ 6.58] = [126.42, 139.58].

If σ 2 is unknown and the sample size n is 30 or greater, we shall use the fact
that the ratio (X−μ)/(S/√n ) has an approximate normal distributionN(0, 1). This
statement is true whether or not the underlying distribution is normal. However, if
the underlying distribution is badly skewed or contaminated with occasional outliers,
most statisticians would prefer to have a larger sample size—say, 50 or more—and
even that might not produce good results. After this next example, we consider what
to do when n is small.

Example
7.1-4

Lake Macatawa, an inlet lake on the east side of Lake Michigan, is divided into an
east basin and a west basin. To measure the effect on the lake of salting city streets in
the winter, students took 32 samples of water from the west basin and measured the
amount of sodium in parts per million in order to make a statistical inference about
the unknown mean μ. They obtained the following data:

13.0 18.5 16.4 14.8 19.4 17.3 23.2 24.9

20.8 19.3 18.8 23.1 15.2 19.9 19.1 18.1

25.1 16.8 20.4 17.4 25.2 23.1 15.3 19.4

16.0 21.7 15.2 21.3 21.5 16.8 15.6 17.6

For these data, x = 19.07 and s2 = 10.60. Thus, an approximate 95% confidence
interval for μ is

x± 1.96
(
s√
n

)
, or 19.07± 1.96

√
10.60
32

, or [17.94, 20.20].

So we have found a confidence interval for the mean μ of a normal distribution,
assuming that the value of the standard deviation σ is known or assuming that σ is
unknown but the sample size is large. However, in many applications, the sample
sizes are small and we do not know the value of the standard deviation, although in
some cases we might have a very good idea about its value. For example, a manu-
facturer of light bulbs probably has a good notion from past experience of the value
of the standard deviation of the length of life of different types of light bulbs. But
certainly, most of the time, the investigator will not have any more idea about the
standard deviation than about the mean—and frequently less. Let us consider how
to proceed under these circumstances.

If the random sample arises from a normal distribution, we use the fact that

T = X − μ
S/
√
n

has a t distribution with r = n−1 degrees of freedom (see Equation 5.5-2), where S2

is the usual unbiased estimator of σ 2. Select tα/2(n−1) so that P[T ≥ tα/2(n−1)] = α/2.
[See Figure 5.5-2(b) and Table VI in Appendix B.] Then
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1− α = P
[
−tα/2(n−1) ≤ X − μS/

√
n
≤ tα/2(n−1)

]

= P
[
−tα/2(n−1)

(
S√
n

)
≤ X − μ ≤ tα/2(n−1)

(
S√
n

)]

= P
[
−X − tα/2(n−1)

(
S√
n

)
≤ −μ ≤ −X + tα/2(n−1)

(
S√
n

)]

= P
[
X − tα/2(n−1)

(
S√
n

)
≤ μ ≤ X + tα/2(n−1)

(
S√
n

)]
.

Thus, the observations of a random sample provide x and s2, and[
x− tα/2(n−1)

(
s√
n

)
, x+ tα/2(n−1)

(
s√
n

)]
is a 100(1− α)% confidence interval for μ.

Example
7.1-5

Let X equal the amount of butterfat in pounds produced by a typical cow during a
305-day milk production period between her first and second calves. Assume that
the distribution of X is N(μ, σ 2). To estimate μ, a farmer measured the butterfat
production for n = 20 cows and obtained the following data:

481 537 513 583 453 510 570 500 457 555

618 327 350 643 499 421 505 637 599 392

For these data, x = 507.50 and s = 89.75. Thus, a point estimate of μ is x = 507.50.
Since t0.05(19) = 1.729, a 90% confidence interval for μ is

507.50 ± 1.729
(
89.75√

20

)
or

507.50 ± 34.70, or equivalently, [472.80, 542.20].

Let T have a t distribution with n−1 degrees of freedom. Then tα/2(n−1) > zα/2.
Consequently, we would expect the interval x ± zα/2(σ/√n ) to be shorter than the
interval x± tα/2(n−1)(s/√n ). After all, we have more information, namely, the value
of σ , in constructing the first interval. However, the length of the second interval
is very much dependent on the value of s. If the observed s is smaller than σ , a
shorter confidence interval could result by the second procedure. But on the average,
x± zα/2(σ/√n ) is the shorter of the two confidence intervals (Exercise 7.1-14).

Example
7.1-6

In Example 7.1-2, 50 confidence intervals were simulated for the mean of a nor-
mal distribution, assuming that the variance was known. For those same data, since
t0.05(4) = 2.132, x ± 2.132(s/

√
5 ) was used to calculate a 90% confidence interval

for μ. For those particular 50 intervals, 46 contained the mean μ = 50. These 50
intervals are depicted in Figure 7.1-1(b). Note the different lengths of the intervals.
Some are longer and some are shorter than the corresponding z intervals. The aver-
age length of the 50 t intervals is 7.137, which is quite close to the expected length of
such an interval: 7.169. (See Exercise 7.1-14.) The length of the intervals that use z
and σ = 4 is 5.885.
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If we are not able to assume that the underlying distribution is normal, butμ and
σ are both unknown, approximate confidence intervals for μ can still be constructed
with the formula

T = X − μ
S/
√
n

,

which now only has an approximate t distribution. Generally, this approximation is
quite good (i.e., it is robust) for many nonnormal distributions; in particular, it works
well if the underlying distribution is symmetric, unimodal, and of the continuous
type. However, if the distribution is highly skewed, there is great danger in using that
approximation. In such a situation, it would be safer to use certain nonparametric
methods for finding a confidence interval for the median of the distribution, one of
which is given in Section 7.5.

There is one other aspect of confidence intervals that should be mentioned. So
far, we have created only what are called two-sided confidence intervals for themean
μ. Sometimes, however, we might want only a lower (or upper) bound on μ. We
proceed as follows.

Say X is the mean of a random sample of size n from the normal distribution
N(μ, σ 2), where, for the moment, assume that σ 2 is known. Then

P

(
X − μ
σ/
√
n
≤ zα
)
= 1− α,

or equivalently,

P
[
X − zα

(
σ√
n

)
≤ μ
]
= 1− α.

Once X is observed to be equal to x, it follows that [ x − zα(σ/
√
n ), ∞) is a

100(1 − α)% one-sided confidence interval for μ. That is, with the confidence coef-
ficient 1 − α, x − zα(σ/√n ) is a lower bound for μ. Similarly, (−∞, x + zα(σ/√n )]
is a one-sided confidence interval for μ and x+ zα(σ/√n ) provides an upper bound
for μ with confidence coefficient 1− α.

When σ is unknown, we would use T = (X−μ)/(S/√n ) to find the correspond-
ing lower or upper bounds for μ, namely,

x− tα(n−1)(s/
√
n ) and x+ tα(n−1)(s/

√
n ).

Exercises

7.1-1. A random sample of size 16 from the normal distri-
bution N(μ, 25) yielded x = 73.8. Find a 95% confidence
interval for μ.

7.1-2. A random sample of size 8 from N(μ, 72) yielded
x = 85. Find the following confidence intervals for μ:

(a) 99%. (b) 95%. (c) 90%. (d) 80%.

7.1-3. To determine the effect of 100% nitrate on the
growth of pea plants, several specimens were planted and
then watered with 100% nitrate every day. At the end of

two weeks, the plants were measured. Here are data on
seven of them:

17.5 14.5 15.2 14.0 17.3 18.0 13.8

Assume that these data are a random sample from a
normal distribution N(μ, σ 2).

(a) Find the value of a point estimate of μ.

(b) Find the value of a point estimate of σ .

(c) Give the endpoints for a 90% confidence interval
for μ.



Section 7.1 Confidence Intervals for Means 307

7.1-4. Let X equal the weight in grams of a “52-gram”
snack pack of candies. Assume that the distribution of X
is N(μ, 4). A random sample of n = 10 observations of X
yielded the following data:

55.95 56.54 57.58 55.13 57.48

56.06 59.93 58.30 52.57 58.46

(a) Give a point estimate for μ.

(b) Find the endpoints for a 95% confidence interval
for μ.

(c) On the basis of these very limited data, what is the
probability that an individual snack pack selected at
random is filled with less than 52 grams of candy?

7.1-5. As a clue to the amount of organic waste in Lake
Macatawa (see Example 7.1-4), a count was made of the
number of bacteria colonies in 100 milliliters of water.
The number of colonies, in hundreds, for n = 30 samples
of water from the east basin yielded

93 140 8 120 3 120 33 70 91 61

7 100 19 98 110 23 14 94 57 9

66 53 28 76 58 9 73 49 37 92

Find an approximate 90% confidence interval for the
mean number (say, μE) of colonies in 100 milliliters of
water in the east basin.

7.1-6. To determine whether the bacteria count was lower
in the west basin of Lake Macatawa than in the east
basin, n = 37 samples of water were taken from the
west basin and the number of bacteria colonies in 100
milliliters of water was counted. The sample characteris-
tics were x = 11.95 and s = 11.80, measured in hundreds
of colonies. Find an approximate 95% confidence inter-
val for the mean number of colonies (say, μW) in 100
milliliters of water in the west basin.

7.1-7. Thirteen tons of cheese, including “22-pound”
wheels (label weight), is stored in some old gypsummines.
A random sample of n = 9 of these wheels yielded the
following weights in pounds:

21.50 18.95 18.55 19.40 19.15

22.35 22.90 22.20 23.10

Assuming that the distribution of the weights of the
wheels of cheese is N(μ, σ 2), find a 95% confidence
interval for μ.

7.1-8. Assume that the yield per acre for a particular vari-
ety of soybeans isN(μ, σ 2). For a random sample of n = 5
plots, the yields in bushels per acre were 37.4, 48.8, 46.9,
55.0, and 44.0.

(a) Give a point estimate for μ.

(b) Find a 90% confidence interval for μ.

7.1-9. During the Friday night shift, n = 28 mints were
selected at random from a production line and weighed.
They had an average weight of x = 21.45 grams and a
standard deviation of s = 0.31 grams. Give the lower end-
point of a 90% one-sided confidence interval for μ, the
mean weight of all the mints.

7.1-10. A leakage test was conducted to determine the
effectiveness of a seal designed to keep the inside of a
plug airtight. An air needle was inserted into the plug, and
the plug and needle were placed under water. The pres-
sure was then increased until leakage was observed. Let
X equal the pressure in pounds per square inch. Assume
that the distribution of X is N(μ, σ 2). The following
n = 10 observations of X were obtained:

3.1 3.3 4.5 2.8 3.5 3.5 3.7 4.2 3.9 3.3

Use the observations to

(a) Find a point estimate of μ.

(b) Find a point estimate of σ .

(c) Find a 95% one-sided confidence interval for μ that
provides an upper bound for μ.

7.1-11. Students took n = 35 samples of water from the
east basin of Lake Macatawa (see Example 7.1-4) and
measured the amount of sodium in parts per million. For
their data, they calculated x = 24.11 and s2 = 24.44. Find
an approximate 90% confidence interval for μ, the mean
of the amount of sodium in parts per million.

7.1-12. In nuclear physics, detectors are often used to
measure the energy of a particle. To calibrate a detector,
particles of known energy are directed into it. The val-
ues of signals from 15 different detectors, for the same
energy, are

260 216 259 206 265 284 291 229

232 250 225 242 240 252 236

(a) Find a 95% confidence interval for μ, assuming that
these are observations from a N(μ, σ 2) distribution.

(b) Construct a box-and-whisker diagram of the data.

(c) Are these detectors doing a good job or a poor job of
putting out the same signal for the same input energy?

7.1-13. A study was conducted to measure (1) the amount
of cervical spine movement induced by different methods
of gaining access to the mouth and nose to begin resusci-
tation of a football player who is wearing a helmet and (2)
the time it takes to complete each method. One method
involves using a manual screwdriver to remove the side
clips holding the face mask in place and then flipping



308 Chapter 7 Interval Estimation

the mask up. Twelve measured times in seconds for the
manual screwdriver are

33.8 31.6 28.5 29.9 29.8 26.0 35.7 27.2 29.1 32.1 26.1 24.1

Assume that these are independent observations of a
normally distributed random variable that is N(μ, σ 2).

(a) Find point estimates of μ and σ .

(b) Find a 95% one-sided confidence interval for μ that
provides an upper bound for μ.

(c) Does the assumption of normality seem to be justi-
fied? Why?

7.1-14. Let X1,X2, . . . ,Xn be a random sample of size
n from the normal distribution N(μ, σ 2). Calculate the
expected length of a 95% confidence interval for μ,
assuming that n = 5 and the variance is

(a) known.
(b) unknown.

Hint: To find E(S), first determine E[
√
(n− 1)S2/σ 2 ],

recalling that (n − 1)S2/σ 2 is χ2(n− 1). (See Exercise
6.4-14.)

7.1-15. An automotive supplier of interior parts places
several electrical wires in a harness. A pull test measures
the force required to pull spliced wires apart. A customer
requires that each wire spliced into the harness must with-
stand a pull force of 20 pounds. LetX equal the pull force
required to pull 20 gauge wires apart. Assume that the

distribution of X is N(μ, σ 2). The following data give 20
observations of X:

28.8 24.4 30.1 25.6 26.4 23.9 22.1 22.5 27.6 28.1

20.8 27.7 24.4 25.1 24.6 26.3 28.2 22.2 26.3 24.4

(a) Find point estimates for μ and σ .

(b) Find a 99% one-sided confidence interval for μ that
provides a lower bound for μ.

7.1-16. Let S2 be the variance of a random sample of
size n from N(μ, σ 2). Using the fact that (n − 1)S2/σ 2 is
χ2(n−1), note that the probability

P

[
a ≤ (n− 1)S2

σ 2
≤ b
]
= 1− α,

where a = χ2
1−α/2(n−1) and b = χ2

α/2(n−1). Rewrite the
inequalities to obtain

P

[
(n− 1)S2

b
≤ σ 2 ≤ (n− 1)S2

a

]
= 1− α.

If n = 13 and 12S2 = ∑13
i=1(xi − x)2 = 128.41, show that

[6.11, 24.57] is a 90% confidence interval for the variance
σ 2. Accordingly, [2.47, 4.96] is a 90% confidence interval
for σ .

7.1-17. Let X be the mean of a random sample of size n
fromN(μ, 9). Find n so that P(X−1 < μ < X+1) = 0.90.

7.2 CONFIDENCE INTERVALS FOR THE DIFFERENCE OF TWO MEANS
Suppose that we are interested in comparing the means of two normal distributions.
Let X1,X2, . . . ,Xn and Y1,Y2, . . . ,Ym be, respectively, two independent random
samples of sizes n andm from the two normal distributionsN(μX , σ 2

X) andN(μY , σ 2
Y ).

Suppose, for now, that σ 2
X and σ 2

Y are known. The random samples are independent;
thus, the respective sample means X and Y are also independent and have distribu-
tions N(μX , σ 2

X/n) and N(μY , σ 2
Y/m). Consequently, the distribution of W = X − Y

is N(μX − μY , σ 2
X/n+ σ 2

Y/m) and

P

⎛⎝−zα/2 ≤ (X − Y )− (μX − μY)√
σ 2
X/n+ σ 2

Y/m
≤ zα/2

⎞⎠ = 1− α,

which can be rewritten as

P[(X − Y )− zα/2σW ≤ μX − μY ≤ (X − Y )+ zα/2σW] = 1− α,

where σW =
√
σ 2
X/n+ σ 2

Y/m is the standard deviation of X − Y. Once the
experiments have been performed and the means x and y computed, the interval

[ x− y− zα/2σW , x− y+ zα/2σW]
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or, equivalently, x−y±zα/2σW provides a 100(1−α)% confidence interval forμX−μY .
Note that this interval is centered at the point estimate x − y of μX − μY and is
completed by subtracting and adding the product of zα/2 and the standard deviation
of the point estimator.

Example
7.2-1

In the preceding discussion, let n = 15, m = 8, x = 70.1, y = 75.3, σ 2
X = 60, σ 2

Y = 40,
and 1− α = 0.90. Thus, 1− α/2 = 0.95 = �(1.645). Hence,

1.645σW = 1.645

√
60
15
+ 40

8
= 4.935,

and, since x− y = −5.2, it follows that

[−5.2− 4.935,−5.2+ 4.935] = [−10.135,−0.265]

is a 90% confidence interval for μX − μY . Because the confidence interval does not
include zero, we suspect that μY is greater than μX .

If the sample sizes are large and σX and σY are unknown, we can replace σ 2
X and

σ 2
Y with s2x and s

2
y, where s

2
x and s

2
y are the values of the respective unbiased estimates

of the variances. This means that

x− y± zα/2
√
s2x
n
+ s

2
y

m

serves as an approximate 100(1− α)% confidence interval for μX − μY .
Now consider the problem of constructing confidence intervals for the differ-

ence of the means of two normal distributions when the variances are unknown but
the sample sizes are small. Let X1,X2, . . . ,Xn and Y1,Y2, . . . ,Ym be two indepen-
dent random samples from the distributions N(μX , σ 2

X) and N(μY , σ 2
Y ), respectively.

If the sample sizes are not large (say, considerably smaller than 30), this problem
can be a difficult one. However, even in these cases, if we can assume common, but
unknown, variances (say, σ 2

X = σ 2
Y = σ 2), there is a way out of our difficulty.

We know that

Z = X − Y − (μX − μY)√
σ 2/n+ σ 2/m

is N(0, 1). Moreover, since the random samples are independent,

U = (n− 1)S2X
σ 2

+ (m− 1)S2Y
σ 2

is the sum of two independent chi-square random variables; thus, the distribution of
U is χ2(n+m−2). In addition, the independence of the sample means and sample
variances implies that Z and U are independent. According to the definition of a T
random variable,

T = Z√
U/(n+m− 2)
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has a t distribution with n+m− 2 degrees of freedom. That is,

T =
X − Y − (μX − μY)√

σ 2/n+ σ 2/m√√√√[ (n− 1)S2X
σ 2

+ (m− 1)S2Y
σ 2

]/
(n+m− 2)

= X − Y − (μX − μY)√√√√[ (n− 1)S2X + (m− 1)S2Y
n+m− 2

][
1
n
+ 1
m

]
has a t distribution with r = n + m − 2 degrees of freedom. Thus, with
t0 = tα/2(n+m−2), we have

P(−t0 ≤ T ≤ t0) = 1− α.
Solving the inequalities for μX − μY yields

P

(
X − Y − t0SP

√
1
n
+ 1
m
≤ μX − μY ≤ X − Y + t0SP

√
1
n
+ 1
m

)
,

where the pooled estimator of the common standard deviation is

SP =
√
(n− 1)S2X + (m− 1)S2Y

n+m− 2
.

If x, y, and sp are the observed values of X, Y, and SP, then[
x− y− t0sp

√
1
n
+ 1
m
, x− y+ t0sp

√
1
n
+ 1
m

]

is a 100(1− α)% confidence interval for μX − μY .

Example
7.2-2

Suppose that scores on a standardized test in mathematics taken by students from
large and small high schools are N(μX , σ 2) and N(μY , σ 2), respectively, where σ 2 is
unknown. If a random sample of n = 9 students from large high schools yielded
x = 81.31, s2x = 60.76, and a random sample of m = 15 students from small high
schools yielded y = 78.61, s2y = 48.24, then the endpoints for a 95% confidence
interval for μX − μY are given by

81.31− 78.61± 2.074

√
8(60.76)+ 14(48.24)

22

√
1
9
+ 1

15

because t0.025(22) = 2.074. The 95% confidence interval is [−3.65, 9.05].

REMARKS The assumption of equal variances, namely, σ 2
X = σ 2

Y , can be modified
somewhat so that we are still able to find a confidence interval for μX − μY . That is,
if we know the ratio σ 2

X/σ
2
Y of the variances, we can still make this type of statistical
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inference by using a random variable with a t distribution. (See Exercise 7.2-8.)
However, if we do not know the ratio of the variances and yet suspect that the
unknown σ 2

X and σ 2
Y differ by a great deal, what do we do? It is safest to return to

X − Y − (μX − μY)√
σ 2
X/n+ σ 2

Y/m

for the inference about μX − μY but replacing σ 2
X and σ 2

Y by their respective
estimators S2X and S2Y . That is, consider

W = X − Y − (μX − μY)√
S2X/n+ S2Y/m

.

What is the distribution of W? As before, we note that if n and m are large
enough and the underlying distributions are close to normal (or at least not badly
skewed), thenW has an approximate normal distribution and a confidence interval
for μX − μY can be found by considering

P(−zα/2 ≤W ≤ zα/2) ≈ 1− α.

However, for smaller n and m, Welch has proposed a Student’s t distribution as the
approximating one forW. Welch’s proposal was later modified by Aspin. [See A. A.
Aspin, “Tables for Use in Comparisons Whose Accuracy Involves Two Variances,
Separately Estimated,” Biometrika, 36 (1949), pp. 290–296, with an appendix by
B. L. Welch in which he makes the suggestion used here.] The approximating
Student’s t distribution has r degrees of freedom, where

1
r
= c2

n− 1
+ (1− c)2
m− 1

and c = s2x/n
s2x/n+ s2y/m

.

An equivalent formula for r is

r =

(
s2x
n
+ s

2
y

m

)2
1

n− 1

(
s2x
n

)2
+ 1
m− 1

(
s2y
m

)2 . (7.2-1)

In particular, the assignment of r by this rule provides protection in the case in which
the smaller sample size is associated with the larger variance by greatly reducing the
number of degrees of freedom from the usual n + m − 2. Of course, this reduction
increases the value of tα/2. If r is not an integer, then use the greatest integer in r; that
is, use [r] as the number of degrees of freedom associated with the approximating
Student’s t distribution. An approximate 100(1−α)% confidence interval forμX−μY
is given by

x− y± tα/2(r)
√
s2x
n
+ s

2
y

m
.
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It is interesting to consider the two-sample T in more detail. It is

T = X − Y − (μX − μY)√
(n− 1)S2X + (m− 1)S2Y

n+m− 2

(
1
n
+ 1
m

) (7.2-2)

= X − Y − (μX − μY)√√√√[ (n− 1)S2X
nm

+ (m− 1)S2Y
nm

][
n+m

n+m− 2

] .

Now, since (n− 1)/n ≈ 1, (m− 1)/m ≈ 1, and (n+m)/(n+m− 2) ≈ 1, we have

T ≈ X − Y − (μX − μY)√
S2X
m
+ S

2
Y

n

.

We note that, in this form, each variance is divided by the wrong sample size! That
is, if the sample sizes are large or the variances known, we would like√

S2X
n
+ S

2
Y

m
or

√
σ 2
X

n
+ σ 2

Y

m

in the denominator; so T seems to change the sample sizes. Thus, using this T is
particularly bad when the sample sizes and the variances are unequal; hence, caution
must be taken in using that T to construct a confidence interval for μX − μY . That
is, if n < m and σ 2

X < σ 2
Y , then T does not have a distribution which is close to that

of a Student t-distribution with n +m − 2 degrees of freedom: Instead, its spread is
much less than the Student t’s as the term s2y/n in the denominator is much larger
than it should be. By contrast, if m < n and σ 2

X < σ 2
Y , then s

2
x/m + s2y/n is generally

smaller than it should be and the distribution of T is spread out more than that of
the Student t.

There is a way out of this difficulty, however: When the underlying distribu-
tions are close to normal, but the sample sizes and the variances are seemingly much
different, we suggest the use of

W = X − Y − (μX − μY)√
S2X
n
+ S

2
Y

m

, (7.2-3)

where Welch proved that W has an approximate t distribution with [r] degrees of
freedom, with the number of degrees of freedom given by Equation 7.2-1.

Example
7.2-3

To help understand the preceding remarks, a simulation was done with Maple. In
order to obtain a q–q plot of the quantiles of a t distribution, a CAS or some type
of computer program is very important because of the challenge in finding these
quantiles.

Maple was used to simulate N = 500 observations of T (Equation 7.2-2) and
N = 500 observations of W (Equation 7.2-3). In Figure 7.2-1, n = 6, m = 18, the



Section 7.2 Confidence Intervals for the Difference of Two Means 313

0.1

0.2

0.3

0.4

0.5

0.6

0.7

–3 –2 –1 0

T observations, T(22) pdf superimposed

1 2 3
–3

–2

–1

1

2

3

–3 –2 –1 1 2 3

T(22) quantiles versus T order statistics

0.1

0.2

0.3

0.4

–3 –2 –1 0 1 2 3
W observations, T(19) pdf superimposed

–3

–2

–1

1

2

3

–3 –2 –1 1 2 3

T(19) quantiles versus W order statistics

Figure 7.2-1 Observations of T and ofW, n = 6,m = 18, σ 2
X = 1, σ 2

Y = 36

X observations were generated from the N(0, 1) distribution, and the Y observa-
tions were generated from the N(0, 36) distribution. For the value of r for Welch’s
approximate t distribution, we used the distribution variances rather than the sample
variances so that we could use the same r for each of the 500 values ofW.

For the simulation results shown in Figure 7.2-2, n = 18, m = 6, the X obser-
vations were generated from the N(0, 1) distribution, and the Y observations were
generated from the N(0, 36) distribution. In both cases, Welch’sW with a corrected
number of r degrees of freedom is much better than the usual T when the variances
and sample sizes are unequal, as they are in these examples.

In some applications, two measurements—say, X and Y—are taken on the same
subject. In these cases, X and Y may be dependent random variables. Many times
these are “before” and “after” measurements, such as weight before and after par-
ticipating in a diet-and-exercise program. To compare the means of X and Y, it is
not permissible to use the t statistics and confidence intervals that we just devel-
oped, because in that situation X and Y are independent. Instead, we proceed as
follows.

Let (X1,Y1), (X2,Y2), . . . , (Xn,Yn) be n pairs of dependent measurements. Let
Di = Xi − Yi, i = 1, 2, . . . , n. Suppose that D1,D2, . . . ,Dn can be thought of as
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Figure 7.2-2 Observations of T and ofW, n = 18,m = 6, σ 2
X = 1, σ 2

Y = 36

a random sample from N(μD, σ 2
D), where μD and σD are the mean and standard

deviation of each difference. To form a confidence interval for μX − μY , use

T = D− μD
SD/

√
n
,

whereD and SD are, respectively, the sample mean and sample standard deviation of
the n differences. Thus, T is a t statistic with n−1 degrees of freedom. The endpoints
for a 100(1− α)% confidence interval for μD = μX − μY are then

d± tα/2(n−1)
sd√
n
,

where d and sd are the observed mean and standard deviation of the sample of the
D values. Of course, this is like the confidence interval for a single mean, presented
in the last section.

Example
7.2-4

An experiment was conducted to compare people’s reaction times to a red light
versus a green light. When signaled with either the red or the green light, the subject
was asked to hit a switch to turn off the light. When the switch was hit, a clock was
turned off and the reaction time in seconds was recorded. The following results give
the reaction times for eight subjects:
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Subject Red (x) Green (y) d = x− y

1 0.30 0.43 –0.13

2 0.23 0.32 –0.09

3 0.41 0.58 –0.17

4 0.53 0.46 0.07

5 0.24 0.27 –0.03

6 0.36 0.41 –0.05

7 0.38 0.38 0.00

8 0.51 0.61 –0.10

For these data, d = −0.0625 and sd = 0.0765. To form a 95% confidence interval for
μD = μX − μY , we find, from Table VI in Appendix B, that t0.025(7) = 2.365. Thus,
the endpoints for the confidence interval are

−0.0625± 2.365
0.0765√

8
, or [−0.1265, 0.0015].

In this very limited data set, zero is included in the confidence interval but is close
to the endpoint 0.0015. We suspect that if more data were taken, zero might not be
included in the confidence interval. If that actually were to happen, it would seem
that people react faster to a red light.

Of course, we can find one-sided confidence intervals for the difference of the
means, μX−μY . Suppose we believe that we have changed some characteristic of the
X distribution and created a Y distribution such that we think that μX > μY . Let us
find a one-sided 95% confidence interval that is a lower bound for μX −μY . Say this
lower bound is greater than zero. Then we would feel 95% confident that the mean
μX is larger than the mean μY . That is, the change that was made seemed to decrease
the mean; this would be good in some cases, such as golf or racing. In other cases,
in which we hope the change would be such that μX < μY , we would find a one-
sided confidence interval which is an upper bound for μX − μY , and we would hope
that it would be less than zero. These ideas are illustrated in Exercises 7.2-5, 7.2-10,
and 7.2-11.

Exercises

7.2-1. The length of life of brand X light bulbs is assumed
to be N(μX , 784). The length of life of brand Y light
bulbs is assumed to be N(μY , 627) and independent of
X. If a random sample of n = 56 brand X light bulbs
yielded a mean of x = 937.4 hours and a random sam-
ple of size m = 57 brand Y light bulbs yielded a mean

of y = 988.9 hours, find a 90% confidence interval for
μX − μY .

7.2-2. Let X1,X2, . . . ,X5 be a random sample of SAT
mathematics scores, assumed to be N(μX , σ 2), and let
Y1,Y2, . . . ,Y8 be an independent random sample of SAT
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verbal scores, assumed to be N(μY , σ 2). If the following
data are observed, find a 90% confidence interval for
μX − μY :

x1 = 644 x2 = 493 x3 = 532 x4 = 462 x5 = 565

y1 = 623 y2 = 472 y3 = 492 y4 = 661 y5 = 540

y6 = 502 y7 = 549 y8 = 518

7.2-3. Independent random samples of the heights of
adult males living in two countries yielded the follow-
ing results: n = 12, x = 65.7 inches, sx = 4 inches and
m = 15, y = 68.2 inches, sy = 3 inches. Find an approxi-
mate 98% confidence interval for the difference μX − μY
of the means of the populations of heights. Assume that
σ 2
X = σ 2

Y .

7.2-4. [Medicine and Science in Sports and Exercise (Jan-
uary 1990).] Let X and Y equal, respectively, the blood
volumes in milliliters for a male who is a paraplegic
and participates in vigorous physical activities and for
a male who is able-bodied and participates in every-
day, ordinary activities. Assume that X is N(μX , σ 2

X)
and Y is N(μY , σ 2

Y). Following are n = 7 observations
of X:

1612 1352 1456 1222 1560 1456 1924

Following are m = 10 observations of Y:

1082 1300 1092 1040 910

1248 1092 1040 1092 1288

Use the observations of X and Y to

(a) Give a point estimate for μX − μY .
(b) Find a 95% confidence interval for μX − μY . Since

the variances σ 2
X and σ 2

Y might not be equal, use
Welch’s T.

7.2-5. A biologist who studies spiders was interested in
comparing the lengths of female and male green lynx
spiders. Assume that the length X of the male spider is
approximately N(μX , σ 2

X) and the length Y of the female
spider is approximately N(μY , σ 2

Y ). Following are n = 30
observations of X:

5.20 4.70 5.75 7.50 6.45 6.55

4.70 4.80 5.95 5.20 6.35 6.95

5.70 6.20 5.40 6.20 5.85 6.80

5.65 5.50 5.65 5.85 5.75 6.35

5.75 5.95 5.90 7.00 6.10 5.80

Following are m = 30 observations of Y:

8.25 9.95 5.90 7.05 8.45 7.55

9.80 10.80 6.60 7.55 8.10 9.10

6.10 9.30 8.75 7.00 7.80 8.00

9.00 6.30 8.35 8.70 8.00 7.50

9.50 8.30 7.05 8.30 7.95 9.60

The units of measurement for both sets of observa-
tions are millimeters. Find an approximate one-sided
95% confidence interval that is an upper bound for
μX − μY .
7.2-6. A test was conducted to determine whether a
wedge on the end of a plug fitting designed to hold a seal
onto the plug was doing its job. The data taken were in the
form of measurements of the force required to remove a
seal from the plug with the wedge in place (say, X) and
the force required without the plug (say, Y). Assume that
the distributions ofX andY areN(μX , σ 2) andN(μY , σ 2),
respectively. Ten independent observations of X are

3.26 2.26 2.62 2.62 2.36 3.00 2.62 2.40 2.30 2.40

Ten independent observations of Y are

1.80 1.46 1.54 1.42 1.32 1.56 1.36 1.64 2.00 1.54

(a) Find a 95% confidence interval for μX − μY .
(b) Construct box-and-whisker diagrams of these data on

the same figure.

(c) Is the wedge necessary?

7.2-7. An automotive supplier is considering changing its
electrical wire harness to save money. The idea is to
replace a current 20-gauge wire with a 22-gauge wire.
Since not all wires in the harness can be changed, the new
wire must work with the current wire splice process. To
determine whether the new wire is compatible, random
samples were selected and measured with a pull test. A
pull test measures the force required to pull the spliced
wires apart. The minimum pull force required by the cus-
tomer is 20 pounds. Twenty observations of the forces
needed for the current wire are

28.8 24.4 30.1 25.6 26.4 23.9 22.1 22.5 27.6 28.1

20.8 27.7 24.4 25.1 24.6 26.3 28.2 22.2 26.3 24.4

Twenty observations of the forces needed for the new
wire are

14.1 12.2 14.0 14.6 8.5 12.6 13.7 14.8 14.1 13.2

12.1 11.4 10.1 14.2 13.6 13.1 11.9 14.8 11.1 13.5
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(a) Does the current wire meet the customer’s specifica-
tions?

(b) Find a 90% confidence interval for the difference of
the means for these two sets of wire.

(c) Construct box-and-whisker diagrams of the two sets
of data on the same figure.

(d) What is your recommendation for this company?

7.2-8. Let X, Y, S2X , and S
2
Y be the respective sample

means and unbiased estimates of the variances obtained
from independent samples of sizes n and m from the
normal distributions N(μX , σ 2

X) and N(μY , σ 2
Y ), where μX ,

μY , σ 2
X , and σ 2

Y are unknown. If σ 2
X/σ

2
Y = d, a known

constant,

(a) Argue that
(X − Y)− (μX − μY)√

dσ 2
Y/n+ σ 2

Y/m
is N(0, 1).

(b) Argue that
(n− 1)S2X
dσ 2

Y

+ (m− 1)S2Y
σ 2
Y

is χ2(n+m−2).

(c) Argue that the two random variables in (a) and (b)
are independent.

(d) With these results, construct a random variable (not
depending upon σ 2

Y ) that has a t distribution and that
can be used to construct a confidence interval for
μX − μY .

7.2-9. Students in a semester-long health-fitness program
have their percentage of body fat measured at the begin-
ning of the semester and at the end of the semester. The
following measurements give these percentages for 10
men and for 10 women:

Males Females

Pre-program Post-program Pre-program Post-program
% % % %

11.10 9.97 22.90 22.89

19.50 15.80 31.60 33.47

14.00 13.02 27.70 25.75

8.30 9.28 21.70 19.80

12.40 11.51 19.36 18.00

7.89 7.40 25.03 22.33

12.10 10.70 26.90 25.26

8.30 10.40 25.75 24.90

12.31 11.40 23.63 21.80

10.00 11.95 25.06 24.28

(a) Find a 90% confidence interval for the mean of the
difference in the percentages for the males.

(b) Find a 90% confidence interval for the mean of the
difference in the percentages for the females.

(c) On the basis of these data, have these percentages
decreased?

(d) If possible, check whether each set of differences
comes from a normal distribution.

7.2-10. Twenty-four 9th- and 10th-grade high school girls
were put on an ultraheavy rope-jumping program. The
following data give the time difference for each girl
(“before program time” minus “after program time”) for
the 40-yard dash:

0.28 0.01 0.13 0.33 –0.03 0.07 –0.18 –0.14

–0.33 0.01 0.22 0.29 –0.08 0.23 0.08 0.04

–0.30 –0.08 0.09 0.70 0.33 –0.34 0.50 0.06

(a) Give a point estimate of μD, the mean of the differ-
ence in race times.

(b) Find a one-sided 95% confidence interval that is a
lower bound for μD.

(c) Does it look like the rope-jumping program was
effective?

7.2-11. The Biomechanics Lab at Hope College tested
healthy old women and healthy young women to discover
whether or not lower extremity response time to a stimu-
lus is a function of age. LetX andY respectively equal the
independent response times for these two groups when
taking steps in the anterior direction. Find a one-sided
95% confidence interval that is a lower bound for μX−μY
if n = 60 observations of X yielded x = 671 and sx = 129,
while m = 60 observations of Y yielded y = 480 and
sy = 93.

7.2-12. Let X and Y equal the hardness of the hot and
cold water, respectively, in a campus building. Hardness
is measured in terms of the calcium ion concentration
(in ppm). The following data were collected (n = 12
observations of X andm = 10 observations of Y):

x: 133.5 137.2 136.3 133.3 137.5 135.4

138.4 137.1 136.5 139.4 137.9 136.8

y: 134.0 134.7 136.0 132.7 134.6 135.2

135.9 135.6 135.8 134.2

(a) Calculate the sample means and the sample variances
of these data.
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(b) Construct a 95% confidence interval for μX − μY ,
assuming that the distributions of X and Y are
N(μX , σ 2

X) and N(μY , σ 2
Y ), respectively.

(c) Construct box plots of the two sets of data on the same
graph.

(d) Do the means seem to be equal or different?

7.2-13. Ledolter and Hogg (see References) report that
two rubber compounds were tested for tensile strength.
Rectangular materials were prepared and pulled in a lon-
gitudinal direction. A sample of 14 specimens, 7 from
compound A and 7 from compound B, was prepared, but
it was later found that two B specimens were defective
and they had to be removed from the test. The tensile
strength (in units of 100 pounds per square inch) of the
remaining specimens are as follows:

A: 32 30 33 32 29 34 32

B: 33 35 36 37 35

Calculate a 95% confidence interval for the differ-
ence of the mean tensile strengths of the two rubber
compounds. State your assumptions.

7.2-14. Let S2X and S2Y be the respective variances of
two independent random samples of sizes n and m
from N(μX , σ 2

X) and N(μY , σ 2
Y ). Use the fact that F =

[S2Y/σ
2
Y ]/[S

2
X/σ

2
X] has an F distribution, with parameters

r1 = m−1 and r2 = n−1, to rewrite P(c ≤ F ≤ d) = 1−α,
where c = F1−α/2(r1, r2) and d = Fα/2(r1, r2), so that

P

(
c
S2X
S2Y
≤ σ 2

X

σ 2
Y

≤ dS
2
X

S2Y

)
= 1− α.

If the observed values are n = 13, m = 9, 12s2x = 128.41,
and 8s2y = 36.72, show that a 98% confidence interval for
the ratio of the two variances, σ 2

X/σ
2
Y , is [0.41, 10.49], so

that [0.64, 3.24] is a 98% confidence interval for σX/σY .

7.3 CONFIDENCE INTERVALS FOR PROPORTIONS
We have suggested that the histogram is a good description of how the observations
of a random sample are distributed. We might naturally inquire about the accuracy
of those relative frequencies (or percentages) associated with the various classes. To
illustrate, in Example 6.1-1 concerning the weights of n = 40 candy bars, we found
that the relative frequency of the class interval (22.25, 23.15) was 8/40 = 0.20, or
20%. If we think of this collection of 40 weights as a random sample observed from
a larger population of candy bar weights, how close is 20% to the true percentage (or
0.20 to the true proportion) of weights in that class interval for the entire population
of weights for this type of candy bar?

In considering this problem, we generalize it somewhat by treating the class
interval (22.25, 23.15) as “success.” That is, there is some true probability of suc-
cess, p—namely, the proportion of the population in that interval. Let Y equal the
frequency of measurements in the interval out of the n observations, so that (under
the assumptions of independence and constant probability p) Y has the binomial
distribution b(n,p). Thus, the problem is to determine the accuracy of the rela-
tive frequency Y/n as an estimator of p. We solve this problem by finding, for the
unknown p, a confidence interval based on Y/n.

In general, when observing n Bernoulli trials with probability p of success on
each trial, we shall find a confidence interval for p based on Y/n, where Y is the
number of successes and Y/n is an unbiased point estimator for p.

In Section 5.7, we noted that

Y − np√
np(1− p) =

(Y/n)− p√
p(1− p)/n

has an approximate normal distributionN(0, 1), provided that n is large enough. This
means that, for a given probability 1−α, we can find a zα/2 in Table V in Appendix B
such that
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P

[
−zα/2 ≤ (Y/n)− p√

p(1− p)/n ≤ zα/2
]
≈ 1− α. (7.3-1)

If we proceed as we did when we found a confidence interval forμ in Section 7.1,
we would obtain

P

[
Y
n
− zα/2

√
p(1− p)
n

≤ p ≤ Y
n
+ zα/2

√
p(1− p)
n

]
≈ 1− α.

Unfortunately, the unknown parameter p appears in the endpoints of this inequality.
There are two ways out of this dilemma. First, we could make an additional approx-
imation, namely, replacing p with Y/n in p (1− p)/n in the endpoints. That is, if n is
large enough, it is still true that

P

[
Y
n
− zα/2

√
(Y/n)(1− Y/n)

n
≤ p ≤ Y

n
+ zα/2

√
(Y/n)(1− Y/n)

n

]
≈ 1− α.

Thus, for large n, if the observed Y equals y, then the interval[
y
n
− zα/2

√
(y/n)(1− y/n)

n
,
y
n
+ zα/2

√
(y/n)(1− y/n)

n

]

serves as an approximate 100(1 − α)% confidence interval for p. Frequently, this
interval is written as

y
n
± zα/2

√
(y/n)(1− y/n)

n
(7.3-2)

for brevity. This formulation clearly notes, as does x± zα/2(σ/√n) in Section 7.1, the
reliability of the estimate y/n, namely, that we are 100(1 − α)% confident that p is
within zα/2

√
(y/n)(1− y/n)/n of p̂ = y/n.

A second way to solve for p in the inequality in Equation 7.3-1 is to note that

|Y/n− p|√
p (1− p)/n ≤ zα/2

is equivalent to

H(p) =
(
Y
n
− p
)2
− z

2
α/2 p(1− p)

n
≤ 0. (7.3-3)

But H(p) is a quadratic expression in p. Thus, we can find those values of p for
which H(p) ≤ 0 by finding the two zeros of H(p). Letting p̂ = Y/n and z0 = zα/2 in
Equation 7.3-3, we have

H(p) =
(
1+ z

2
0

n

)
p2 −

(
2 p̂+ z

2
0

n

)
p+ p̂ 2.

By the quadratic formula, the zeros ofH(p) are, after simplifications,

p̂+ z20/(2n)± z0
√
p̂ (1− p̂ )/n+ z20/(4n2)

1+ z20/n
, (7.3-4)
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and these zeros give the endpoints for an approximate 100(1 − α)% confidence
interval for p. If n is large, z20/(2n), z

2
0/(4n

2), and z20/n are small. Thus, the confi-
dence intervals given by Equations 7.3-2 and 7.3-4 are approximately equal when n is
large.

Example
7.3-1

Let us return to the example of the histogram of the candy bar weights,
Example 6.1-1, with n = 40 and y/n = 8/40 = 0.20. If 1 − α = 0.90, so that
zα/2 = 1.645, then, using Equation 7.3-2, we find that the endpoints

0.20± 1.645

√
(0.20)(0.80)

40

serve as an approximate 90% confidence interval for the true fraction p. That is,
[0.096, 0.304], which is the same as [9.6%, 30.4%], is an approximate 90% confi-
dence interval for the percentage of weights of the entire population in the interval
(22.25, 23.15). If we had used the endpoints given by Equation 7.3-4, the confidence
interval would be [0.117, 0.321]. Because of the small sample size, there is a non-
negligible difference in these intervals. If the sample size had been n = 400 and
y = 80, so that y/n = 80/400 = 0.20, the two 90% confidence intervals would have
been [0.167, 0.233] and [0.169, 0.235], respectively, which differ very little.

Example
7.3-2

In a certain political campaign, one candidate has a poll taken at random among
the voting population. The results are that y = 185 out of n = 351 voters favor this
candidate. Even though y/n = 185/351 = 0.527, should the candidate feel very con-
fident of winning? From Equation 7.3-2, an approximate 95% confidence interval
for the fraction p of the voting population who favor the candidate is

0.527± 1.96

√
(0.527)(0.473)

351

or, equivalently, [0.475, 0.579]. Thus, there is a good possibility that p is less than
50%, and the candidate should certainly take this possibility into account in
campaigning.

One-sided confidence intervals are sometimes appropriate for p. For example,
we may be interested in an upper bound on the proportion of defectives in manu-
facturing some item. Or we may be interested in a lower bound on the proportion
of voters who favor a particular candidate. The one-sided confidence interval for
p given by [

0,
y
n
+ zα
√
(y/n)[1− (y/n)]

n

]

provides an upper bound for p, while[
y
n
− zα
√
(y/n)[1− (y/n)]

n
, 1

]

provides a lower bound for p.
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REMARK Sometimes the confidence intervals suggested here are not very close to
having the stated confidence coefficient. This is particularly true if n is small or if
one of Y or n − Y is close to zero. It is obvious that something is wrong if Y = 0 or
n− Y = 0, because the radical is then equal to zero.

It has been suggested (see, e.g., Agresti and Coull, 1998) that we use
p̃ = (Y + 2)/(n + 4) as an estimator for p in those cases because the results are
usually much better. It is true that p̃ is a biased estimator of p, but it is a Bayes
shrinkage estimator if we use the beta prior pdf with parameters α = 2, β = 2. In
those cases in which n is small or Y or n− Y is close to zero,

p̃± zα/2
√
p̃(1− p̃)/(n+ 4) (7.3-5)

provides a much better 100(1 − α)% confidence interval for p. A similar statement
can be made about one-sided confidence intervals.

Look again at Equation 7.3-4. If we form a 95% confidence interval using this
equation, we find that z0 = 1.96 ≈ 2. Thus, a 95% confidence interval is centered
approximately at

p̂+ z20/(2n)
1+ z20/n

= y+ z20/2
n+ z20

≈ y+ 2
n+ 4

.

This result is consistent with Equation 7.3-5 for 95% confidence intervals.

Example
7.3-3

Returning to the data in Example 7.3-1, and using Equation 7.3-5, we have
p̃ = (8+ 2)/(40+ 4) = 0.227. Thus, a 90% confidence interval is

0.227± 1.645

√
(0.227)(0.773)

44
,

or [0.123, 0.331]. If it had been true that y = 80 and n = 400, the confidence interval
given by Equation 7.3-5 would have been [0.170, 0.236].

Frequently, there are two (or more) possible independent ways of performing an
experiment; suppose these have probabilities of success p1 and p2, respectively. Let
n1 and n2 be the number of independent trials associated with these two methods,
and let us say that they result in Y1 and Y2 successes, respectively. In order to make
a statistical inference about the difference p1 − p2, we proceed as follows.

Since the independent random variables Y1/n1 and Y2/n2 have respective
means p1 and p2 and variances p1(1 − p1)/n1 and p2(1 − p2)/n2, we know from
Section 5.4 that the difference Y1/n1 −Y2/n2 must have mean p1 − p2 and variance

p1(1− p1)
n1

+ p2(1− p2)
n2

.

(Recall that the variances are added to get the variance of a difference of two
independent random variables.) Moreover, the fact that Y1/n1 and Y2/n2 have
approximate normal distributions would suggest that the difference

Y1

n1
− Y2

n2
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would have an approximate normal distribution with the above mean and variance.
(See Theorem 5.5-1.) That is,

(Y1/n1)− (Y2/n2)− (p1 − p2)√
p1(1− p1)/n1 + p2(1− p2)/n2

has an approximate normal distribution N(0, 1). If we now replace p1 and p2 in the
denominator of this ratio by Y1/n1 and Y2/n2, respectively, it is still true for large
enough n1 and n2 that the new ratio will be approximately N(0, 1). Thus, for a given
1− α, we can find zα/2 from Table V in Appendix B, so that

P

[
−zα/2 ≤ (Y1/n1)− (Y2/n2)− (p1 − p2)√

(Y1/n1)(1− Y1/n1)/n1 + (Y2/n2)(1− Y2/n2)/n2
≤ zα/2

]
≈ 1− α.

Once Y1 and Y2 are observed to be y1 and y2, respectively, this approximation can
be solved to obtain an approximate 100(1− α)% confidence interval

y1
n1
− y2
n2
± zα/2

√
(y1/n1)(1− y1/n1)

n1
+ (y2/n2)(1− y2/n2)

n2

for the unknown difference p1−p2. Note again how this form indicates the reliability
of the estimate y1/n1 − y2/n2 of the difference p1 − p2.

Example
7.3-4

Two detergents were tested for their ability to remove stains of a certain type. An
inspector judged the first one to be successful on 63 out of 91 independent trials and
the second one to be successful on 42 out of 79 independent trials. The respective
relative frequencies of success are 63/91 = 0.692 and 42/79 = 0.532. An approximate
90% confidence interval for the difference p1 − p2 of the two detergents is(

63
91
− 42

79

)
± 1.645

√
(63/91)(28/91)

91
+ (42/79)(37/79)

79

or, equivalently, [0.039, 0.283]. Accordingly, since this interval does not include zero,
it seems that the first detergent is probably better than the second one for removing
the type of stains in question.

Exercises

7.3-1. A machine shop manufactures toggle levers. A
lever is flawed if a standard nut cannot be screwed onto
the threads. Let p equal the proportion of flawed toggle
levers that the shop manufactures. If there were 24 flawed
levers out of a sample of 642 that were selected randomly
from the production line,

(a) Give a point estimate of p.

(b) Use Equation 7.3-2 to find an approximate 95% con-
fidence interval for p.

(c) Use Equation 7.3-4 to find an approximate 95% con-
fidence interval for p.

(d) Use Equation 7.3-5 to find an approximate 95% con-
fidence interval for p.

(e) Find a one-sided 95% confidence interval for p that
provides an upper bound for p.

7.3-2. Let p equal the proportion of letters mailed in the
Netherlands that are delivered the next day. Suppose that
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y = 142 out of a random sample of n = 200 letters were
delivered the day after they were mailed.

(a) Give a point estimate of p.

(b) Use Equation 7.3-2 to find an approximate 90% con-
fidence interval for p.

(c) Use Equation 7.3-4 to find an approximate 90% con-
fidence interval for p.

(d) Use Equation 7.3-5 to find an approximate 90% con-
fidence interval for p.

(e) Find a one-sided 90% confidence interval for p that
provides a lower bound for p.

7.3-3. Let p equal the proportion of triathletes who suf-
fered a training-related overuse injury during the past
year. Out of 330 triathletes who responded to a survey,
167 indicated that they had suffered such an injury during
the past year.

(a) Use these data to give a point estimate of p.

(b) Use these data to find an approximate 90% confi-
dence interval for p.

(c) Do you think that the 330 triathletes who responded
to the survey may be considered a random sample
from the population of triathletes?

7.3-4. Let p equal the proportion of Americans who favor
the death penalty. If a random sample of n = 1234
Americans yielded y = 864 who favored the death
penalty, find an approximate 95% confidence interval
for p.

7.3-5. In order to estimate the proportion, p, of a large
class of college freshmen that had high school GPAs from
3.2 to 3.6, inclusive, a sample of n = 50 students was
taken. It was found that y = 9 students fell into this
interval.

(a) Give a point estimate of p.

(b) Use Equation 7.3-2 to find an approximate 95% con-
fidence interval for p.

(c) Use Equation 7.3-4 to find an approximate 95% con-
fidence interval for p.

(d) Use Equation 7.3-5 to find an approximate 95% con-
fidence interval for p.

7.3-6. Let p equal the proportion of Americans who
select jogging as one of their recreational activities. If
1497 out of a random sample of 5757 selected jogging, find
an approximate 98% confidence interval for p.

7.3-7. In developing countries in Africa and the
Americas, let p1 and p2 be the respective proportions
of women with nutritional anemia. Find an approxi-

mate 90% confidence interval for p1 − p2, given that a
random sample of n1 = 2100 African women yielded
y1 = 840 with nutritional anemia and a random sample
of n2 = 1900 women from the Americas yielded y2 = 323
women with nutritional anemia.

7.3-8. A proportion, p, that many public opinion polls
estimate is the number of Americans who would say yes
to the question, “If something were to happen to the
president of the United States, do you think that the
vice president would be qualified to take over as pres-
ident?” In one such random sample of 1022 adults, 388
said yes.

(a) On the basis of the given data, find a point estimate
of p.

(b) Find an approximate 90% confidence interval for p.

(c) Give updated answers to this question if new poll
results are available.

7.3-9. Consider the following two groups of women:
Group 1 consists of women who spend less than $500
annually on clothes; Group 2 comprises women who
spend over $1000 annually on clothes. Let p1 and p2 equal
the proportions of women in these two groups, respec-
tively, who believe that clothes are too expensive. If 1009
out of a random sample of 1230 women from group 1 and
207 out of a random sample 340 from group 2 believe that
clothes are too expensive,

(a) Give a point estimate of p1 − p2.
(b) Find an approximate 95% confidence interval for

p1 − p2.
7.3-10. A candy manufacturer selects mints at random
from the production line and weighs them. For one week,
the day shift weighed n1 = 194 mints and the night shift
weighed n2 = 162 mints. The numbers of these mints that
weighed at most 21 grams was y1 = 28 for the day shift
and y2 = 11 for the night shift. Let p1 and p2 denote the
proportions of mints that weigh at most 21 grams for the
day and night shifts, respectively.

(a) Give a point estimate of p1.

(b) Give the endpoints for a 95% confidence interval
for p1.

(c) Give a point estimate of p1 − p2.
(d) Find a one-sided 95% confidence interval that gives a

lower bound for p1 − p2.
7.3-11. For developing countries in Asia (excluding
China) and Africa, let p1 and p2 be the respective pro-
portions of preschool children with chronic malnutrition
(stunting). If respective random samples of n1 = 1300
and n2 = 1100 yielded y1 = 520 and y2 = 385 chil-
dren with chronic malnutrition, find an approximate 95%
confidence interval for p1 − p2.
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7.3-12. An environmental survey contained a question
asking what respondents thought was the major cause of
air pollution in this country, giving the choices “automo-
biles,” “factories,” and “incinerators.” Two versions of the
test, A and B, were used. Let pA and pB be the respective
proportions of people using forms A and B who select
“factories.” If 170 out of 460 people who used version

A chose “factories” and 141 out of 440 people who used
version B chose “factories,”

(a) Find a 95% confidence interval for pA − pB.
(b) Do the versions seem to be consistent concerning this

answer? Why or why not?

7.4 SAMPLE SIZE
In statistical consulting, the first question frequently asked is, “How large should the
sample size be to estimate amean?” In order to convince the inquirer that the answer
will depend on the variation associated with the random variable under observation,
the statistician could correctly respond, “Only one observation is needed, provided
that the standard deviation of the distribution is zero.” That is, if σ equals zero, then
the value of that one observation would necessarily equal the unknown mean of the
distribution. This, of course, is an extreme case and one that is not met in practice;
however, it should help convince people that the smaller the variance, the smaller
is the sample size needed to achieve a given degree of accuracy. This assertion will
become clearer as we consider several examples. Let us begin with a problem that
involves a statistical inference about the unknown mean of a distribution.

Example
7.4-1

A mathematics department wishes to evaluate a new method of teaching calculus
with a computer. At the end of the course, the evaluation will be made on the basis
of scores of the participating students on a standard test. There is particular inter-
est in estimating μ, the mean score for students taking the course. Thus, there is a
desire to determine the number of students, n, who are to be selected at random
from a larger group of students to take the course. Since new computing equipment
must be purchased, the department cannot afford to let all of the school’s students
take calculus the new way. In addition, some of the staff question the value of this
approach and hence do not want to expose every student to this new procedure. So,
let us find the sample size n such that we are fairly confident that x± 1 contains the
unknown test mean μ. From past experience, it is believed that the standard devi-
ation associated with this type of test is about 15. (The mean is also known when
students take the standard calculus course.) Accordingly, using the fact that the sam-
ple mean of the test scores, X, is approximately N(μ, σ 2/n), we see that the interval
given by x± 1.96(15/

√
n ) will serve as an approximate 95% confidence interval for

μ. That is, we want

1.96
(
15√
n

)
= 1

or, equivalently,
√
n = 29.4, and thus n ≈ 864.36,

or n = 865 because n must be an integer.

It is quite likely that, in the preceding example, it had not been anticipated
that as many as 865 students would be needed in this study. If that is the case, the
statistician must discuss with those involved in the experiment whether or not the
accuracy and the confidence level could be relaxed some. For example, rather than
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requiring x ± 1 to be a 95% confidence interval for μ, possibly x ± 2 would be a
satisfactory 80% one. If this modification is acceptable, we now have

1.282
(
15√
n

)
= 2

or, equivalently,
√
n = 9.615, so that n ≈ 92.4.

Since n must be an integer, we would probably use 93 in practice. Most likely, the
persons involved in the project would find that a more reasonable sample size. Of
course, any sample size greater than 93 could be used. Then either the length of
the confidence interval could be decreased from x ± 2 or the confidence coefficient
could be increased from 80%, or a combination of both approaches could be taken.
Also, since there might be some question as to whether the standard deviation σ
actually equals 15, the sample standard deviation s would no doubt be used in the
construction of the interval. For instance, suppose that the sample characteristics
observed are

n = 145, x = 77.2, s = 13.2;

then

x± 1.282s√
n

, or 77.2± 1.41,

provides an approximate 80% confidence interval for μ.
In general, if we want the 100(1−α)% confidence interval forμ, x±zα/2(σ/

√
n ),

to be no longer than that given by x± ε, then the sample size n is the solution of

ε = zα/2σ√
n

, where �(zα/2) = 1− α

2
.

That is,

n = z2
α/2σ

2

ε2
, (7.4-1)

where it is assumed that σ 2 is known. We sometimes call ε = zα/2(σ/
√
n ) the maxi-

mum error of the estimate. If the experimenter has no idea about the value of σ 2, it
may be necessary to first take a preliminary sample to estimate σ 2.

The type of statistic we see most often in newspapers and magazines is an esti-
mate of a proportion p. We might, for example, want to know the percentage of
the labor force that is unemployed or the percentage of voters favoring a certain
candidate. Sometimes extremely important decisions are made on the basis of these
estimates. If this is the case, we would most certainly desire short confidence inter-
vals for p with large confidence coefficients. We recognize that these conditions
will require a large sample size. If, to the contrary, the fraction p being estimated
is not too important, an estimate associated with a longer confidence interval with a
smaller confidence coefficient is satisfactory, and in that case a smaller sample size
can be used.

Example
7.4-2

Suppose we know that the unemployment rate has been about 8% (0.08). However,
we wish to update our estimate in order to make an important decision about the
national economic policy. Accordingly, let us say we wish to be 99% confident that
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the new estimate of p is within 0.001 of the true p. If we assume Bernoulli trials
(an assumption that might be questioned), the relative frequency y/n, based upon a
large sample size n, provides the approximate 99% confidence interval:

y
n
± 2.576

√
(y/n)(1− y/n)

n
.

Although we do not know y/n exactly before sampling, since y/n will be near 0.08,
we do know that

2.576

√
(y/n)(1− y/n)

n
≈ 2.576

√
(0.08)(0.92)

n
,

and we want this number to equal 0.001. That is,

2.576

√
(0.08)(0.92)

n
= 0.001

or, equivalently,

√
n = 2576

√
0.0736, and then n ≈ 488,394.

That is, under our assumptions, such a sample size is needed in order to achieve the
reliability and the accuracy desired. Because n is so large, we would probably be
willing to increase the error, say, to 0.01, and perhaps reduce the confidence level to
98%. In that case,

√
n = (2.326/0.01)

√
0.0736 and n ≈ 3,982,

which is a more reasonable sample size.

From the preceding example, we hope that the student will recognize how
important it is to know the sample size (or the length of the confidence interval
and the confidence coefficient) before he or she can place much weight on a state-
ment such as “Fifty-one percent of the voters seem to favor candidate A, 46% favor
candidate B, and 3% are undecided.” Is this statement based on a sample of 100
or 2000 or 10,000 voters? If we assume Bernoulli trials, the approximate 95% con-
fidence intervals for the fraction of voters favoring candidate A in these cases are,
respectively, [0.41, 0.61], [0.49, 0.53], and [0.50, 0.52]. Quite obviously, the first inter-
val, with n = 100, does not assure candidate A of the support of at least half the
voters, whereas the interval with n = 10,000 is more convincing.

In general, to find the required sample size to estimate p, recall that the point
estimate of p is p̂ = y/n and an approximate 1− α confidence interval for p is

p̂± zα/2

√
p̂ (1− p̂ )

n
.

Suppose we want an estimate of p that is within ε of the unknown pwith 100(1−α)%
confidence, where ε = zα/2

√
p̂ (1− p̂ )/n is themaximum error of the point estimate

p̂ = y/n. Since p̂ is unknown before the experiment is run, we cannot use the value
of p̂ in our determination of n. However, if it is known that p is about equal to p∗,
the necessary sample size n is the solution of

ε = zα/2
√
p∗(1− p∗)√

n
.
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That is,

n = z2
α/2p

∗(1− p∗)
ε2

. (7.4-2)

Often, however, we do not have a strong prior idea about p, as we did in
Example 7.4-2 about the rate of unemployment. It is interesting to observe that no
matter what value p takes between 0 and 1, it is always true that p∗(1 − p∗) ≤ 1/4.
Hence,

n = z2
α/2p

∗(1− p∗)
ε2

≤ z2
α/2

4ε2
.

Thus, if we want the 100(1 − α)% confidence interval for p to be no longer than
y/n± ε, a solution for n that provides this protection is

n = z2
α/2

4ε2
. (7.4-3)

REMARK Up to this point in the text, we have used the “hat” (̂ ) notation to indi-
cate an estimator, as in p̂ = Y/n and μ̂ = X. Note, however, that in the previous
discussion we used p̂ = y/n, an estimate of p. Occasionally, statisticians find it con-
venient to use the “hat” notation for an estimate as well as an estimator. It is usually
clear from the context which is being used.

Example
7.4-3

A possible gubernatorial candidate wants to assess initial support among the voters
before making an announcement about her candidacy. If the fraction p of voters
who are favorable, without any advance publicity, is around 0.15, the candidate will
enter the race. From a poll of n voters selected at random, the candidate would like
the estimate y/n to be within 0.03 of p. That is, the decision will be based on a 95%
confidence interval of the form y/n±0.03. Since the candidate has no idea about the
magnitude of p, a consulting statistician formulates the equation

n = (1.96)2

4(0.03)2
= 1067.11.

Thus, the sample size should be around 1068 to achieve the desired reliability and
accuracy. Suppose that 1068 voters around the state were selected at random and
interviewed and y = 214 express support for the candidate. Then p̂ = 214/1068 =
0.20 is a point estimate of p, and an approximate 95% confidence interval
for p is

0.20± 1.96
√
(0.20)(0.80)/n, or 0.20± 0.024.

That is, we are 95% confident that p belongs to the interval [0.176, 0.224]. On the
basis of this sample, the candidate decided to run for office. Note that, for a confi-
dence coefficient of 95%, we found a sample size so that the maximum error of the
estimate would be 0.03. From the data that were collected, the maximum error of
the estimate is only 0.024. We ended up with a smaller error because we found the
sample size assuming that p = 0.50, while, in fact, p is closer to 0.20.
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Suppose that you want to estimate the proportion p of a student body that favors
a new policy. How large should the sample be? If p is close to 1/2 and you want to be
95% confident that the maximum error of the estimate is ε = 0.02, then

n = (1.96)2

4(0.02)2
= 2401.

Such a sample size makes sense at a large university. However, if you are a student
at a small college, the entire enrollment could be less than 2401. Thus, we now give a
procedure that can be used to determine the sample size when the population is not
so large relative to the desired sample size.

Let N equal the size of a population, and assume that N1 individuals in the pop-
ulation have a certain characteristic C (e.g., favor a new policy). Let p = N1/N, the
proportion with this characteristic. Then 1−p = 1−N1/N. If we take a sample of size
n without replacement, then X, the number of observations with the characteristic
C, has a hypergeometric distribution. The mean and variance of X are, respectively,

μ = n
(
N1

N

)
= np

and

σ 2 = n
(
N1

N

)(
1− N1

N

)(
N − n
N − 1

)
= np(1− p)

(
N − n
N − 1

)
.

The mean and variance of X/n are, respectively,

E
(
X
n

)
= μ

n
= p

and

Var
(
X
n

)
= σ 2

n2
= p(1− p)

n

(
N − n
N − 1

)
.

To find an approximate confidence interval for p, we can use the normal
approximation:

P

⎡⎢⎢⎢⎢⎣−zα/2 ≤
X
n
− p√

p(1− p)
n

(
N − n
N − 1

) ≤ zα/2

⎤⎥⎥⎥⎥⎦ ≈ 1− α.

Thus,

1− α ≈ P

[
X
n
− zα/2

√
p(1− p)

n

(
N − n
N − 1

)
≤ p ≤ X

n
+ zα/2

√
p(1− p)

n

(
N − n
N − 1

)]
.

Replacing p under the radical with p̂ = x/n, we find that an approximate 1 − α

confidence interval for p is

p̂± zα/2

√
p̂ (1− p̂ )

n

(
N − n
N − 1

)
.
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This is similar to the confidence interval for p when the distribution of X is b(n,p).
If N is large relative to n, then

N − n
N − 1

= 1− n/N
1− 1/N

≈ 1,

so in this case the two intervals are essentially equal.
Suppose now that we are interested in determining the sample size n that is

required to have 1− α confidence that the maximum error of the estimate of p is ε.
We let

ε = zα/2

√
p(1− p)

n

(
N − n
N − 1

)
and solve for n. After some simplification, we obtain

n = Nz2
α/2 p(1− p)

(N − 1)ε2 + z2
α/2 p(1− p)

= z2
α/2p(1− p)/ε2

N − 1
N

+ z2
α/2 p(1− p)/ε2

N

.

If we let

m = z2
α/2p

∗(1− p∗)
ε2

,

which is the n value given by Equation 7.4-2, then we choose

n = m

1+ m− 1
N

for our sample size n.
If we know nothing about p, we set p∗ = 1/2 to determinem. For example, if the

size of the student body is N = 4000 and 1−α = 0.95, ε = 0.02, and we let p∗ = 1/2,
then m = 2401 and

n = 2401
1+ 2400/4000

= 1501,

rounded up to the nearest integer. Thus, we would sample approximately 37.5% of
the student body.

Example
7.4-4

Suppose that a college of N = 3000 students is interested in assessing student sup-
port for a new form for teacher evaluation. To estimate the proportion p in favor
of the new form, how large a sample is required so that the maximum error of the
estimate of p is ε = 0.03 with 95% confidence? If we assume that p is completely
unknown, we use p∗ = 1/2 to obtain

m = (1.96)2

4(0.03)2
= 1068,
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rounded up to the nearest integer. Thus, the desired sample size is

n = 1068
1+ 1067/3000

= 788,

rounded up to the nearest integer.

Exercises

7.4-1. Let X equal the tarsus length for a male grackle.
Assume that the distribution of X is N(μ, 4.84). Find the
sample size n that is needed so that we are 95% confident
that the maximum error of the estimate of μ is 0.4.

7.4-2. Let X equal the excess weight of soap in a “1000-
gram” bottle. Assume that the distribution of X is
N(μ, 169). What sample size is required so that we have
95% confidence that the maximum error of the estimate
of μ is 1.5?

7.4-3. A company packages powdered soap in “6-pound”
boxes. The sample mean and standard deviation of
the soap in these boxes are currently 6.09 pounds and
0.02 pound, respectively. If the mean fill can be low-
ered by 0.01 pound, $14,000 would be saved per year.
Adjustments were made in the filling equipment, but
it can be assumed that the standard deviation remains
unchanged.

(a) How large a sample is needed so that the maximum
error of the estimate of the new μ is ε = 0.001 with
90% confidence?

(b) A random sample of size n = 1219 yielded x = 6.048
and s = 0.022. Calculate a 90% confidence interval
for μ.

(c) Estimate the savings per year with these new adjust-
ments.

(d) Estimate the proportion of boxes that will now weigh
less than 6 pounds.

7.4-4. Measurements of the length in centimeters of n =
29 fish yielded an average length of x = 16.82 and s2 =
34.9. Determine the size of a new sample so that x± 0.5 is
an approximate 95% confidence interval for μ.

7.4-5. A quality engineer wanted to be 98% confident
that the maximum error of the estimate of the mean
strength, μ, of the left hinge on a vanity cover molded
by a machine is 0.25. A preliminary sample of size n = 32
parts yielded a sample mean of x = 35.68 and a standard
deviation of s = 1.723.

(a) How large a sample is required?

(b) Does this seem to be a reasonable sample size? (Note
that destructive testing is needed to obtain the data.)

7.4-6. A manufacturer sells a light bulb that has a mean
life of 1450 hours with a standard deviation of 33.7 hours.
A new manufacturing process is being tested, and there
is interest in knowing the mean life μ of the new bulbs.
How large a sample is required so that x±5 is a 95% con-
fidence interval for μ? You may assume that the change
in the standard deviation is minimal.

7.4-7. For a public opinion poll for a close presidential
election, let p denote the proportion of voters who favor
candidate A. How large a sample should be taken if
we want the maximum error of the estimate of p to be
equal to

(a) 0.03 with 95% confidence?

(b) 0.02 with 95% confidence?

(c) 0.03 with 90% confidence?

7.4-8. Some college professors and students examined
137 Canadian geese for patent schistosome in the year
they hatched. Of these 137 birds, 54 were infected. The
professors and students were interested in estimating p,
the proportion of infected birds of this type. For future
studies, determine the sample size n so that the estimate
of p is within ε = 0.04 of the unknown p with 90%
confidence.

7.4-9. A die has been loaded to change the probability
of rolling a 6. In order to estimate p, the new probability
of rolling a 6, how many times must the die be rolled so
that we are 99% confident that the maximum error of the
estimate of p is ε = 0.02?

7.4-10. A seed distributor claims that 80% of its beet
seeds will germinate. How many seeds must be tested for
germination in order to estimate p, the true proportion
that will germinate, so that the maximum error of the
estimate is ε = 0.03 with 90% confidence?

7.4-11. Some dentists were interested in studying the
fusion of embryonic rat palates by a standard trans-
plantation technique. When no treatment is used, the
probability of fusion equals approximately 0.89. The den-
tists would like to estimate p, the probability of fusion,
when vitamin A is lacking.

(a) How large a sample n of rat embryos is needed for
y/n± 0.10 to be a 95% confidence interval for p?
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(b) If y = 44 out of n = 60 palates showed fusion, give a
95% confidence interval for p.

7.4-12. Let p equal the proportion of college students
who favor a new policy for alcohol consumption on cam-
pus. How large a sample is required to estimate p so that
the maximum error of the estimate of p is 0.04 with 95%
confidence when the size of the student body is

(a) N = 1500?

(b) N = 15,000?

(c) N = 25,000?

7.4-13. Out of 1000 welds that have been made on a
tower, it is suspected that 15% are defective. To estimate
p, the proportion of defective welds, how many welds

must be inspected to have approximately 95% confidence
that the maximum error of the estimate of p is 0.04?

7.4-14. If Y1/n and Y2/n are the respective independent
relative frequencies of success associated with the two
binomial distributions b(n, p1) and b(n, p2), compute n
such that the approximate probability that the random
interval (Y1/n − Y2/n) ± 0.05 covers p1 − p2 is at
least 0.80. Hint: Take p∗1 = p∗2 = 1/2 to provide an upper
bound for n.

7.4-15. If X and Y are the respective means of two inde-
pendent random samples of the same size n, find n if
we want x − y ± 4 to be a 90% confidence interval for
μX −μY . Assume that the standard deviations are known
to be σX = 15 and σY = 25.

7.5 DISTRIBUTION-FREE CONFIDENCE INTERVALS FOR PERCENTILES
In Section 6.3, we defined sample percentiles in terms of order statistics and noted
that the sample percentiles can be used to estimate corresponding distribution per-
centiles. In this section, we use order statistics to construct confidence intervals
for unknown distribution percentiles. Since little is assumed about the underlying
distribution (except that it is of the continuous type) in the construction of these
confidence intervals, they are often called distribution-free confidence intervals.

If Y1 < Y2 < Y3 < Y4 < Y5 are the order statistics of a random sample of
size n = 5 from a continuous-type distribution, then the sample median Y3 could be
thought of as an estimator of the distribution median π0.5. We shall letm = π0.5. We
could simply use the sample median Y3 as an estimator of the distribution median
m. However, we are certain that all of us recognize that, with only a sample of size
5, we would be quite lucky if the observed Y3 = y3 were very close to m. Thus, we
now describe how a confidence interval can be constructed form.

Instead of simply using Y3 as an estimator of m, let us also compute the
probability that the random interval (Y1,Y5) includes m. That is, let us determine
P(Y1 < m < Y5). Doing this is easy if we say that we have success if an individual
observation—say, X—is less than m; then the probability of success on one of the
independent trials is P(X < m) = 0.5. In order for the first order statistic Y1 to be
less thanm and the last order statistic Y5 to be greater thanm, we must have at least
one success, but not five successes. That is,

P(Y1 < m < Y5) =
4∑

k=1

(
5
k

)(
1
2

)k(1
2

)5−k

= 1−
(
1
2

)5
−
(
1
2

)5
= 15

16
.

So the probability that the random interval (Y1,Y5) includes m is 15/16 ≈ 0.94.
Suppose now that this random sample is actually taken and the order statistics are
observed to equal y1 < y2 < y3 < y4 < y5, respectively. Then (y1, y5) is a 94%
confidence interval for m.

It is interesting to note what happens as the sample size increases. Let Y1 <

Y2 < · · · < Yn be the order statistics of a random sample of size n from a distribution
of the continuous type. Then P(Y1 < m < Yn) is the probability that there is at least
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one “success” but not n successes, where the probability of success on each trial is
P(X < m) = 0.5. Consequently,

P(Y1 < m < Yn) =
n−1∑
k=1

(
n
k

)(
1
2

)k(1
2

)n−k

= 1−
(
1
2

)n
−
(
1
2

)n
= 1−

(
1
2

)n−1
.

This probability increases as n increases, so that the corresponding confidence
interval (y1, yn) would have the very large confidence coefficient 1 − (1/2)n−1.
Unfortunately, the interval (y1, yn) tends to get wider as n increases; thus, we are not
“pinning down”m very well. However, if we used the interval (y2, yn−1) or (y3, yn−2),
we would obtain shorter intervals, but also smaller confidence coefficients. Let us
investigate this possibility further.

With the order statistics Y1 < Y2 < · · · < Yn associated with a random sample
of size n from a continuous-type distribution, consider P(Yi < m < Yj), where i < j.
For example, we might want

P(Y2 < m < Yn−1) or P(Y3 < m < Yn−2).

On each of the n independent trials, we say that we have success if thatX is less than
m; thus, the probability of success on each trial is P(X < m) = 0.5. Consequently, to
have the ith order statistic Yi less than m and the jth order statistic greater than m,
we must have at least i successes but fewer than j successes (or else Yj < m). That is,

P(Yi < m < Yj) =
j−1∑
k=i

(
n
k

)(
1
2

)k(1
2

)n−k
= 1− α.

For particular values of n, i, and j, this probability—say, 1 − α—which is the sum
of probabilities from a binomial distribution, can be calculated directly or approx-
imated by an area under the normal pdf, provided that n is large enough. The
observed interval (yi, yj) could then serve as a 100(1 − α)% confidence interval for
the unknown distribution median.

Example
7.5-1

The lengths in centimeters of n = 9 fish of a particular species captured off the New
England coast were 32.5, 27.6, 29.3, 30.1, 15.5, 21.7, 22.8, 21.2, and 19.0. Thus, the
observed order statistics are

15.5 < 19.0 < 21.2 < 21.7 < 22.8 < 27.6 < 29.3 < 30.1 < 32.5.

Before the sample is drawn, we know that

P(Y2 < m < Y8) =
7∑

k=2

(
9
k

)(
1
2

)k(1
2

)9−k
= 0.9805− 0.0195 = 0.9610,

from Table II in Appendix B. Thus, the confidence interval (y2 = 19.0, y8 = 30.1)
for m, the median of the lengths of all fish of this species, has a 96.1% confidence
coefficient.
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So that the student need not compute many of these probabilities, Table 7.5-1
lists the necessary information for constructing confidence intervals of the form
(yi, yn+1−i) for the unknown m for sample sizes n = 5, 6, . . . , 20. The subscript i is
selected so that the confidence coefficient P(Yi < m < Yn+1−i) is greater than 90%
and as close to 95% as possible.

For sample sizes larger than 20, we approximate those binomial probabilities
with areas under the normal curve. To illustrate how good these approximations are,
we compute the probability corresponding to n = 16 in Table 7.5-1. Here, using
Table II, we have

1− α = P(Y5 < m < Y12) =
11∑
k=5

(
16
k

)(
1
2

)k(1
2

)16−k
= P(W = 5, 6, . . . , 11)

= 0.9616− 0.0384 = 0.9232,

where W is b(16, 1/2). The normal approximation gives

1− α = P(4.5 <W < 11.5) = P
(
4.5− 8

2
<

W − 8
2

<
11.5− 8

2

)
,

because W has mean np = 8 and variance np(1− p) = 4. The standardized variable
Z = (W − 8)/2 has an approximate normal distribution. Thus,

1− α ≈ �

(
3.5
2

)
−�
(−3.5

2

)
= �(1.75)−�(−1.75)
= 0.9599− 0.0401 = 0.9198.

This value compares very favorably with the probability 0.9232 recorded in
Table 7.5-1. (Note that Minitab or some other computer program can also be
used.)

Table 7.5-1 Information for confidence intervals form

n (i,n+1−i) P(Yi<m<Yn+1−i) n (i,n+1−i) P(Yi<m<Yn+1−i)

5 (1, 5) 0.9376 13 (3, 11) 0.9776

6 (1, 6) 0.9688 14 (4, 11) 0.9426

7 (1, 7) 0.9844 15 (4, 12) 0.9648

8 (2, 7) 0.9296 16 (5, 12) 0.9232

9 (2, 8) 0.9610 17 (5, 13) 0.9510

10 (2, 9) 0.9786 18 (5, 14) 0.9692

11 (3, 9) 0.9346 19 (6, 14) 0.9364

12 (3, 10) 0.9614 20 (6, 15) 0.9586
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The argument used to find a confidence interval for the median m of a distribu-
tion of the continuous type can be applied to any percentile πp. In this case, we say
that we have success on a single trial if thatX is less than πp. Thus, the probability of
success on each of the independent trials is P(X < πp) = p. Accordingly, with i < j,
1−α = P(Yi < πp < Yj) is the probability that we have at least i successes but fewer
than j successes. Hence,

1− α = P(Yi < πp < Yj) =
j−1∑
k=i

(
n
k

)
pk(1− p)n−k.

Once the sample is observed and the order statistics determined, the known interval
(yi, yj) could serve as a 100(1−α)% confidence interval for the unknown distribution
percentile πp.

Example
7.5-2

Let the following numbers represent the order statistics of the n = 27 observations
obtained in a random sample from a certain population of incomes (measured in
hundreds of dollars):

261 269 271 274 279 280 283 284 286

287 292 293 296 300 304 305 313 321

322 329 341 343 356 364 391 417 476

Say we are interested in estimating the 25th percentile, π0.25, of the population.
Since (n + 1)p = 28(1/4) = 7, the seventh order statistic, namely, y7 = 283,
would be a point estimate of π0.25. To find a confidence interval for π0.25, let us
move down and up a few order statistics from y7—say, to y4 and y10. What is the
confidence coefficient associated with the interval (y4, y10)? Before the sample was
drawn, we had

1− α = P(Y4 < π0.25 < Y10) =
9∑

k=4

(
27
k

)
(0.25)k(0.75)27−k = 0.8201.

For the normal approximation, we useW, which is b(27, 1/4) with mean 27/4 = 6.75
and variance 81/16. Hence,

1− α = P(4 ≤W ≤ 9) = P(3.5 <W < 9.5)

≈ �

(
9.5− 6.75

9/4

)
−�
(
3.5− 6.75

9/4

)

= �

(
11
9

)
−�
(
−13

9

)
= 0.8149.

Thus, (y4 = 274, y10 = 287) is an 82.01% (or approximate 81.49%) confidence
interval for π0.25. Note that we could choose other intervals, such as (y3 = 271,
y11 = 292), and these would have different confidence coefficients. The persons
involved in the study must select the desired confidence coefficient, and then
the appropriate order statistics are taken, usually quite symmetrically about the
(n+ 1)pth order statistic.
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When the number of observations is large, it is important to be able to determine
the order statistics rather easily. As illustrated in the next example, a stem-and-leaf
diagram, as introduced in Section 6.2, can be helpful in determining the needed order
statistics.

Example
7.5-3

The measurements of butterfat produced by n = 90 cows during a 305-day milk
production period following their first calf are summarized in Table 7.5-2, in which
each leaf consists of two digits. From this display, it is quite easy to see that y8 = 392.

Table 7.5-2 Ordered stem-and-leaf diagram of butterfat production

Stems Leaves

2s 74

2•
3∗
3t 27 39

3f 45 50

3s

3• 80 88 92 94 95

4∗ 17 18

4t 21 22 27 34 37 39

4f 44 52 53 53 57 58

4s 60 64 66 70 70 72 75 78

4• 81 86 89 91 92 94 96 97 99

5∗ 00 00 01 02 05 09 10 13 13 16

5t 24 26 31 32 32 37 37 39

5f 40 41 44 55

5s 61 70 73 74

5• 83 83 86 93 99

6∗ 07 08 11 12 13 17 18 19

6t 27 28 35 37

6f 43 43 45

6s 72

6• 91 96
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It takes a little more work to show that y38 = 494 and y53 = 526 creates an interval
(494, 526) which serves as a confidence interval for the unknown median m of all
butterfat production for the given breed of cows. Its confidence coefficient is

P(Y38 < m < Y53) =
52∑

k=38

(
90
k

)(
1
2

)k(1
2

)90−k

≈ �

(
52.5− 45√

22.5

)
−�
(
37.5− 45√

22.5

)
= �(1.58)−�(−1.58) = 0.8858.

Similarly, (y17 = 437, y29 = 470) is a confidence interval for the first quartile,
π0.25, with confidence coefficient

P(Y17 < π0.25 < Y29) ≈ �

(
28.5− 22.5√

16.875

)
−�
(
16.5− 22.5√

16.875

)
= �(1.46)−�(−1.46) = 0.8558.

Using the binomial distribution, the confidence coefficients are 0.8867 and 0.8569,
respectively.

It is interesting to compare the length of a confidence interval for the mean
μ obtained with x ± tα/2(n−1)(s/

√
n ) against the length of a 100(1 − α)% confi-

dence interval for the median m obtained with the distribution-free techniques of
this section. Usually, if the sample arises from a distribution that does not deviate
too much from the normal, the confidence interval based upon x is much shorter.
After all, we assume much more when we create that confidence interval. With the
distribution-free method, all we assume is that the distribution is of the continuous
type. So if the distribution is highly skewed or heavy-tailed so that outliers could
exist, a distribution-free technique is safer and much more robust. Moreover, the
distribution-free technique provides a way to get confidence intervals for various
percentiles, and investigators are often interested in such intervals.

Exercises

7.5-1. Let Y1 < Y2 < Y3 < Y4 < Y5 < Y6 be the order
statistics of a random sample of size n = 6 from a distri-
bution of the continuous type having (100p)th percentile
πp. Compute

(a) P(Y2 < π0.5 < Y5).

(b) P(Y1 < π0.25 < Y4).

(c) P(Y4 < π0.9 < Y6).

7.5-2. For n = 12 year-2007 model sedans whose horse-
power is between 290 and 390, the following measure-
ments give the time in seconds for the car to go from 0
to 60 mph:

6.0 6.3 5.0 6.0 5.7 5.9 6.8 5.5 5.4 4.8 5.4 5.8

(a) Find a 96.14% confidence interval for the median, m.

(b) The interval (y1, y7) could serve as a confidence
interval for π0.3. Find it and give its confidence
coefficient.

7.5-3. A sample of n = 9 electrochromic mirrors was
used to measure the following low-end reflectivity
percentages:

7.12 7.22 6.78 6.31 5.99 6.58 7.80 7.40 7.05

(a) Find the endpoints for an approximate 95% confi-
dence interval for the median,m.

(b) The interval (y3, y7) could serve as a confidence inter-
val form. Find it and give its confidence coefficient.
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7.5-4. Let m denote the median weight of “80-pound”
bags of water softener pellets. Use the following random
sample of n = 14 weights to find an approximate 95%
confidence interval form:

80.51 80.28 80.40 80.35 80.38 80.28 80.27

80.16 80.59 80.56 80.32 80.27 80.53 80.32

(a) Find a 94.26% confidence interval for m.

(b) The interval (y6, y12) could serve as a confidence
interval for π0.6. What is its confidence coefficient?

7.5-5. A biologist who studies spiders selected a ran-
dom sample of 20 male green lynx spiders (a spider that
does not weave a web, but chases and leaps on its prey)
and measured the lengths (in millimeters) of one of the
front legs of the 20 spiders. Use the following measure-
ments to construct a confidence interval for m that has a
confidence coefficient about equal to 0.95:

15.10 13.55 15.75 20.00 15.45

13.60 16.45 14.05 16.95 19.05

16.40 17.05 15.25 16.65 16.25

17.75 15.40 16.80 17.55 19.05

7.5-6. A company manufactures mints that have a label
weight of 20.4 grams. The company regularly samples
from the production line and weighs the selected mints.
During two mornings of production it sampled 81 mints,
obtaining the following weights:

21.8 21.7 21.7 21.6 21.3 21.6 21.5 21.3 21.2

21.0 21.6 21.6 21.6 21.5 21.4 21.8 21.7 21.6

21.6 21.3 21.9 21.9 21.6 21.0 20.7 21.8 21.7

21.7 21.4 20.9 22.0 21.3 21.2 21.0 21.0 21.9

21.7 21.5 21.5 21.1 21.3 21.3 21.2 21.0 20.8

21.6 21.6 21.5 21.5 21.2 21.5 21.4 21.4 21.3

21.2 21.8 21.7 21.7 21.6 20.5 21.8 21.7 21.5

21.4 21.4 21.9 21.8 21.7 21.4 21.3 20.9 21.9

20.7 21.1 20.8 20.6 20.6 22.0 22.0 21.7 21.6

(a) Construct an ordered stem-and-leaf display using
stems of 20f , 20s, 20•, 21∗, . . . , 22∗.

(b) Find (i) the three quartiles, (ii) the 60th percentile, and
(iii) the 15th percentile.

(c) Find approximate 95% confidence intervals for (i)
π0.25, (ii) m = π0.5, and (iii) π0.75.

7.5-7. Here are the weights (in grams) of 25 indicator
housings used on gauges (see Exercise 6.2-8):

102.0 106.3 106.6 108.8 107.7

106.1 105.9 106.7 106.8 110.2

101.7 106.6 106.3 110.2 109.9

102.0 105.8 109.1 106.7 107.3

102.0 106.8 110.0 107.9 109.3

(a) List the observations in order of magnitude.

(b) Give point estimates of π0.25,m, and π0.75.

(c) Find the following confidence intervals and, from
Table II in Appendix B, state the associated confi-
dence coefficient:
(i) (y3, y10), a confidence interval for π0.25.
(ii) (y9, y17), a confidence interval for the medianm.
(iii) (y16, y23), a confidence interval for π0.75.

(d) Use x ± tα/2(24)(s/
√
25 ) to find a confidence inter-

val for μ, whose confidence coefficient corresponds
to that of (c), part (ii). Compare these two confidence
intervals of the middles.

7.5-8. The biologist of Exercise 7.5-5 also selected a ran-
dom sample of 20 female green lynx spiders andmeasured
the length (again in millimeters) of one of their front legs.
Use the following data to construct a confidence interval
form that has a confidence coefficient about equal to 0.95:

15.85 18.00 11.45 15.60 16.10

18.80 12.85 15.15 13.30 16.65

16.25 16.15 15.25 12.10 16.20

14.80 14.60 17.05 14.15 15.85

7.5-9. Let X equal the amount of fluoride in a cer-
tain brand of toothpaste. The specifications are 0.85–
1.10mg/g. Table 6.1-3 lists 100 such measurements.

(a) Give a point estimate of the medianm = π0.50.

(b) Find an approximate 95% confidence interval for the
medianm. If possible, use a computer to find the exact
confidence level.

(c) Give a point estimate for the first quartile.

(d) Find an approximate 95% confidence interval for the
first quartile and, if possible, give the exact confidence
coefficient.

(e) Give a point estimate for the third quartile.

(f) Find an approximate 95% confidence interval for the
third quartile and, if possible, give the exact confi-
dence coefficient.

7.5-10. When placed in solutions of varying ionic
strength, paramecia grow blisters in order to counter-
act the flow of water. The following 60 measurements in
microns are blister lengths:
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7.42 5.73 3.80 5.20 11.66 8.51 6.31 8.49

10.31 6.92 7.36 5.92 6.74 8.93 9.61 11.38

12.78 11.43 6.57 13.50 10.58 8.03 10.07 8.71

10.09 11.16 7.22 10.10 6.32 10.30 10.75 11.51

11.55 11.41 9.40 4.74 6.52 12.10 6.01 5.73

7.57 7.80 6.84 6.95 8.93 8.92 5.51 6.71

10.40 13.44 9.33 8.57 7.08 8.11 13.34 6.58

8.82 7.70 12.22 7.46

(a) Construct an ordered stem-and-leaf diagram.

(b) Give a point estimate of the medianm = π0.50.

(c) Find an approximate 95% confidence interval for m.

(d) Give a point estimate for the 40th percentile, π0.40.

(e) Find an approximate 90% confidence interval for
π0.40.

7.5-11. Using the weights of Verica’s 39 gold coins given
in Example 6.2-4, find approximate 95% confidence inter-
vals for π0.25, π0.5, and π0.75. Give the exact confidence
coefficients for the intervals.

7.5-12. Let Y1 < Y2 < · · · < Y8 be the order statistics of
eight independent observations from a continuous-type
distribution with 70th percentile π0.7 = 27.3.

(a) Determine P(Y7 < 27.3).

(b) Find P(Y5 < 27.3 < Y8).

7.6* MORE REGRESSION
In this section, we develop confidence intervals for important quantities in the linear
regression model using the notation and assumptions of Section 6.5. It can be shown
(Exercise 7.6-13) that

n∑
i=1

[Yi − α − β(xi − x )]2 =
n∑

i=1
{( α̂ − α)+ ( β̂ − β)(xi − x )

+ [Yi − α̂ − β̂(xi − x )]}2

= n( α̂ − α)2 + ( β̂ − β)2
n∑

i=1
(xi − x )2

+
n∑

i=1
[Yi − α̂ − β̂(xi − x )]2. (7.6-1)

From the fact that Yi, α̂, and β̂ have normal distributions, it follows that each of

[Yi − α − β(xi − x )]2

σ 2
,

( α̂ − α)2[
σ 2

n

] , and
( β̂ − β)2[

σ 2∑n
i=1 (xi − x )2

]
has a chi-square distribution with one degree of freedom. Since Y1,Y2, . . . ,Yn are
mutually independent, ∑n

i=1 [Yi − α − β(xi − x )]2

σ 2

is χ2(n). That is, the left-hand member of Equation 7.6-1 divided by σ 2 is χ2(n) and
is equal to the sum of two χ2(1) variables and∑n

i=1 [Yi − α̂ − β̂(xi − x )]2

σ 2
= nσ̂ 2

σ 2
≥ 0.

Thus, we might guess that nσ̂ 2/σ 2 is χ2(n−2). This is true, and moreover, α̂, β̂, and σ̂ 2

are mutually independent. [For a proof, see Hogg, McKean, and Craig, Introduction
to Mathematical Statistics, 7th ed. (Upper Saddle River, NJ: Prentice Hall, 2013).]
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Suppose now that we are interested in forming a confidence interval for β, the
slope of the line. We can use the fact that

T1 =

√√√√ n∑
i=1

(xi − x )2
(
β̂ − β
σ

)
√

nσ̂ 2

σ 2(n− 2)

= β̂ − β√
nσ̂ 2

(n− 2)
∑n

i=1 (xi − x )2

has a t distribution with n− 2 degrees of freedom. Therefore,

P

⎡⎢⎢⎢⎢⎣−tγ /2(n−2) ≤ β̂ − β√
nσ̂ 2

(n− 2)
∑n

i=1 (xi − x )2

≤ tγ /2(n−2)

⎤⎥⎥⎥⎥⎦ = 1− γ ,

and it follows that⎡⎣β̂ − tγ /2(n−2)

√
nσ̂ 2

(n− 2)
∑n

i=1 (xi − x )2
,

β̂ + tγ /2(n−2)

√
nσ̂ 2

(n− 2)
∑n

i=1 (xi − x )2

⎤⎦
is a 100(1− γ )% confidence interval for β.

Similarly,

T2 =

√
n( α̂ − α)
σ√
nσ̂ 2

σ 2(n− 2)

= α̂ − α√
σ̂ 2

n− 2

has a t distribution with n − 2 degrees of freedom. Thus, T2 can be used to make
inferences about α. (See Exercise 7.6-14.) The fact that nσ̂ 2/σ 2 has a chi-square
distribution with n− 2 degrees of freedom can be used to make inferences about the
variance σ 2. (See Exercise 7.6-15.)

We have noted that Ŷ = α̂ + β̂(x− x ) is a point estimate for the mean of Y for
some given x, or we could think of this as a prediction of the value of Y for this given
x. But how close is Ŷ to the mean of Y or to Y itself? We shall now find a confidence
interval for α+β(x−x ) and a prediction interval for Y, given a particular value of x.

To find a confidence interval for

E(Y) = μ(x) = α + β(x− x ),

let

Ŷ = α̂ + β̂ (x− x ).

Recall that Ŷ is a linear combination of normally and independently distributed
random variables α̂ and β̂, so Ŷ has a normal distribution. Furthermore,

E(Ŷ) = E[ α̂ + β̂ (x− x )]

= α + β(x− x )
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and

Var(Ŷ) = Var[̂α + β̂ (x− x )]

= σ 2

n
+ σ 2∑n

i=1 (xi − x )2
(x− x )2

= σ 2

[
1
n
+ (x− x )2∑n

i=1 (xi − x )2

]
.

Recall that the distribution of nσ̂ 2/σ 2 is χ2(n−2). Since α̂ and β̂ are independent of
σ̂ 2, we can form the t statistic

T =

α̂ + β̂(x− x )− [α + β(x− x )]

σ

√
1
n
+ (x− x )2∑n

i=1 (xi − x )2√
nσ̂ 2

(n− 2)σ 2

,

which has a t distribution with r = n−2 degrees of freedom. Next we select tγ /2(n−2)
from Table VI in Appendix B so that

P[−tγ /2(n−2) ≤ T ≤ tγ /2(n−2)] = 1− γ .
This becomes

P[̂α + β̂(x− x )− ctγ /2(n−2) ≤ α + β(x− x )

≤ α̂ + β̂(x− x )+ ctγ /2(n−2)]

= 1− γ ,
where

c =
√

nσ̂ 2

n− 2

√
1
n
+ (x− x )2∑n

i=1(xi − x )2
.

Thus, the endpoints for a 100(1− γ )% confidence interval for μ(x) = α + β(x− x )
are

α̂ + β̂(x− x )± ctγ /2(n−2).

Note that the width of this interval depends on the particular value of x, because c
depends on x. (See Example 7.6-1.)

We have used (x1, y1), (x2, y2), . . . , (xn, yn) to estimate α and β. Suppose that we
are given a value of x, say, xn+1. A point estimate of the corresponding value of Y is

ŷn+1 = α̂ + β̂(xn+1 − x ).

However, ŷn+1 is just one possible value of the random variable

Yn+1 = α + β(xn+1 − x )+ εn+1.
What can we say about possible values for Yn+1? We shall now obtain a prediction
interval for Yn+1 when x = xn+1 that is similar to the confidence interval for the
mean of Y when x = xn+1.

We have

Yn+1 = α + β(xn+1 − x )+ εn+1,
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where εn+1 is N(0, σ 2). Now,

W = Yn+1 − α̂ − β̂ (xn+1 − x )

is a linear combination of normally and independently distributed random variables,
soW has a normal distribution. The mean of W is

E(W) = E[Yn+1 − α̂ − β̂ (xn+1 − x )]

= α + β(xn+1 − x )− α − β(xn+1 − x ) = 0.

Since Yn+1, α̂ and β̂ are independent, the variance of W is

Var(W) = σ 2 + σ 2

n
+ σ 2∑n

i=1 (xi − x )2
(xn+1 − x )2

= σ 2

[
1+ 1

n
+ (xn+1 − x )2∑n

i=1 (xi − x )2

]
.

Recall that nσ̂ 2/[(n− 2)σ 2] is χ2(n−2). Since Yn+1, α̂, and β̂ are independent of σ̂ 2,
we can form the t statistic

T =

Yn+1 − α̂ − β̂ (xn+1 − x )

σ

√
1+ 1

n
+ (xn+1 − x )2∑n

i=1 (xi − x )2√
nσ̂ 2

(n− 2)σ 2

,

which has a t distribution with r = n − 2 degrees of freedom. Now we select a
constant tγ /2(n−2) from Table VI in Appendix B so that

P[−tγ /2(n−2) ≤ T ≤ tγ /2(n−2)] = 1− γ .
Solving this inequality for Yn+1, we have

P[̂α + β̂ (xn+1 − x )− d tγ /2(n−2) ≤ Yn+1
≤ α̂ + β̂(xn+1 − x )+ dtγ /2(n−2)]

= 1− γ ,
where

d =
√

nσ̂ 2

n− 2

√
1+ 1

n
+ (xn+1 − x )2∑n

i=1(xi − x )2
.

Thus, the endpoints for a 100(1− γ )% prediction interval for Yn+1 are

α̂ + β̂(xn+1 − x )± dtγ /2(n−2).

Observe that

d2 = c2 + nσ̂ 2

n− 2

when xn+1 = x, implying that the 100(1− γ )% prediction interval for Y at X = x is
somewhat wider than the 100(1−γ )% prediction interval forμ(x). This makes sense,
since the difference between one observation of Y (at a given X) and its predictor
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tends to vary more than the difference between the mean of the entire population
of Y values (at the same X) and its estimator.

The collection of all 100(1−γ )% confidence intervals for {μ(x) : −∞ < x <∞}
is called a pointwise 100(1− γ )% confidence band for μ(x). Similarly, the collection
of all 100(1 − γ )% prediction intervals for {Y(x) = α + βx + ε : −∞ < x < ∞} is
called a pointwise 100(1 − γ )% prediction band for Y. Note, from the expressions
for c and d in the confidence and prediction intervals, respectively, that these bands
are narrowest at x = x.

We shall now use the data in Example 6.5-1 to illustrate a 95% confidence inter-
val for μ(x) and a 95% prediction interval for Y for a given value of x. To find such
intervals, we use Equations 6.5-1, 6.5-2, and 6.5-4.

Example
7.6-1

To find a 95% confidence interval for μ(x) using the data in Example 6.5-1, note
that we have already found that x = 68.3, α̂ = 81.3, β̂ = 561.1/756.1 = 0.7421, and
σ̂ 2 = 21.7709. We also need

n∑
i=1

(xi − x )2 =
n∑

i=1
x2i −

(
1
n

)( n∑
i=1

xi

)2

= 47, 405− 6832

10
= 756.1.

For 95% confidence, t0.025(8) = 2.306. When x = 60, the endpoints for a 95%
confidence interval for μ(60) are

81.3+ 0.7421(60− 68.3) ±
⎡⎣√10(21.7709)

8

√
1
10
+ (60− 68.3)2

756.1

⎤⎦(2.306),
or

75.1406 ± 5.2589.

Similarly, when x = 70, the endpoints for a 95% confidence interval for μ(70) are

82.5616 ± 3.8761.

Note that the lengths of these intervals depend on the particular value of x. A point-
wise 95% confidence band for μ(x) is graphed in Figure 7.6-1(a) along with the
scatter diagram and ŷ = α̂ + β̂ (x− x ).

The endpoints for a 95% prediction interval for Y when x = 60 are

81.3+ 0.7421(60− 68.3) ±
⎡⎣√10(21.7709)

8

√
1.1+ (60− 68.3)2

756.1

⎤⎦(2.306),
or

75.1406 ± 13.1289.

Note that this interval is much wider than the confidence interval for μ(60). In
Figure 7.6-1(b), the pointwise 95% prediction band for Y is graphed along with the
scatter diagram and the least squares regression line.
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Figure 7.6-1 A pointwise 95% (a) confidence band for μ(x) and (b) prediction band for Y

We now generalize the simple regression model to the multiple regression case.
Suppose we observe several x-values—say, x1, x2, . . . , xk—along with the y-value. For
example, suppose that x1 equals the student’s ACT composite score, x2 equals the
student’s high school class rank, and y equals the student’s first-year GPA in col-
lege. We want to estimate a regression function E(Y) = μ(x1, x2, . . . , xk) from some
observed data. If

μ(x1, x2, . . . , xk) = β1x1 + β2x2 + · · · + βkxk,

then we say that we have a linear model because this expression is linear in the
coefficients β1,β2, . . . ,βk.

To illustrate, note that the model in Section 6.5 is linear in α = β1 and β = β2,
with x1 = 1 and x2 = x, giving the mean α + βx. (For convenience, there the mean
of the x-values was subtracted from x.) Suppose, however, that we had wished to
use the cubic function β1 + β2x + β3x2 + β4x3 as the mean. This cubic expression
still provides a linear model (i.e., linear in the β-values), and we would take x1 = 1,
x2 = x, x3 = x2, and x4 = x3.

Say our n observation points are

(x1j, x2j, . . . , xkj, yj), j = 1, 2, . . . , n.

To fit the linear model β1x1 + β2x2 + · · · + βkxk by the method of least squares, we
minimize

G =
n∑

j=1
(yj − β1x1j − β2x2j − · · · − βkxkj)2.

If we equate the k first order partial derivatives

∂G
∂βi

=
n∑

j=1
(−2)(yj − β1x1j − β2x2j − · · · − βkxkj)(xij), i = 1, 2, . . . ,k,
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to zero, we obtain the k normal equations

β1

n∑
j=1

x21j + β2

n∑
j=1

x1jx2j + · · · + βk

n∑
j=1

x1jxkj =
n∑

j=1
x1jyj,

β1

n∑
j=1

x2jx1j + β2

n∑
j=1

x22j + · · · + βk

n∑
j=1

x2jxkj =
n∑

j=1
x2jyj,

...
...

. . .
...

...

β1

n∑
j=1

xkjx1j + β2

n∑
j=1

xkjx2j + · · · + βk

n∑
j=1

x2kj =
n∑

j=1
xkjyj.

The solution of the preceding k equations provides the least squares estimates of
β1,β2, . . . , βk. These estimates are also maximum likelihood estimates of β1,β2, . . . ,
βk, provided that the random variables Y1,Y2, . . . ,Yn are mutually independent and
Yj is N(β1x1j + β2x2j + · · · + βkxkj, σ 2), j = 1, 2, . . . ,n.

Example
7.6-2

By the method of least squares, we fit y = β1x1 + β2x2 + β3x3 to the five observed
points (x1, x2, x3, y):

(1, 1, 0, 4), (1, 0, 1, 3), (1, 2, 3, 2), (1, 3, 0, 6), (1, 0, 0, 1).

Note that x1 = 1 in each point, so we are really fitting y = β1 + β2x2 + β3x3. Since
5∑

j=1
x21j = 5,

5∑
j=1

x1jx2j = 6,
5∑

j=1
x1jx3j = 4,

5∑
j=1

x1jyj = 16,

5∑
j=1

x2jx1j = 6,
5∑

j=1
x22j = 14,

5∑
j=1

x2jx3j = 6,
5∑

j=1
x2jyj = 26,

5∑
j=1

x3jx1j = 4,
5∑

j=1
x3jx2j = 6,

5∑
j=1

x23j = 10,
5∑

j=1
x3jyj = 9,

the normal equations are

5β1 + 6β2 + 4β3 = 16,

6β1 + 14β2 + 6β3 = 26,

4β1 + 6β2 + 10β3 = 9.

Solving these three linear equations in three unknowns, we obtain

β̂1 = 274
112

, β̂2 = 127
112

, β̂3 = − 85
112

.

Thus, the least squares fit is

y = 274x1 + 127x2 − 85x3
112

.

If x1 always equals 1, then the equation reads

y = 274+ 127x2 − 85x3
112

.
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It is interesting to observe that the usual two-sample problem is actually a lin-
ear model. Let β1 = μ1 and β2 = μ2, and consider n pairs of (x1, x2) that equal
(1, 0) and m pairs that equal (0, 1). This would require each of the first n variables
Y1,Y2, . . . ,Yn to have the mean

β1 · 1+ β2 · 0 = β1 = μ1

and the next m variables Yn+1,Yn+2, . . . ,Yn+m to have the mean

β1 · 0+ β2 · 1 = β2 = μ2.

This is the background of the two-sample problem, but with the usualX1,X2, . . . ,Xn
and Y1,Y2, . . . ,Ym replaced by Y1,Y2, . . . ,Yn and Yn+1,Yn+2, . . . ,Yn+m,
respectively.

Exercises

7.6-1. The mean of Y when x = 0 in the simple lin-
ear regression model is α − β x = α1. The least squares
estimator of α1 is α̂ − β̂ x = α̂1.

(a) Find the distribution of α̂1 under the usual model
assumptions.

(b) Obtain an expression for a 100(1 − γ )% two-sided
confidence interval for α1.

7.6-2. Obtain a two-sided 100(1 − γ )% prediction inter-
val for the average of m future independent observations
taken at the same X-value, x∗.

7.6-3. For the data given in Exercise 6.5-3, with the usual
assumptions,

(a) Find a 95% confidence interval for μ(x) when x =
68, 75, and 82.

(b) Find a 95% prediction interval for Y when x = 68, 75,
and 82.

7.6-4. For the data given in Exercise 6.5-4, with the usual
assumptions,

(a) Find a 95% confidence interval forμ(x) when x = 2, 3,
and 4.

(b) Find a 95% prediction interval for Y when x = 2, 3,
and 4.

7.6-5. For the cigarette data in Exercise 6.5-7, with the
usual assumptions,

(a) Find a 95% confidence interval for μ(x) when x =
5, 10, and 15.

(b) Determine a 95% prediction interval for Y when x =
5, 10, and 15.

7.6-6. A computer center recorded the number of pro-
grams it maintained during each of 10 consecutive years.

(a) Calculate the least squares regression line for the data
shown.

(b) Plot the points and the line on the same graph.

(c) Find a 95% prediction interval for the number of
programs in year 11 under the usual assumptions.

Year Number of Programs

1 430

2 480

3 565

4 790

5 885

6 960

7 1200

8 1380

9 1530

10 1591

7.6-7. For the ACT scores in Exercise 6.5-6, with the usual
assumptions,

(a) Find a 95% confidence interval for μ(x) when x =
17, 20, 23, 26, and 29.

(b) Determine a 90% prediction interval for Y when x =
17, 20, 23, 26, and 29.

7.6-8. By the method of least squares, fit the regres-
sion plane y = β1 + β2x1 + β3x2 to the following 12
observations of (x1, x2, y): (1, 1, 6), (0, 2, 3), (3, 0, 10),
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(–2, 0, –4), (–1, 2, 0), (0, 0, 1), (2, 1, 8), (–1, –1, –2),
(0, –3, –3), (2, 1, 5), (1, 1, 1), (–1, 0, –2).

7.6-9. By the method of least squares, fit the cubic equa-
tion y = β1+β2x+β3x2+β4x3 to the following 10 observed
data points (x, y): (0, 1), (–1, –3), (0, 3), (1, 3), (–1, –1),
(2, 10), (0, 0), (–2, –9), (–1, –2), (2, 8).

7.6-10. We would like to fit the quadratic curve y = β1 +
β2x + β3x2 to a set of points (x1, y1), (x2, y2), . . . , (xn, yn)
by the method of least squares. To do this, let

h(β1,β2,β3) =
n∑

i=1
(yi − β1 − β2xi − β3x2i )2.

(a) By setting the three first partial derivatives of h with
respect to β1, β2, and β3 equal to 0, show that β1, β2,
and β3 satisfy the following set of equations (called
normal equations), all of which are sums going from 1
to n:

β1n+ β2
∑

xi + β3
∑

x2i =
∑

yi;

β1

∑
xi + β2

∑
x2i + β3

∑
x3i =

∑
xi yi;

β1

∑
x2i + β2

∑
x3i + β3

∑
x4i =

∑
x2i yi.

(b) For the data

(6.91, 17.52) (4.32, 22.69) (2.38, 17.61) (7.98, 14.29)

(8.26, 10.77) (2.00, 12.87) (3.10, 18.63) (7.69, 16.77)

(2.21, 14.97) (3.42, 19.16) (8.18, 11.15) (5.39, 22.41)

(1.19, 7.50) (3.21, 19.06) (5.47, 23.89) (7.35, 16.63)

(2.32, 15.09) (7.54, 14.75) (1.27, 10.75) (7.33,17.42)

(8.41, 9.40) (8.72, 9.83) (6.09, 22.33) (5.30, 21.37)

(7.30, 17.36)

n = 25,
∑

xi = 133.34,
∑

x2i = 867.75,
∑

x3i =
6197.21,

∑
x4i = 46,318.88,

∑
yi = 404.22,

∑
xiyi =

2138.38, and
∑

x2i yi = 13,380.30. Show that
a = −1.88, b = 9.86, and c = −0.995.

(c) Plot the points and the linear regression line for these
data.

(d) Calculate and plot the residuals. Does linear regres-
sion seem to be appropriate?

(e) Show that the least squares quadratic regression line
is ŷ = −1.88+ 9.86x− 0.995x2.

(f) Plot the points and this least squares quadratic regres-
sion curve on the same graph.

(g) Plot the residuals for quadratic regression and com-
pare this plot with that in part (d).

7.6-11. (The information presented in this exercise comes
from theWestview Blueberry Farm and National Oceanic
and Atmospheric Administration Reports [NOAA].) For
the following paired data, (x, y), x gives the Holland,
Michigan, rainfall for June, and y gives the blueberry
production in thousands of pounds from the Westview
Blueberry Farm:

(4.11, 56.2) (5.49, 45.3) (5.35, 31.0) (6.53, 30.1)

(5.18, 40.0) (4.89, 38.5) (2.09, 50.0) (1.40, 45.8)

(4.52, 45.9) (1.11, 32.4) (0.60, 18.2) (3.80, 56.1)

The data are from 1971 to 1989 for those years in which
the last frost occurred May 10 or earlier.

(a) Find the correlation coefficient for these data.

(b) Find the least squares regression line.

(c) Make a scatter plot of the data with the least squares
regression line on the plot.

(d) Calculate and plot the residuals. Does linear regres-
sion seem to be appropriate?

(e) Find the least squares quadratic regression curve.

(f) Calculate and plot the residuals. Does quadratic
regression seem to be appropriate?

(g) Give a short interpretation of your results.

7.6-12. Explain why the model μ(x) = β1eβ2x is not a
linear model. Would taking the logarithms of both sides
yield a linear model for lnμ(x)?

7.6-13. Show that
n∑

i=1
[Yi − α − β(xi − x )]2

= n( α̂ − α)2 + ( β̂ − β)2
n∑

i=1
(xi − x )2

+
n∑

i=1
[Yi − α̂ − β̂(xi − x )]2.

7.6-14. Show that the endpoints for a 100(1− γ )% confi-
dence interval for α are

α̂ ± tγ /2(n−2)

√
σ̂ 2

n− 2
.

7.6-15. Show that a 100(1 − γ )% confidence interval for
σ 2 is [

nσ̂ 2

χ2
γ /2(n−2)

,
nσ̂ 2

χ2
1−γ /2(n−2)

]
.

7.6-16. Find 95% confidence intervals for α, β, and σ 2 for
the predicted and earned grades data in Exercise 6.5-4.
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7.6-17. Find 95% confidence intervals for α, β, and σ 2 for
the midterm and final exam scores data in Exercise 6.5-3.

7.6-18. Using the cigarette data in Exercise 6.5-7, find
95% confidence intervals for α, β, and σ 2 under the usual
assumptions.

7.6-19. Using the data in Exercise 6.5-8(a), find 95%
confidence intervals for α, β, and σ 2.

7.6-20. Using the ACT scores in Exercise 6.5-6, find 95%
confidence intervals for α, β, and σ 2 under the usual
assumptions.

7.7* RESAMPLING METHODS
Sampling and resampling methods have become more useful in recent years due to
the power of computers. These methods are even used in introductory courses to
convince students that statistics have distributions—that is, that statistics are random
variables with distributions. At this stage in the book, the reader should be convinced
that this is true, although we did use some sampling in Section 5.6 to help sell the idea
that the sample mean has an approximate normal distribution.

Resampling methods, however, are used for more than showing that statistics
have certain distributions. Rather, they are needed in finding approximate distribu-
tions of certain statistics that are used to make statistical inferences. We already
know a great deal about the distribution of X, and resampling methods are not
needed for X. In particular, X has an approximate normal distribution with mean μ
and standard deviation σ/

√
n. Of course, if the latter is unknown, we can estimate

it by s/
√
n and note that (X − μ)/(s/√n ) has an approximate N(0, 1) distribution,

provided that the sample size is large enough and the underlying distribution is not
too badly skewed with a long, heavy tail.

We know something about the distribution of S2 if the random sample arises
from a normal distribution or one fairly close to it. However, the statistic S2 is not
very robust, in that its distribution changes a great deal as the underlying distribution
changes. It is not like X, which always has an approximate normal distribution, pro-
vided that the mean μ and variance σ 2 of the underlying distribution exist. So what
do we do about distributions of statistics like the sample variance S2, whose distribu-
tion depends so much on having a given underlying distribution? We use resampling
methods that essentially substitute computation for theory. We need to have some
idea about the distributions of these various estimators to find confidence intervals
for the corresponding parameters.

Let us now explain resampling. Suppose that we need to find the distribution of
some statistic, such as S2, but we do not believe that we are sampling from a normal
distribution. We observe the values of X1,X2, . . . ,Xn to be x1, x2, . . . , xn. Actually, if
we know nothing about the underlying distribution, then the empirical distribution
found by placing the weight 1/n on each xi is the best estimate of that distribu-
tion. Therefore, to get some idea about the distribution of S2, let us take a random
sample of size n from this empirical distribution; then we are sampling from the n
values with replacement. We compute S2 for that sample; say it is s21. We then do
it again, getting s22. And again, we compute s23. We continue to do this a large num-
ber of times, say, N, where N might be 1000, 2000, or even 10,000. Once we have
these N values of S2, we can construct a histogram, a stem-and-leaf display, or a q–q
plot—anything to help us get some information about the distribution of S2 when
the sample arises from this empirical distribution, which is an estimate of the real
underlying distribution. Clearly, we must use the computer for all of this sampling.
We illustrate the resampling procedure by using, not S2, but a statistic called the
trimmed mean.
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Although we usually do not know the underlying distribution, we state that, in
this illustration, it is of the Cauchy type, because there are certain basic ideas we
want to review or introduce for the first time. The pdf of the Cauchy is

f (x) = 1
π(1+ x2)

, −∞ < x <∞.

The cdf is

F(x) =
∫ x

−∞
1

π(1+ w2)
dw = 1

π
arctan x+ 1

2
, −∞ < x <∞.

If we want to generate some X-values that have this distribution, we let Y have the
uniform distribution U(0, 1) and define X by

Y = F(X) = 1
π
arctanX + 1

2

or, equivalently,

X = tan
[
π

(
Y − 1

2

)]
.

We can generate 40 values of Y on the computer and then calculate the 40 values
of X. Let us now add θ = 5 to each X-value to create a sample from a Cauchy
distribution with a median of 5. That is, we have a random sample of 40 W-values,
whereW = X+5. We will consider some statistics used to estimate the median, θ , of
this distribution. Of course, usually the value of the median is unknown, but here we
know that it is equal to θ = 5, and our statistics are estimates of this known number.
These 40 values of W are as follows, after ordering:

−7.34 −5.92 −2.98 0.19 0.77 0.95 2.86 3.17 3.76 4.20

4.20 4.27 4.31 4.42 4.60 4.73 4.84 4.87 4.90 4.96

4.98 5.00 5.09 5.09 5.14 5.22 5.23 5.42 5.50 5.83

5.94 5.95 6.00 6.01 6.24 6.82 9.62 10.03 18.27 93.62

It is interesting to observe that many of these 40 values are between 3 and 7 and
hence are close to θ = 5; it is almost as if they had arisen from a normal distribution
with mean μ = 5 and σ 2 = 1. But then we note the outliers; these very large or
small values occur because of the heavy and long tails of the Cauchy distribution
and suggest that the sample mean X is not a very good estimator of the middle. And
it is not in this sample, because x = 6.67. In amore theoretical course, it can be shown
that, due to the fact that the mean μ and the variance σ 2 do not exist for a Cauchy
distribution,X is not any better than a single observationXi in estimating themedian
θ . The sample median m̃ is a much better estimate of θ , as it is not influenced by
the outliers. Here the median equals 4.97, which is fairly close to 5. Actually, the
maximum likelihood estimator found by maximizing

L(θ) =
40∏
i=1

1
π [1+ (xi − θ)2]

is extremely good but requires difficult numerical methods to compute. Then
advanced theory shows that, in the case of a Cauchy distribution, a trimmed mean,
found by ordering the sample, discarding the smallest and largest 3/8 = 37.5% of the



Section 7.7* Resampling Methods 349

sample, and averaging the middle 25%, is almost as good as the maximum likelihood
estimator but is much easier to compute. This trimmed mean is usually denoted by
X0.375; we use Xt for brevity, and here xt = 4.96. For this sample, it is not quite as
good as the median; but, for most samples, it is better. Trimmedmeans are often very
useful and many times are used with a smaller trimming percentage. For example,
in sporting events such as skating and diving, often the smallest and largest of the
judges’ scores are discarded.

For this Cauchy example, let us resample from the empirical distribution created
by placing the “probability” 1/40 on each of our 40 observations. With each of these
samples, we find our trimmed mean Xt. That is, we order the observations of each
resample and average the middle 25% of the order statistics—namely, the middle 10
order statistics. We do this N = 1000 times, thus obtaining N = 1000 values of Xt.
These values are summarized with the histogram in Figure 7.7-1(a).

From this resampling procedure, which is called bootstrapping, we have some
idea about the distribution if the sample arises from the empirical distribution and,
hopefully, from the underlying distribution, which is approximated by the empirical
distribution. While the distribution of the sample meanX is not normal if the sample
arises from a Cauchy-type distribution, the approximate distribution ofXt is normal.
From the histogram of trimmed mean values in Figure 7.7-1(a), that looks to be the
case. This observation is supported by the q–q plot in Figure 7.7-1(b) of the quantiles
of a standard normal distribution versus those of the 1000 xt-values: The plot is very
close to being a straight line.

How do we find a confidence interval for θ? Recall that the middle of the dis-
tribution of Xt − θ is zero. So a guess at θ would be the amount needed to move
the histogram of Xt-values over so that zero is more or less in the middle of the
translated histogram. We recognize that this histogram was generated from the orig-
inal sample X1,X2, . . . ,X40 and thus is really only an estimate of the distribution
of Xt.

We could get a point estimate of θ by moving it over until its median (or mean)
is at zero. Clearly, however, some error is incurred in doing so—and we really want
some bounds for θ as given by a confidence interval.

To find that confidence interval, let us proceed as follows: In the N = 1000
resampled values of Xt, we find two points—say, c and d—such that about 25 val-
ues are less than c and about 25 are greater than d. That is, c and d are about on
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the respective 2.5th and 97.5th percentiles of the empirical distribution of these
N = 1000 resampled Xt-values. Thus, θ should be big enough so that over 2.5%
of the Xt-values are less than c and small enough so that over 2.5% of the Xt-values
are greater than d. This requires that c < θ and θ < d; thus, [c, d] serves as an
approximate 95% confidence interval for θ as found by the percentile method. With
our bootstrapped distribution of N = 1000 Xt-values, this 95% confidence inter-
val for θ runs from 4.58 to 5.30, and these two points are marked on the histogram
and the q–q plot. Clearly, we could change this percentage to other values, such
as 90%.

This percentile method, associated with the bootstrap method, is a nonparamet-
ric procedure, as we make no assumptions about the underlying distribution. It is
interesting to compare the answer it produces with that obtained by using the order
statistics Y1 < Y2 < · · · < Y40. If the sample arises from a continuous-type dis-
tribution, then, with the use of a calculator or computer, we have, when θ is the
median,

P(Y14 < θ < Y27) =
26∑
k=14

(
40
k

)(
1
2

)40
= 0.9615.

(See Section 7.5.) Since, in our illustration, Y14 = 4.42 and Y27 = 5.23, the interval
[4.42, 5.23] is an approximate 96% confidence interval for θ . Of course, θ = 5 is
included in each of the two confidence intervals. In this case, the bootstrap confi-
dence interval is a little more symmetric about θ = 5 and somewhat shorter, but it
did require much more work.

We have now illustrated bootstrapping, which allows us to substitute computa-
tion for theory to make statistical inferences about characteristics of the underlying
distribution. This method is becoming more important as we encounter complicated
data sets that clearly do not satisfy certain underlying assumptions. For example,
consider the distribution of T = (X − μ)/(S/√n ) when the random sample arises
from an exponential distribution that has pdf f (x) = e−x, 0 < x < ∞, with mean
μ = 1. First, we will not use resampling, but we will simulate the distribution of T
when the sample size n = 16 by taking N = 1000 random samples from this known
exponential distribution. Here

F(x) =
∫ x
0
e−w dw = 1− e−x, 0 < x <∞.

So Y = F(X) means

X = − ln(1− Y)
and X has that given exponential distribution with μ = 1, provided that Y has the
uniform distribution U(0, 1). With the computer, we select n = 16 values of Y,
determine the corresponding n = 16 values of X, and, finally, compute the value
of T = (X − 1)/(S/

√
16 )—say, T1. We repeat this process over and over again,

obtaining not only T1, but also the values of T2,T3, . . . ,T1000. We have done this
and display the histogram of the 1000 T-values in Figure 7.7-2(a). Moreover the q–q
plot with quantiles of N(0, 1) on the y-axis is displayed in Figure 7.7-2(b). Both the
histogram and the q–q plot show that the distribution of T in this case is skewed to
the left.

In the preceding illustration, we knew the underlying distribution. Let us now
sample from the exponential distribution with mean μ = 1, but add a value θ to
each X. Thus, we will try to estimate the new mean θ + 1. The authors know the
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Figure 7.7-2 T observations from an exponential distribution

value of θ , but the readers do not know it at this time. The observed 16 values of this
random sample are

11.9776 9.3889 9.9798 13.4676 9.2895 10.1242 9.5798 9.3148

9.0605 9.1680 11.0394 9.1083 10.3720 9.0523 13.2969 10.5852

At this point we are trying to find a confidence interval for μ = θ + 1, and
we pretend that we do not know that the underlying distribution is exponential.
Actually, this is the case in practice: We do not know the underlying distribution. So
we use the empirical distribution as the best guess of the underlying distribution; it
is found by placing the weight 1/16 on each of the observations. The mean of this
empirical distribution is x = 10.3003. Therefore, we obtain some idea about the
distribution of T by now simulating

T = X − 10.3003

S/
√
16

with N = 1000 random samples from the empirical distribution.
We obtain t1, t2, . . . , t1000, and these values are used to construct a histogram,

shown in Figure 7.7-3(a), and a q–q plot, illustrated in Figure 7.7-3(b). These two
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figures look somewhat like those in Figure 7.7-2. Moreover, the 0.025th and 0.975th
quantiles of the 1000 t-values are c = −3.1384 and d = 1.8167, respectively.

Now we have some idea about the 2.5th and 97.5th percentiles of the T
distribution. Hence, as a very rough approximation, we can write

P

(
−3.1384 ≤ X − μ

S/
√
16
≤ 1.8167

)
≈ 0.95.

This formula leads to the rough approximate 95% confidence interval

[ x− 1.8167s/
√
16, x− (−3.1384)s/√16 ]

once the x and s of the original sample are substituted. With x = 10.3003 and
s = 1.4544, we have

[10.3003− 1.8167(1.4544)/4, 10.3003+ 3.1384(1.4544)/4] = [9.6397, 11.4414]

as a 95% approximate confidence interval for μ = θ + 1. Note that, because we
added θ = 9 to each x-value, the interval does cover θ + 1 = 10.

It is easy to see how this procedure gets its name, because it is like “pulling
yourself up by your own bootstraps,” with the empirical distribution acting as the
bootstraps.

Exercises

7.7-1. If time and computing facilities are available, con-
sider the following 40 losses, due to wind-related catastro-
phes, that were recorded to the nearest $1 million (these
data include only those losses of $2 million or more, and,
for convenience, they have been ordered and recorded in
millions of dollars):

2 2 2 2 2 2 2 2 2 2

2 2 3 3 3 3 4 4 4 5

5 5 5 6 6 6 6 8 8 9

15 17 22 23 24 24 25 27 32 43

To illustrate bootstrapping, take resamples of size n = 40
as many as N = 100 times, computing the value of
T = (X − 5)/(S/

√
40 ) each time. Here the value 5 is the

median of the original sample. Construct a histogram of
the bootstrapped values of T.

7.7-2. Consider the following 16 observed values,
rounded to the nearest tenth, from the exponential
distribution that was given in this section:

12.0 9.4 10.0 13.5 9.3 10.1 9.6 9.3

9.1 9.2 11.0 9.1 10.4 9.1 13.3 10.6

(a) Take resamples of size n = 16 from these observa-
tions about N = 200, times and compute s2 each
time. Construct a histogram of these 200 bootstrapped
values of S2.

(b) Simulate N = 200 random samples of size n = 16
from an exponential distribution with θ equal to the
mean of the data in part (a) minus 9. For each sam-
ple, calculate the value of s2. Construct a histogram of
these 200 values of S2.

(c) Construct a q–q plot of the two sets of sample vari-
ances and compare these two empirical distributions
of S2.

7.7-3. Refer to the data in Example 7.5-1 and take resam-
ples of size n = 9 exactly N = 1000 times and compute
the fifth order statistic, y5, each time.

(a) Construct a histogram of these N = 1000 fifth order
statistics.

(b) Find a point estimate of the median, π0.50.

(c) Also, calculate a 96% confidence interval for π0.50
by finding two numbers, the first of which has
(1000)(0.02) = 20 values less than it and the second
has 20 values greater than it. How does this interval
compare to the one given in that example?
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7.7-4. Refer to the data in Example 7.5-2 and take resam-
ples of size n = 27 exactly N = 500 times and compute
the seventh order statistic, y7, each time.

(a) Construct a histogram of theseN = 500 seventh order
statistics.

(b) Give a point estimate of π0.25.

(c) Find an 82% confidence interval for π0.25 by finding
two numbers, the first of which has (500)(0.09) = 45
values less than it and the second has 205 values
greater than it.

(d) How does this interval compare to the one given in
that example?

7.7-5. Let X1,X2, . . . ,X21 and Y1,Y2, . . . ,X21 be inde-
pendent random samples of sizes n = 21 and m = 21
from N(0, 1) distributions. Then F = S2X/S

2
Y has an F

distribution with 20 and 20 degrees of freedom.

(a) Illustrate this situation empirically by simulating 100
observations of F.
(i) Plot a relative frequency histogram with the
F(20, 20) pdf superimposed.

(ii) Construct a q–q plot of the quantiles of F(20, 20)
versus the order statistics of your simulated data.
Is the plot linear?

(b) Consider the following 21 observations of the N(0, 1)
random variable X:

0.1616 −0.8593 0.3105 0.3932 −0.2357 0.9697 1.3633

−0.4166 0.7540 −1.0570 −0.1287 −0.6172 0.3208 0.9637

0.2494 −1.1907 −2.4699 −0.1931 1.2274 −1.2826 −1.1532

Consider also the following 21 observations of the
N(0, 1) random variable Y:

0.4419 −0.2313 0.9233 −0.1203 1.7659 −0.2022 0.9036

−0.4996 −0.8778 −0.8574 2.7574 1.1033 0.7066 1.3595

−0.0056 −0.5545 −0.1491 −0.9774 −0.0868 1.7462 −0.2636

Sampling with replacement, resample with a sample
of size 21 from each of these sets of observations.
Calculate the value of w = s2x/s

2
y. Repeat in order to

simulate 100 observations ofW from these two empir-
ical distributions. Use the same graphical comparisons
that you used in part (a) to see if the 100 observations
represent observations from an approximate F(20, 20)
distribution.

(c) Consider the following 21 observations of the expo-
nential random variable X with mean 1:

0.6958 1.6394 0.2464 1.5827 0.0201 0.4544 0.8427

0.6385 0.1307 1.0223 1.3423 1.6653 0.0081 5.2150

0.5453 0.08440 1.2346 0.5721 1.5167 0.4843 0.9145

Consider also the following 21 observations of the
exponential random variable Y with mean 1:

1.1921 0.3708 0.0874 0.5696 0.1192 0.0164 1.6482

0.2453 0.4522 3.2312 1.4745 0.8870 2.8097 0.8533

0.1466 0.9494 0.0485 4.4379 1.1244 0.2624 1.3655

Sampling with replacement, resample with a sample
of size 21 from each of these sets of observations.
Calculate the value of w = s2x/s

2
y. Repeat in order to

simulate 100 observations ofW from these two empir-
ical distributions. Use the same graphical comparisons
that you used in part (a) to see if the 100 observations
represent observations from an approximate F(20, 20)
distribution.

7.7-6. The following 54 pairs of data give, for Old Faithful
geyser, the duration in minutes of an eruption and the
time in minutes until the next eruption:

(2.500, 72) (4.467, 88) (2.333, 62) (5.000, 87) (1.683, 57) (4.500, 94)

(4.500, 91) (2.083, 51) (4.367, 98) (1.583, 59) (4.500, 93) (4.550, 86)

(1.733, 70) (2.150, 63) (4.400, 91) (3.983, 82) (1.767, 58) (4.317, 97)

(1.917, 59) (4.583, 90) (1.833, 58) (4.767, 98) (1.917, 55) (4.433, 107)

(1.750, 61) (4.583, 82) (3.767, 91) (1.833, 65) (4.817, 97) (1.900, 52)

(4.517, 94) (2.000, 60) (4.650, 84) (1.817, 63) (4.917, 91) (4.000, 83)

(4.317, 84) (2.133, 71) (4.783, 83) (4.217, 70) (4.733, 81) (2.000, 60)

(4.717, 91) (1.917, 51) (4.233, 85) (1.567, 55) (4.567, 98) (2.133, 49)

(4.500, 85) (1.717, 65) (4.783, 102) (1.850, 56) (4.583, 86) (1.733, 62)

(a) Calculate the correlation coefficient, and construct a
scatterplot, of these data.

(b) To estimate the distribution of the correlation coef-
ficient, R, resample 500 samples of size 54 from the
empirical distribution, and for each sample, calculate
the value of R.

(c) Construct a histogram of these 500 observations of R.

(d) Simulate 500 samples of size 54 from a bivariate
normal distribution with correlation coefficient equal
to the correlation coefficient of the geyser data.
For each sample of 54, calculate the correlation
coefficient.

(e) Construct a histogram of the 500 observations of the
correlation coefficient.

(f) Construct a q–q plot of the 500 observations ofR from
the bivariate normal distribution of part (d) versus the
500 observations in part (b). Do the two distributions
of R appear to be about equal?
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HISTORICAL COMMENTS One topic among many important ones in this chap-
ter is regression, a technique that leads to amathematical model of the result of some
process in terms of some associated (explanatory) variables. We create such models
to give us some idea of the value of a response variable if we know the values of
certain explanatory variables. If we have an idea of the form of the equation relating
these variables, then we can “fit” this model to the data; that is, we can determine
approximate values for the unknown parameters in the model from the data. Now,
nomodel is exactly correct; but, as the well-known statistician George Box observed,
“Some are useful.” That is, while models may be wrong and we should check them
as best we can, they may be good enough approximations to shed some light on the
issues of interest.

Once satisfactory models are found, they may be used

1. to determine the effect of each explanatory variable (some may have very little
effect and can be dropped),

2. to estimate the response variable for given values of important explanatory
variables,

3. to predict the future, such as upcoming sales (although this sometimes should
be done with great care),

4. to often substitute a cheaper explanatory variable for an expensive one that
is difficult to obtain [such as chemical oxygen demand (COD) for biological
oxygen demand (BOD)].

The name bootstrap and the resulting technique were first used by Brad Efron
of Stanford University. Efron knew that the expression “to pull oneself up by his
or her own bootstraps” seems to come from The Surprising Adventures of Baron
Munchausen by Rudolph Erich Raspe. The baron had fallen from the sky and found
himself in a hole 9 fathoms deep and had no idea how to get out. He comments as
follows: “Looking down I observed that I had on a pair of boots with exceptionally
sturdy straps. Grasping them firmly, I pulled with all my might. Soon I had hoisted
myself to the top and stepped out on terra firma without further ado.”

Of course, in statistical bootstrapping, statisticians pull themselves up by their
bootstraps (the empirical distributions) by recognizing that the empirical distribu-
tion is the best estimate of the underlying distribution without a lot of other assump-
tions. So they use the empirical distribution as if it is the underlying distribution to
find approximate distributions of statistics of interest.


