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6.1 DESCRIPTIVE STATISTICS
In Chapter 2, we considered probability distributions of random variables whose
space S contains a countable number of outcomes: either a finite number of out-
comes or outcomes that can be put into a one-to-one correspondence with the
positive integers. Such a random variable is said to be of the discrete type, and its
distribution of probabilities is of the discrete type.

Of course, many experiments or observations of random phenomena do not
have integers or other discrete numbers as outcomes, but instead are measurements
selected from an interval of numbers. For example, you could find the length of time
that it takes when waiting in line to buy frozen yogurt. Or the weight of a “1-pound”
package of hot dogs could be any number between 0.94 pounds and 1.25 pounds.
The weight of a miniature Baby Ruth candy bar could be any number between 20
and 27 grams. Even though such times and weights could be selected from an inter-
val of values, times and weights are generally rounded off so that the data often look
like discrete data. If, conceptually, the measurements could come from an interval
of possible outcomes, we call them data from a distribution of the continuous type
or, more simply, continuous-type data.

Given a set of continuous-type data, we shall group the data into classes and
then construct a histogram of the grouped data. This will help us better visualize the
data. The following guidelines and terminology will be used to group continuous-
type data into classes of equal length (these guidelines can also be used for sets of
discrete data that have a large range).

1. Determine the largest (maximum) and smallest (minimum) observations. The
range is the difference, R = maximum − minimum.

2. In general, select from k = 5 to k = 20 classes, which are nonoverlapping inter-
vals, usually of equal length. These classes should cover the interval from the
minimum to the maximum.

3. Each interval begins and ends halfway between two possible values of the
measurements, which have been rounded off to a given number of decimal
places.
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226 Chapter 6 Point Estimation

4. The first interval should begin about as much below the smallest value as the
last interval ends above the largest.

5. The intervals are called class intervals and the boundaries are called class
boundaries. We shall denote these k class intervals by

(c0, c1], (c1, c2], . . . , (ck−1, ck].

6. The class limits are the smallest and the largest possible observed (recorded)
values in a class.

7. The class mark is the midpoint of a class.

A frequency table is constructed that lists the class intervals, the class limits, a
tabulation of the measurements in the various classes, the frequency fi of each class,
and the class marks. A column is sometimes used to construct a relative frequency
(density) histogram. With class intervals of equal length, a frequency histogram is
constructed by drawing, for each class, a rectangle having as its base the class interval
and a height equal to the frequency of the class. For the relative frequency histogram,
each rectangle has an area equal to the relative frequency fi/n of the observations
for the class. That is, the function defined by

h(x) = fi

(n)(ci − ci−1)
, for ci−1 < x ≤ ci, i = 1, 2, . . . , k,

is called a relative frequency histogram or density histogram, where fi is the fre-
quency of the ith class and n is the total number of observations. Clearly, if the class
intervals are of equal length, the relative frequency histogram, h(x), is proportional
to the frequency histogram fi, for ci−1 < x ≤ ci, i = 1, 2, . . . , k. The frequency his-
togram should be used only in those situations in which the class intervals are of
equal length. A relative frequency histogram can be treated as an estimate of the
underlying pdf.

Example
6.1-1

The weights in grams of 40 miniature Baby Ruth candy bars, with the weights
ordered, are given in Table 6.1-1.

We shall group these data and then construct a histogram to visualize the dis-
tribution of weights. The range of the data is R = 26.7 − 20.5 = 6.2. The interval
(20.5, 26.7) could be covered with k = 8 classes of width 0.8 or with k = 9 classes
of width 0.7. (There are other possibilities.) We shall use k = 7 classes of width
0.9. The first class interval will be (20.45, 21.35) and the last class interval will be
(25.85, 26.75). The data are grouped in Table 6.1-2.

A relative frequency histogram of these data is given in Figure 6.1-1. Note that
the total area of this histogram is equal to 1. We could also construct a frequency
histogram in which the heights of the rectangles would be equal to the frequen-
cies of the classes. The shape of the two histograms is the same. Later we will see

Table 6.1-1 Candy bar weights

20.5 20.7 20.8 21.0 21.0 21.4 21.5 22.0 22.1 22.5

22.6 22.6 22.7 22.7 22.9 22.9 23.1 23.3 23.4 23.5

23.6 23.6 23.6 23.9 24.1 24.3 24.5 24.5 24.8 24.8

24.9 24.9 25.1 25.1 25.2 25.6 25.8 25.9 26.1 26.7
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Table 6.1-2 Frequency table of candy bar weights

Class Interval Class Limits Tabulation Frequency (fi) h(x) Class Marks

(20.45, 21.35) 20.5–21.3 � 5 5/36 20.9

(21.35, 22.25) 21.4–22.2 4 4/36 21.8

(22.25, 23.15) 22.3–23.1 � 8 8/36 22.7

(23.15, 24.05) 23.2–24.0 � 7 7/36 23.6

(24.05, 24.95) 24.1–24.9 � 8 8/36 24.5

(24.95, 25.85) 25.0–25.8 � 5 5/36 25.4

(25.85, 26.75) 25.9–26.7 3 3/36 26.3

the reason for preferring the relative frequency histogram. In particular, we will be
superimposing on the relative frequency histogram the graph of a pdf.

Suppose that we now consider the situation in which we actually perform a
certain random experiment n times, obtaining n observed values of the random
variable—say, x1, x2, . . . , xn. Often the collection is referred to as a sample. It is pos-
sible that some of these values might be the same, but we do not worry about this at
this time. We artificially create a probability distribution by placing the weight 1/n
on each of these x-values. Note that these weights are positive and sum to 1, so we
have a distribution we call the empirical distribution, since it is determined by the
data x1, x2, . . . , xn. The mean of the empirical distribution is

n∑
i=1

xi

(
1
n

)
= 1

n

n∑
i=1

xi,

h(x)

x

0.05

0.10

0.15

0.20

0.25

 20.9  21.8  22.7  23.6  24.5  25.4  26.3

Figure 6.1-1 Relative frequency histogram of weights of
candy bars
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which is the arithmetic mean of the observations x1, x2, . . . , xn. We denote this mean
by x and call it the sample mean (or mean of the sample x1, x2, . . . , xn). That is, the
sample mean is

x = 1
n

n∑
i=1

xi,

which is, in some sense, an estimate of μ if the latter is unknown.
Likewise, the variance of the empirical distribution is

v =
n∑

i=1

(xi − x )2
(

1
n

)
= 1

n

n∑
i=1

(xi − x )2,

which can be written as

v =
n∑

i=1

x2
i

(
1
n

)
− x 2 = 1

n

n∑
i=1

x2
i − x 2,

that is, the second moment about the origin minus the square of the mean. However,
v is not called the sample variance, but

s2 =
[

n
n − 1

]
v = 1

n − 1

n∑
i=1

(xi − x )2

is, because we will see later that, in some sense, s2 is a better estimate of an unknown
σ 2 than is v. Thus, the sample variance is

s2 = 1
n − 1

n∑
i=1

(xi − x )2.

REMARK It is easy to expand the sum of squares; we have

n∑
i=1

(xi − x )2 =
n∑

i=1

x2
i −

(∑n
i=1 xi

)2

n
.

Many find that the right-hand expression makes the computation easier than first
taking the n differences, xi − x, i = 1, 2, . . . , n; squaring them; and then summing.
There is another advantage when x has many digits to the right of the decimal point.
If that is the case, then xi − x must be rounded off, and that creates an error in the
sum of squares. In the easier form, that rounding off is not necessary until the com-
putation is completed. Of course, if you are using a statistical calculator or statistics
package on the computer, all of these computations are done for you.

The sample standard deviation, s = √
s2 ≥ 0, is a measure of how dispersed the

data are from the sample mean. At this stage of your study of statistics, it is difficult
to get a good understanding or meaning of the standard deviation s, but you can
roughly think of it as the average distance of the values x1, x2, . . . , xn from the mean
x. This is not true exactly, for, in general,

s ≥ 1
n

n∑
i=1

|xi − x|,

but it is fair to say that s is somewhat larger, yet of the same magnitude, as the
average of the distances of x1, x2, . . . , xn from x.
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Example
6.1-2

Rolling a fair six-sided die five times could result in the following sample of n = 5
observations:

x1 = 3, x2 = 1, x3 = 2, x4 = 6, x5 = 3.

In this case,

x = 3 + 1 + 2 + 6 + 3
5

= 3

and

s2 = (3 − 3)2 + (1 − 3)2 + (2 − 3)2 + (6 − 3)2 + (3 − 3)2

4
= 14

4
= 3.5.

It follows that s = √
14/4 = 1.87. We had noted that s can roughly be thought of

as the average distance that the x-values are away from the sample mean x. In this
example, the distances from the sample mean, x = 3, are 0, 2, 1, 3, 0, with an average
of 1.2, which is less than s = 1.87. In general, s will be somewhat larger than this
average distance.

There is an alternative way of computing s2, because s2 = [n/(n − 1)]v and

v = 1
n

n∑
i=1

(xi − x)2 = 1
n

n∑
i=1

x2
i − x2.

It follows that

s2 =
∑n

i=1 x2
i − nx2

n − 1
=
∑n

i=1 x2
i − 1

n

(∑n
i=1 xi

)2

n − 1
.

Given a set of measurements, the sample mean is the center of the data such
that the deviations from that center sum to zero; that is,

∑n
i=1(xi − x) = 0, where

x1, x2, . . . , xn and x are a given set of observations of X1, X2, . . . , Xn and X. The sam-
ple standard deviation s, an observed value of S, gives a measure of how spread out
the data are from the sample mean. If the histogram is “mound-shaped” or “bell-
shaped,” the following empirical rule gives rough approximations to the percentages
of the data that fall between certain points. These percentages clearly are associated
with the normal distribution.

Empirical Rule: Let x1, x2, . . . , xn have a sample mean x and sample standard
deviation s. If the histogram of these data is “bell-shaped,” then, for large samples,

• approximately 68% of the data are in the interval (x − s, x + s),

• approximately 95% of the data are in the interval (x − 2s, x + 2s),

• approximately 99.7% of the data are in the interval (x − 3s, x + 3s).

For the data in Example 6.1-1, the sample mean is x = 23.505 and the standard
deviation is s = 1.641. The number of weights that fall within one standard deviation
of the mean, (23.505 − 1.641, 23.505 + 1.641), is 27, or 67.5%. For these particular
weights, 100% fall within two standard deviations of x. Thus, the histogram is missing
part of the “bell” in the tails in order for the empirical rule to hold.

When you draw a histogram, it is useful to indicate the location of x, as well as
that of the points x ± s and x ± 2s.
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There is a refinement of the relative frequency histogram that can be made when
the class intervals are of equal length. The relative frequency polygon smooths out
the corresponding histogram somewhat. To form such a polygon, mark the midpoints
at the top of each “bar” of the histogram. Connect adjacent midpoints with straight-
line segments. On each of the two end bars, draw a line segment from the top middle
mark through the middle point of the outer vertical line of the bar. Of course, if the
area underneath the tops of the relative frequency histogram is equal to 1, which
it should be, then the area underneath the relative frequency polygon is also equal
to 1, because the areas lost and gained cancel out by a consideration of congruent
triangles. This idea is made clear in the next example.

Example
6.1-3

A manufacturer of fluoride toothpaste regularly measures the concentration of flu-
oride in the toothpaste to make sure that it is within the specification of 0.85 to
1.10 mg/g. Table 6.1-3 lists 100 such measurements.

The minimum of these measurements is 0.85 and the maximum is 1.06. The
range is 1.06 − 0.85 = 0.21. We shall use k = 8 classes of length 0.03. Note that
8(0.03) = 0.24 > 0.21. We start at 0.835 and end at 1.075. These boundaries are
the same distance below the minimum and above the maximum. In Table 6.1-4, we
also give the values of the heights of each rectangle in the relative frequency his-
togram, so that the total area of the histogram is 1. These heights are given by the
formula

h(x) = fi

(0.03)(100)
= fi

3
.

The plots of the relative frequency histogram and polygon are given in Figure 6.1-2.
If you are using a computer program to analyze a set of data, it is very easy

to find the sample mean, the sample variance, and the sample standard deviation.
However, if you have only grouped data or if you are not using a computer, you
can obtain close approximations of these values by computing the mean u and

Table 6.1-3 Concentrations of fluoride in mg/g in toothpaste

0.98 0.92 0.89 0.90 0.94 0.99 0.86 0.85 1.06 1.01

1.03 0.85 0.95 0.90 1.03 0.87 1.02 0.88 0.92 0.88

0.88 0.90 0.98 0.96 0.98 0.93 0.98 0.92 1.00 0.95

0.88 0.90 1.01 0.98 0.85 0.91 0.95 1.01 0.88 0.89

0.99 0.95 0.90 0.88 0.92 0.89 0.90 0.95 0.93 0.96

0.93 0.91 0.92 0.86 0.87 0.91 0.89 0.93 0.93 0.95

0.92 0.88 0.87 0.98 0.98 0.91 0.93 1.00 0.90 0.93

0.89 0.97 0.98 0.91 0.88 0.89 1.00 0.93 0.92 0.97

0.97 0.91 0.85 0.92 0.87 0.86 0.91 0.92 0.95 0.97

0.88 1.05 0.91 0.89 0.92 0.94 0.90 1.00 0.90 0.93
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Table 6.1-4 Frequency table of fluoride concentrations

Class Class Mark Frequency
Interval (ui) Tabulation (fi) h(x) = fi/3

(0.835, 0.865) 0.85 � 7 7/3

(0.865, 0.895) 0.88 � � � � 20 20/3

(0.895, 0.925) 0.91 � � � � � 27 27/3

(0.925, 0.955) 0.94 � � � 18 18/3

(0.955, 0.985) 0.97 � � 14 14/3

(0.985, 1.015) 1.00 � 9 9/3

(1.015, 1.045) 1.03 3 3/3

(1.045, 1.075) 1.06 2 2/3

h(x)

x

1

2

3

4

5

6

7

8

9

0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.03 1.06 1.09

Figure 6.1-2 Concentrations of fluoride in toothpaste

variance s2
u of the grouped data, using the class marks weighted with their respective

frequencies. We have

u = 1
n

k∑
i=1

fiui

= 1
100

8∑
i=1

fiui = 92.83
100

= 0.9283,
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s2
u = 1

n − 1

k∑
i=1

fi(ui − u)2 =
∑k

i=1 fiu2
i − 1

n

(∑k
i=1 fiui

)2

n − 1

= 0.237411
99

= 0.002398.

Thus,

su = √
0.002398 = 0.04897.

These results compare rather favorably with x = 0.9293 and sx = 0.04895 of the
original data.

In some situations, it is not necessarily desirable to use class intervals of equal
widths in the construction of the frequency distribution and histogram. This is partic-
ularly true if the data are skewed with a very long tail. We now present an illustration
in which it seems desirable to use class intervals of unequal widths; thus, we cannot
use the relative frequency polygon.

Example
6.1-4

The following 40 losses, due to wind-related catastrophes, were recorded to the near-
est $1 million (these data include only losses of $2 million or more; for convenience,
they have been ordered and recorded in millions):

2 2 2 2 2 2 2 2 2 2

2 2 3 3 3 3 4 4 4 5

5 5 5 6 6 6 6 8 8 9

15 17 22 23 24 24 25 27 32 43

The selection of class boundaries is more subjective in this case. It makes sense
to let c0 = 1.5 and c1 = 2.5 because only values of $2 million or more are recorded
and there are 12 observations equal to 2. We could then let c2 = 6.5, c3 = 29.5, and
c4 = 49.5, yielding the following relative frequency histogram:

h(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12
40

, 1.5 < x ≤ 2.5,

15
(40)(4)

, 2.5 < x ≤ 6.5,

11
(40)(23)

, 6.5 < x ≤ 29.5,

2
(40)(20)

, 29.5 < x ≤ 49.5.

This histogram is displayed in Figure 6.1-3. It takes some experience before a person
can display a relative frequency histogram that is most meaningful.

The areas of the four rectangles—0.300, 0.375, 0.275, and 0.050—are the respec-
tive relative frequencies. It is important to note in the case of unequal widths among
class intervals that the areas, not the heights, of the rectangles are proportional to
the frequencies. In particular, the first and second classes have frequencies f1 = 12
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h(x)

x

0.1

0.2

0.3

10 20 30 40 50

Figure 6.1-3 Relative frequency histogram of losses

and f2 = 15, yet the height of the first is greater than the height of the second, while
here f1 < f2. If we have equal widths among the class intervals, then the heights are
proportional to the frequencies.

For continuous-type data, the interval with the largest class height is called the
modal class and the respective class mark is called the mode. Hence, in the last
example, x = 2 is the mode and (1.5, 2.5) the modal class.

Example
6.1-5

The following table lists 105 observations of X, the times in minutes between calls
to 911:

30 17 65 8 38 35 4 19 7 14 12 4 5 4 2

7 5 12 50 33 10 15 2 10 1 5 30 41 21 31

1 18 12 5 24 7 6 31 1 3 2 22 1 30 2

1 3 12 12 9 28 6 50 63 5 17 11 23 2 46

90 13 21 55 43 5 19 47 24 4 6 27 4 6 37

16 41 68 9 5 28 42 3 42 8 52 2 11 41 4

35 21 3 17 10 16 1 68 105 45 23 5 10 12 17

To help determine visually whether the exponential model in Example 3.2-1 is per-
haps appropriate for this situation, we shall look at two graphs. First, we have
constructed a relative frequency histogram, h(x), of these data in Figure 6.1-4(a),
with f (x) = (1/20)e−x/20 superimposed. Second, we have also constructed the empir-
ical cdf of these data in Figure 6.1-4(b), with the theoretical cdf superimposed. Note
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f(x), h(x) F(x), Fn(x)
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(a) Histogram and pdf of X (b) Theoretical and empirical cdfs

63 72 81 90 99 108

Figure 6.1-4 Times between calls to 911

that Fn(x), the empirical cumulative distribution function, is a step function with a
vertical step of size 1/n at each observation of X. If k observations are equal, the
step at that value is k/n.

STATISTICAL COMMENTS (Simpson’s Paradox) While most of the first five
chapters were about probability and probability distributions, we now mention some
statistical concepts. The relative frequency, f/n, is called a statistic and is used to
estimate a probability, p, which is usually unknown. For example, if a major league
batter gets f = 152 hits in n = 500 official at bats during the season, then the relative
frequency f/n = 0.304 is an estimate of his probability of getting a hit and is called
his batting average for that season.

Once while speaking to a group of coaches, one of us (Hogg) made the comment
that it would be possible for batter A to have a higher average than batter B for each
season during their careers and yet B could have a better overall average at the end
of their careers. While no coach spoke up, you could tell that they were thinking,
“And that guy is supposed to know something about math.”

Of course, the following simple example convinced them that the statement was
true: Suppose A and B played only two seasons, with these results:

Player A Player B

Season AB Hits Average AB Hits Average

1 500 126 0.252 300 75 0.250

2 300 90 0.300 500 145 0.290

Totals 800 216 0.270 800 220 0.275

Clearly, A beats B in the two individual seasons, but B has a better overall average.
Note that during their better season (the second), B had more at bats than did A.
This kind of result is often called Simpson’s paradox and it can happen in real life.
(See Exercises 6.1-10 and 6.1-11.) �
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Exercises

6.1-1. One characteristic of a car’s storage console that is
checked by the manufacturer is the time in seconds that
it takes for the lower storage compartment door to open
completely. A random sample of size n = 5 yielded the
following times:

1.1 0.9 1.4 1.1 1.0

(a) Find the sample mean, x.

(b) Find the sample variance, s2.

(c) Find the sample standard deviation, s.

6.1-2. A leakage test was conducted to determine the
effectiveness of a seal designed to keep the inside of a
plug airtight. An air needle was inserted into the plug,
which was then placed underwater. Next, the pressure was
increased until leakage was observed. The magnitude of
this pressure in psi was recorded for 10 trials:

3.1 3.5 3.3 3.7 4.5 4.2 2.8 3.9 3.5 3.3

Find the sample mean and sample standard deviation for
these 10 measurements.

6.1-3. During the course of an internship at a company
that manufactures diesel engine fuel injector pumps, a stu-
dent had to measure the category “plungers that force
the fuel out of the pumps.” This category is based on a
relative scale, measuring the difference in diameter (in
microns or micrometers) of a plunger from that of an
absolute minimum acceptable diameter. For 96 plungers
randomly taken from the production line, the data are as
follows:

17.1 19.3 18.0 19.4 16.5 14.4 15.8 16.6 18.5 14.9

14.8 16.3 20.8 17.8 14.8 15.6 16.7 16.1 17.1 16.5

18.8 19.3 18.1 16.1 18.0 17.2 16.8 17.3 14.4 14.1

16.9 17.6 15.5 17.8 17.2 17.4 18.1 18.4 17.8 16.7

17.2 13.7 18.0 15.6 17.8 17.0 17.7 11.9 15.9 17.8

15.5 14.6 15.6 15.1 15.4 16.1 16.6 17.1 19.1 15.0

17.6 19.7 17.1 13.6 15.6 16.3 14.8 17.4 14.8 14.9

14.1 17.8 19.8 18.9 15.6 16.1 15.9 15.7 22.1 16.1

18.9 21.5 17.4 12.3 20.2 14.9 17.1 15.0 14.4 14.7

15.9 19.0 16.6 15.3 17.7 15.8

(a) Calculate the sample mean and the sample standard
deviation of these measurements.

(b) Use the class boundaries 10.95, 11.95, . . . , 22.95 to
construct a histogram of the data.

6.1-4. Ledolter and Hogg (see References) report that
a manufacturer of metal alloys is concerned about cus-
tomer complaints regarding the lack of uniformity in the
melting points of one of the firm’s alloy filaments. Fifty fil-
aments are selected and their melting points determined.
The following results were obtained:

320 326 325 318 322 320 329 317 316 331

320 320 317 329 316 308 321 319 322 335

318 313 327 314 329 323 327 323 324 314

308 305 328 330 322 310 324 314 312 318

313 320 324 311 317 325 328 319 310 324

(a) Construct a frequency distribution and display the
histogram of the data.

(b) Calculate the sample mean and sample standard devi-
ation.

(c) Locate x and x ± s, and x ± 2s on your histogram.
How many observations lie within one standard devi-
ation of the mean? How many lie within two standard
deviations of the mean?

6.1-5. In the casino game roulette, if a player bets $1 on
red, the probability of winning $1 is 18/38 and the prob-
ability of losing $1 is 20/38. Let X equal the number
of successive $1 bets that a player makes before losing
$5. One hundred observations of X were simulated on a
computer, yielding the following data:

23 127 877 65 101 45 61 95 21 43

53 49 89 9 75 93 71 39 25 91

15 131 63 63 41 7 37 13 19 413

65 43 35 23 135 703 83 7 17 65

49 177 61 21 9 27 507 7 5 87

13 213 85 83 75 95 247 1815 7 13

71 67 19 615 11 15 7 131 47 25

25 5 471 11 5 13 75 19 307 33

57 65 9 57 35 19 9 33 11 51

27 9 19 63 109 515 443 11 63 9
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(a) Find the sample mean and sample standard deviation
of these data.

(b) Construct a relative frequency histogram of the data,
using about 10 classes. The classes do not need to be
of the same length.

(c) Locate x, x ± s, x ± 2s, and x ± 3s on your histogram.

(d) In your opinion, does the median or sample mean give
a better measure of the center of these data?

6.1-6. An insurance company experienced the following
mobile home losses in 10,000’s of dollars for 50 catas-
trophic events:

1 2 2 3 3 4 4 5 5 5

5 6 7 7 9 9 9 10 11 12

22 24 28 29 31 33 36 38 38 38

39 41 48 49 53 55 74 82 117 134

192 207 224 225 236 280 301 308 351 527

(a) Using class boundaries 0.5, 5.5, 17.5, 38.5, 163.5, and
549.5, group these data into five classes.

(b) Construct a relative frequency histogram of the data.

(c) Describe the distribution of losses.

6.1-7. Ledolter and Hogg (see References) report 64
observations that are a sample of daily weekday after-
noon (3 to 7 p.m.) lead concentrations (in micrograms per
cubic meter, μg/m3). The following data were recorded at
an air-monitoring station near the San Diego Freeway in
Los Angeles during the fall of 1976:

6.7 5.4 5.2 6.0 8.7 6.0 6.4 8.3 5.3 5.9 7.6

5.0 6.9 6.8 4.9 6.3 5.0 6.0 7.2 8.0 8.1 7.2

10.9 9.2 8.6 6.2 6.1 6.5 7.8 6.2 8.5 6.4 8.1

2.1 6.1 6.5 7.9 14.1 9.5 10.6 8.4 8.3 5.9 6.0

6.4 3.9 9.9 7.6 6.8 8.6 8.5 11.2 7.0 7.1 6.0

9.0 10.1 8.0 6.8 7.3 9.7 9.3 3.2 6.4

(a) Construct a frequency distribution of the data and dis-
play the results in the form of a histogram. Is this
distribution symmetric?

(b) Calculate the sample mean and sample standard devi-
ation.

(c) Locate x and x ± s on your histogram. How many
observations lie within one standard deviation of the

mean? How many lie within two standard deviations
of the mean?

6.1-8. A small part for an automobile rearview mirror
was produced on two different punch presses. In order to
describe the distribution of the weights of those parts, a
random sample was selected, and each piece was weighed
in grams, resulting in the following data set:

3.968 3.534 4.032 3.912 3.572 4.014 3.682 3.608

3.669 3.705 4.023 3.588 3.945 3.871 3.744 3.711

3.645 3.977 3.888 3.948 3.551 3.796 3.657 3.667

3.799 4.010 3.704 3.642 3.681 3.554 4.025 4.079

3.621 3.575 3.714 4.017 4.082 3.660 3.692 3.905

3.977 3.961 3.948 3.994 3.958 3.860 3.965 3.592

3.681 3.861 3.662 3.995 4.010 3.999 3.993 4.004

3.700 4.008 3.627 3.970 3.647 3.847 3.628 3.646

3.674 3.601 4.029 3.603 3.619 4.009 4.015 3.615

3.672 3.898 3.959 3.607 3.707 3.978 3.656 4.027

3.645 3.643 3.898 3.635 3.865 3.631 3.929 3.635

3.511 3.539 3.830 3.925 3.971 3.646 3.669 3.931

4.028 3.665 3.681 3.984 3.664 3.893 3.606 3.699

3.997 3.936 3.976 3.627 3.536 3.695 3.981 3.587

3.680 3.888 3.921 3.953 3.847 3.645 4.042 3.692

3.910 3.672 3.957 3.961 3.950 3.904 3.928 3.984

3.721 3.927 3.621 4.038 4.047 3.627 3.774 3.983

3.658 4.034 3.778

(a) Using about 10 (say, 8 to 12) classes, construct a
frequency distribution.

(b) Draw a histogram of the data.

(c) Describe the shape of the distribution represented by
the histogram.

6.1-9. Old Faithful is a geyser in Yellowstone National
Park. Tourists always want to know when the next erup-
tion will occur, so data have been collected to help make
those predictions. In the following data set, observations
were made on several consecutive days, and the data
recorded give the starting time of the eruption (STE); the
duration of the eruption, in seconds (DIS); the predicted
time until the next eruption, in minutes (PTM); the actual
time until the next eruption, in minutes (ATM); and the
duration of the eruption, in minutes (DIM).
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STE DIS PTM ATM DIM STE DIS PTM ATM DIM

706 150 65 72 2.500 1411 110 55 65 1.833

818 268 89 88 4.467 616 289 89 97 4.817

946 140 65 62 2.333 753 114 58 52 1.900

1048 300 95 87 5.000 845 271 89 94 4.517

1215 101 55 57 1.683 1019 120 58 60 2.000

1312 270 89 94 4.500 1119 279 89 84 4.650

651 270 89 91 4.500 1253 109 55 63 1.817

822 125 59 51 2.083 1356 295 95 91 4.917

913 262 89 98 4.367 608 240 85 83 4.000

1051 95 55 59 1.583 731 259 86 84 4.317

1150 270 89 93 4.500 855 128 60 71 2.133

637 273 89 86 4.550 1006 287 92 83 4.783

803 104 55 70 1.733 1129 253 65 70 4.217

913 129 62 63 2.150 1239 284 89 81 4.733

1016 264 89 91 4.400 608 120 58 60 2.000

1147 239 82 82 3.983 708 283 92 91 4.717

1309 106 55 58 1.767 839 115 58 51 1.917

716 259 85 97 4.317 930 254 85 85 4.233

853 115 55 59 1.917 1055 94 55 55 1.567

952 275 89 90 4.583 1150 274 89 98 4.567

1122 110 55 58 1.833 1328 128 64 49 2.133

1220 286 92 98 4.767 557 270 93 85 4.500

735 115 55 55 1.917 722 103 58 65 1.717

830 266 89 107 4.433 827 287 89 102 4.783

1017 105 55 61 1.750 1009 111 55 56 1.850

1118 275 89 82 4.583 1105 275 89 86 4.583

1240 226 79 91 3.767 1231 104 55 62 1.733

(a) Construct a histogram of the durations of the erup-
tions, in seconds. Use 10 to 12 classes.

(b) Calculate the sample mean and locate it on your his-
togram. Does it give a good measure of the average
length of an eruption? Why or why not?

(c) Construct a histogram of the lengths of the times
between eruptions. Use 10 to 12 classes.

(d) Calculate the sample mean and locate it on your his-
togram. Does it give a good measure of the average
length of the times between eruptions?

6.1-10. In 1985, Kent Hrbek of the Minnesota Twins and
Dion James of the Milwaukee Brewers had the following
numbers of hits (H) and official at bats (AB) on grass and
artificial turf:

Hrbek James

Playing Surface AB H BA AB H BA

Grass 204 50 329 93

Artificial Turf 355 124 58 21

Total 559 174 387 114

(a) Find the batting average BA (namely, H/AB) of each
player on grass.

(b) Find the BA of each player on artificial turf.

(c) Find the season batting averages for the two players.

(d) Interpret your results.

6.1-11. In 1985, Al Bumbry of the Baltimore Orioles and
Darrell Brown of the Minnesota Twins had the following
numbers of hits (H) and official at bats (AB) on grass and
artificial turf:

Bumbry Brown

Playing Surface AB H BA AB H BA

Grass 295 77 92 18

Artificial Turf 49 16 168 53

Total 344 93 260 71

(a) Find the batting average BA (namely, H/AB) of each
player on grass.

(b) Find the BA of each player on artificial turf.

(c) Find the season batting averages for the two players.

(d) Interpret your results.
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6.2 EXPLORATORY DATA ANALYSIS
To explore the other characteristics of an unknown distribution, we need to take
a sample of n observations, x1, x2, . . . , xn, from that distribution and often need to
order them from the smallest to the largest. One convenient way of doing this is to
use a stem-and-leaf display, a method that was started by John W. Tukey. [For more
details, see the books by Tukey (1977) and Velleman and Hoaglin (1981).]

Possibly the easiest way to begin is with an example to which all of us can relate.
Say we have the following 50 test scores on a statistics examination:

93 77 67 72 52 83 66 84 59 63

75 97 84 73 81 42 61 51 91 87

34 54 71 47 79 70 65 57 90 83

58 69 82 76 71 60 38 81 74 69

68 76 85 58 45 73 75 42 93 65

We can do much the same thing as a frequency table and histogram can, but keep the
original values, through a stem-and-leaf display. For this particular data set, we could
use the following procedure: The first number in the set, 93, is recorded by treating
the 9 (in the tens place) as the stem and the 3 (in the units place) as the corresponding
leaf. Note that this leaf of 3 is the first digit after the stem of 9 in Table 6.2-1. The
second number, 77, is that given by the leaf of 7 after the stem of 7; the third number,
67, by the leaf of 7 after the stem of 6; the fourth number, 72, as the leaf of 2 after
the stem of 7 (note that this is the second leaf on the 7 stem); and so on. Table 6.2-1
is an example of a stem-and-leaf display. If the leaves are carefully aligned vertically,
this table has the same effect as a histogram, but the original numbers are not lost.

It is useful to modify the stem-and-leaf display by ordering the leaves in each row
from smallest to largest. The resulting stem-and-leaf diagram is called an ordered
stem-and-leaf display. Table 6.2-2 uses the data from Table 6.2-1 to produce an
ordered stem-and-leaf display.

There is another modification that can also be helpful. Suppose that we want
two rows of leaves with each original stem. We can do this by recording leaves 0, 1,
2, 3, and 4 with a stem adjoined with an asterisk (∗) and leaves 5, 6, 7, 8, and 9 with

Table 6.2-1 Stem-and-leaf display of scores from 50
statistics examinations

Stems Leaves Frequency

3 4 8 2

4 2 7 5 2 4

5 2 9 1 4 7 8 8 7

6 7 6 3 1 5 9 0 9 8 5 10

7 7 2 5 3 1 9 0 6 1 4 6 3 5 13

8 3 4 4 1 7 3 2 1 5 9

9 3 7 1 0 3 5
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Table 6.2-2 Ordered stem-and-leaf display of statistics
examinations

Stems Leaves Frequency

3 4 8 2

4 2 2 5 7 4

5 1 2 4 7 8 8 9 7

6 0 1 3 5 5 6 7 8 9 9 10

7 0 1 1 2 3 3 4 5 5 6 6 7 9 13

8 1 1 2 3 3 4 4 5 7 9

9 0 1 3 3 7 5

a stem adjoined with a dot (•). Of course, in our example, by going from 7 original
classes to 14 classes, we lose a certain amount of smoothness with this particular data
set, as illustrated in Table 6.2-3, which is also ordered.

Tukey suggested another modification, which is used in the next example.

Table 6.2-3 Ordered stem-and-leaf display of
statistics examinations

Stems Leaves Frequency

3∗ 4 1

3• 8 1

4∗ 2 2 2

4• 5 7 2

5∗ 1 2 4 3

5• 7 8 8 9 4

6∗ 0 1 3 3

6• 5 5 6 7 8 9 9 7

7∗ 0 1 1 2 3 3 4 7

7• 5 5 6 6 7 9 6

8∗ 1 1 2 3 3 4 4 7

8• 5 7 2

9∗ 0 1 3 3 4

9• 7 1
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Example
6.2-1

The following numbers represent ACT composite scores for 60 entering freshmen at
a certain college:

26 19 22 28 31 29 25 23 20 33 23 26
30 27 26 29 20 23 18 24 29 27 32 24
25 26 22 29 21 24 20 28 23 26 30 19
27 21 32 28 29 23 25 21 28 22 25 24
19 24 35 26 25 20 31 27 23 26 30 29

An ordered stem-and-leaf display of these scores is given in Table 6.2-4, where leaves
are recorded as zeros and ones with a stem adjoined with an asterisk (∗), twos and
threes with a stem adjoined with t, fours and fives with a stem adjoined with f, sixes
and sevens with a stem adjoined with s, and eights and nines with a stem adjoined
with a dot (•).

There is a reason for constructing ordered stem-and-leaf diagrams. For a sample
of n observations, x1, x2, . . . , xn, when the observations are ordered from smallest
to largest, the resulting ordered data are called the order statistics of the sam-
ple. Statisticians have found that order statistics and certain of their functions are
extremely valuable; we will provide some theory concerning them in Section 6.3. It
is very easy to determine the values of the sample in order from an ordered stem-
and-leaf display. As an illustration, consider the values in Table 6.2-2 or Table 6.2-3.
The order statistics of the 50 test scores are given in Table 6.2-5.

Sometimes we give ranks to these order statistics and use the rank as the sub-
script on y. The first order statistic y1 = 34 has rank 1; the second order statistic
y2 = 38 has rank 2; the third order statistic y3 = 42 has rank 3; the fourth order statis-
tic y4 = 42 has rank 4, . . . ; and the 50th order statistic y50 = 97 has rank 50. It is also
about as easy to determine these values from the ordered stem-and-leaf display. We
see that y1 ≤ y2 ≤ · · · ≤ y50.

Table 6.2-4 Ordered stem-and-leaf display of 60
ACT scores

Stems Leaves Frequency

1• 8 9 9 9 4

2∗ 0 0 0 0 1 1 1 7

2t 2 2 2 3 3 3 3 3 3 9

2f 4 4 4 4 4 5 5 5 5 5 10

2s 6 6 6 6 6 6 6 7 7 7 7 11

2• 8 8 8 8 9 9 9 9 9 9 10

3∗ 0 0 0 1 1 5

3t 2 2 3 3

3f 5 1
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Table 6.2-5 Order statistics of 50 exam scores

34 38 42 42 45 47 51 52 54 57

58 58 59 60 61 63 65 65 66 67

68 69 69 70 71 71 72 73 73 74

75 75 76 76 77 79 81 81 82 83

83 84 84 85 87 90 91 93 93 97

From either these order statistics or the corresponding ordered stem-and-leaf
display, it is rather easy to find the sample percentiles. If 0 < p < 1, then the (100p)th
sample percentile has approximately np sample observations less than it and also
n(1−p) sample observations greater than it. One way of achieving this is to take the
(100p)th sample percentile as the (n + 1)pth order statistic, provided that (n + 1)p is
an integer. If (n + 1)p is not an integer but is equal to r plus some proper fraction—
say, a/b—use a weighted average of the rth and the (r + 1)st order statistics. That is,
define the (100p)th sample percentile as

π̃p = yr + (a/b)(yr+1 − yr) = (1 − a/b)yr + (a/b)yr+1.

Note that this formula is simply a linear interpolation between yr and yr+1.
[If p < 1/(n + 1) or p > n/(n + 1), that sample percentile is not defined.]

As an illustration, consider the 50 ordered test scores. With p = 1/2, we find
the 50th percentile by averaging the 25th and 26th order statistics, since (n + 1)p =
(51)(1/2) = 25.5. Thus, the 50th percentile is

π̃0.50 = (1/2)y25 + (1/2)y26 = (71 + 71)/2 = 71.

With p = 1/4, we have (n + 1)p = (51)(1/4) = 12.75, and the 25th sample percentile is
then

π̃0.25 = (1 − 0.75)y12 + (0.75)y13 = (0.25)(58) + (0.75)(59) = 58.75.

With p = 3/4, so that (n + 1)p = (51)(3/4) = 38.25, the 75th sample percentile is

π̃0.75 = (1 − 0.25)y38 + (0.25)y39 = (0.75)(81) + (0.25)(82) = 81.25.

Note that approximately 50%, 25%, and 75% of the sample observations are less
than 71, 58.75, and 81.25, respectively.

Special names are given to certain percentiles. The 50th percentile is the median
of the sample. The 25th, 50th, and 75th percentiles are, respectively, the first, second,
and third quartiles of the sample. For notation, we let q̃1 = π̃0.25, q̃2 = m̃ = π̃0.50,
and q̃3 = π̃0.75. The 10th, 20th, . . . , and 90th percentiles are the deciles of the sample,
so note that the 50th percentile is also the median, the second quartile, and the fifth
decile. With the set of 50 test scores, since (51)(2/10) = 10.2 and (51)(9/10) = 45.9, the
second and ninth deciles are, respectively,

π̃0.20 = (0.8)y10 + (0.2)y11 = (0.8)(57) + (0.2)(58) = 57.2

and

π̃0.90 = (0.1)y45 + (0.9)y46 = (0.1)(87) + (0.9)(90) = 89.7.
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The second decile is commonly called the 20th percentile, and the ninth decile is the
90th percentile.

Example
6.2-2

We illustrate the preceding ideas with the fluoride data given in Table 6.1-3. For
convenience, we use 0.02 as the length of a class interval. The ordered stem-and-leaf
display is given in Table 6.2-6.

This ordered stem-and-leaf diagram is useful for finding sample percentiles of
the data.

We now find some of the sample percentiles associated with the fluoride data.
Since n = 100, (n + 1)(0.25) = 25.25, (n + 1)(0.50) = 50.5, and (n + 1)(0.75) = 75.75,
so that the 25th, 50th, and 75th percentiles are, respectively,

π̃0.25 = (0.75)y25 + (0.25)y26 = (0.75)(0.89) + (0.25)(0.89) = 0.89,

π̃0.50 = (0.50)y50 + (0.50)y51 = (0.50)(0.92) + (0.50)(0.92) = 0.92,

π̃0.75 = (0.25)y75 + (0.75)y76 = (0.25)(0.97) + (0.75)(0.97) = 0.97.

These three percentiles are often called the first quartile, the median or second quar-
tile, and the third quartile, respectively. Along with the smallest (the minimum)
and largest (the maximum) values, they give the five-number summary of a set of
data. Furthermore, the difference between the third and first quartiles is called the
interquartile range, IQR. Here, it is equal to

q̃3 − q̃1 = π̃0.75 − π̃0.25 = 0.97 − 0.89 = 0.08.

Table 6.2-6 Ordered stem-and-leaf diagram of fluoride
concentrations

Stems Leaves Frequency

0.8f 5 5 5 5 4

0.8s 6 6 6 7 7 7 7 7

0.8• 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 16

0.9∗ 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 17

0.9t 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 19

0.9f 4 4 5 5 5 5 5 5 5 9

0.9s 6 6 7 7 7 7 6

0.9• 8 8 8 8 8 8 8 8 9 9 10

1.0∗ 0 0 0 0 1 1 1 7

1.0t 2 3 3 3

1.0f 5 1

1.0s 6 1
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One graphical means for displaying the five-number summary of a set of data
is called a box-and-whisker diagram. To construct a horizontal box-and-whisker dia-
gram, or, more simply, a box plot, draw a horizontal axis that is scaled to the data.
Above the axis, draw a rectangular box with the left and right sides drawn at q̃1 and
q̃3 and with a vertical line segment drawn at the median, q̃2 = m̃. A left whisker is
drawn as a horizontal line segment from the minimum to the midpoint of the left
side of the box, and a right whisker is drawn as a horizontal line segment from the
midpoint of the right side of the box to the maximum. Note that the length of the
box is equal to the IQR. The left and right whiskers represent the first and fourth
quarters of the data, while the two middle quarters of the data are represented,
respectively, by the two sections of the box, one to the left and one to the right of the
median line.

Example
6.2-3

Using the fluoride data shown in Table 6.2-6, we found that the five-number
summary is given by

y1 = 0.85, q̃1 = 0.89, q̃2 = m̃ = 0.92, q̃3 = 0.97, y100 = 1.06.

The box plot of these data is given in Figure 6.2-1. The fact that the long whisker is
to the right and the right half of the box is larger than the left half of the box leads
us to say that these data are slightly skewed to the right. Note that this skewness can
also be seen in the histogram and in the stem-and-leaf diagram.

The next example illustrates how the box plot depicts data that are skewed to
the left.

Example
6.2-4

The following data give the ordered weights (in grams) of 39 gold coins that were
produced during the reign of Verica, a pre-Roman British king:

4.90 5.06 5.07 5.08 5.15 5.17 5.18 5.19 5.24 5.25

5.25 5.25 5.25 5.27 5.27 5.27 5.27 5.28 5.28 5.28

5.29 5.30 5.30 5.30 5.30 5.31 5.31 5.31 5.31 5.31

5.32 5.32 5.33 5.34 5.35 5.35 5.35 5.36 5.37

0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.03 1.06 1.09

Figure 6.2-1 Box plot of fluoride concentrations
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4.9 5.0 5.1 5.2 5.3 5.4

Figure 6.2-2 Box plot for weights of 39 gold coins

For these data, the minimum is 4.90 and the maximum is 5.37. Since

(39 + 1)(1/4) = 10, (39 + 1)(2/4) = 20, (39 + 1)(3/4) = 30,

we have

q̃1 = y10 = 5.25,

m̃ = y20 = 5.28,

q̃3 = y30 = 5.31.

Thus, the five-number summary is given by

y1 = 4.90, q̃1 = 5.25, q̃2 = m̃ = 5.28, q̃3 = 5.31, y39 = 5.37.

The box plot associated with the given data is shown in Figure 6.2-2. Note that the
box plot indicates that the data are skewed to the left.

Sometimes we are interested in picking out observations that seem to be much
larger or much smaller than most of the other observations. That is, we are look-
ing for outliers. Tukey suggested a method for defining outliers that is resistant to
the effect of one or two extreme values and makes use of the IQR. In a box-and-
whisker diagram, construct inner fences to the left and right of the box at a distance
of 1.5 times the IQR. Outer fences are constructed in the same way at a distance
of 3 times the IQR. Observations that lie between the inner and outer fences are
called suspected outliers. Observations that lie beyond the outer fences are called
outliers. The observations beyond the inner fences are denoted with a circle (•), and
the whiskers are drawn only to the extreme values within or on the inner fences.
When you are analyzing a set of data, suspected outliers deserve a closer look and
outliers should be looked at very carefully. It does not follow that suspected outliers
should be removed from the data, unless some error (such as a recording error) has
been made. Moreover, it is sometimes important to determine the cause of extreme
values, because outliers can often provide useful insights into the situation under
consideration (such as a better way of doing things).

STATISTICAL COMMENTS There is a story that statisticians tell about Ralph
Sampson, who was an excellent basketball player at the University of Virginia in the
early 1980s and later was drafted by the Houston Rockets. He supposedly majored in
communication studies at Virginia, and it is reported that the department there said
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that the average starting salary of their majors was much higher than those in the
sciences; that happened because of Sampson’s high starting salary with the Rockets.
If this story is true, it would have been much more appropriate to report the median
starting salary of majors and this median salary would have been much lower than
the median starting salaries in the sciences. �

Example
6.2-5

Continuing with Example 6.2-4, we find that the interquartile range is IQR =
5.31 − 5.25 = 0.06. Thus, the inner fences would be constructed at a distance of
1.5(0.06) = 0.09 to the left and right of the box, and the outer fences would be con-
structed at a distance of 3(0.06) = 0.18 to the left and right of the box. Figure 6.2-3
shows a box plot with the fences. Of course, since the maximum is 0.06 greater than
q̃3, there are no fences to the right. From this box plot, we see that there are three
suspected outliers and two outliers. (You may speculate as to why there are out-
liers with these data and why they fall to the left — that is, they are lighter than
expected.) Note that many computer programs use an asterisk to plot outliers and
suspected outliers, and do not print fences.

Some functions of two or more order statistics are quite important in modern
statistics. We mention and illustrate one more, along with the range and the IQR,
using the 100 fluoride concentrations shown in Table 6.2-6.

(a) Midrange = average of the extremes

= y1 + yn

2
= 0.85 + 1.06

2
= 0.955.

(b) Range = difference of the extremes.

(c) Interquartile range = difference of third and first quartiles

= q̃3 − q̃1 = 0.97 − 0.89 = 0.08.

Thus, we see that the mean, the median, and the midrange are measures of the
middle of the sample. In some sense, the standard deviation, the range, and the
interquartile range provide measures of spread of the sample.

4.9 5.0 5.1 5.2 5.3 5.4

Figure 6.2-3 Box plot for weights of 39 gold coins with
fences and outliers
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Exercises

6.2-1. In Exercise 6.1-3, measurements for 96 plungers
are given. Use those measurements to

(a) Construct a stem-and-leaf diagram using integer
stems.

(b) Find the five-number summary of the data.

(c) Construct a box-and-whisker diagram. Are there any
outliers?

6.2-2. When you purchase “1-pound bags” of carrots, you
can buy either “baby” carrots or regular carrots. We shall
compare the weights of 75 bags of each of these types of
carrots. The following table gives the weights of the bags
of baby carrots:

1.03 1.03 1.06 1.02 1.03 1.03 1.03 1.02 1.03 1.03

1.06 1.04 1.05 1.03 1.04 1.03 1.05 1.06 1.04 1.04

1.03 1.04 1.04 1.06 1.03 1.04 1.05 1.04 1.04 1.02

1.03 1.05 1.05 1.03 1.04 1.03 1.04 1.04 1.03 1.04

1.03 1.04 1.04 1.04 1.05 1.04 1.04 1.03 1.03 1.05

1.04 1.04 1.05 1.04 1.03 1.03 1.05 1.03 1.04 1.05

1.04 1.04 1.04 1.05 1.03 1.04 1.04 1.04 1.04 1.03

1.05 1.05 1.05 1.03 1.04

This table gives the weights of the regular-sized carrots:

1.29 1.10 1.28 1.29 1.23 1.20 1.31 1.25 1.13 1.26

1.19 1.33 1.24 1.20 1.26 1.24 1.11 1.14 1.15 1.15

1.19 1.26 1.14 1.20 1.20 1.20 1.24 1.25 1.28 1.24

1.26 1.20 1.30 1.23 1.26 1.16 1.34 1.10 1.22 1.27

1.21 1.09 1.23 1.03 1.32 1.21 1.23 1.34 1.19 1.18

1.20 1.20 1.13 1.43 1.19 1.05 1.16 1.19 1.07 1.21

1.36 1.21 1.00 1.23 1.22 1.13 1.24 1.10 1.18 1.26

1.12 1.10 1.19 1.10 1.24

(a) Calculate the five-number summary of each set of
weights.

(b) On the same graph, construct box plots for each set of
weights.

(c) If the carrots are the same price per package, which
is the better buy? Which type of carrots would you
select?

6.2-3. Here are underwater weights in kilograms for 82
male students:

3.7 3.6 4.0 4.3 3.8 3.4 4.1 4.0 3.7 3.4 3.5 3.8 3.7 4.9

3.5 3.8 3.3 4.8 3.4 4.6 3.5 5.3 4.4 4.2 2.5 3.1 5.2 3.8

3.3 3.4 4.1 4.6 4.0 1.4 4.3 3.8 4.7 4.4 5.0 3.2 3.1 4.2

4.9 4.5 3.8 4.2 2.7 3.8 3.8 2.0 3.4 4.9 3.3 4.3 5.6 3.2

4.7 4.5 5.2 5.0 5.0 4.0 3.8 5.3 4.5 3.8 3.8 3.4 3.6 3.3

4.2 5.1 4.0 4.7 6.5 4.4 3.6 4.7 4.5 2.3 4.0 3.7

Here are underwater weights in kilograms for 100 female
students:

2.0 2.0 2.1 1.6 1.9 2.0 2.0 1.3 1.3 1.2 2.3 1.9

2.1 1.2 2.0 1.6 1.1 2.2 2.2 1.4 1.7 2.4 1.8 1.7

2.0 2.1 1.6 1.7 1.8 0.7 1.9 1.7 1.7 1.1 2.0 2.3

0.5 1.3 2.7 1.8 2.0 1.7 1.2 0.7 1.1 1.1 1.7 1.7

1.2 1.2 0.7 2.3 1.7 2.4 1.0 2.4 1.4 1.9 2.5 2.2

2.1 1.4 2.4 1.8 2.5 1.3 0.5 1.7 1.9 1.8 1.3 2.0

2.2 1.7 2.0 2.5 1.2 1.4 1.4 1.2 2.2 2.0 1.8 1.4

1.9 1.4 1.3 2.5 1.2 1.5 0.8 2.0 2.2 1.8 2.0 1.6

1.5 1.6 1.5 2.6

(a) Group each set of data into classes with a class width
of 0.5 kilograms and in which the class marks are
0.5, 1.0, 1.5, . . . .

(b) Draw histograms of the grouped data.

(c) Construct box-and-whisker diagrams of the data and
draw them on the same graph. Describe what this
graph shows.

6.2-4. An insurance company experienced the following
mobile home losses in 10,000’s of dollars for 50 catas-
trophic events:

1 2 2 3 3 4 4 5 5 5

5 6 7 7 9 9 9 10 11 12

22 24 28 29 31 33 36 38 38 38

39 41 48 49 53 55 74 82 117 134

192 207 224 225 236 280 301 308 351 527

(a) Find the five-number summary of the data and draw
a box-and-whisker diagram.

(b) Calculate the IQR and the locations of the inner and
outer fences.

(c) Draw a box plot that shows the fences, suspected
outliers, and outliers.

(d) Describe the distribution of losses. (See Exercise
6.1-6.)
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6.2-5. In Exercise 6.1-5, data are given for the number of
$1 bets a player can make in roulette before losing $5. Use
those data to respond to the following:

(a) Determine the order statistics.

(b) Find the five-number summary of the data.

(c) Draw a box-and-whisker diagram.

(d) Find the locations of the inner and outer fences, and
draw a box plot that shows the fences, the suspected
outliers, and the outliers.

(e) In your opinion, does the median or sample mean give
a better measure of the center of the data?

6.2-6. In the casino game roulette, if a player bets $1 on
red (or on black or on odd or on even), the probability
of winning $1 is 18/38 and the probability of losing $1 is
20/38. Suppose that a player begins with $5 and makes
successive $1 bets. Let Y equal the player’s maximum cap-
ital before losing the $5. One hundred observations of
Y were simulated on a computer, yielding the following
data:

25 9 5 5 5 9 6 5 15 45

55 6 5 6 24 21 16 5 8 7

7 5 5 35 13 9 5 18 6 10

19 16 21 8 13 5 9 10 10 6

23 8 5 10 15 7 5 5 24 9

11 34 12 11 17 11 16 5 15 5

12 6 5 5 7 6 17 20 7 8

8 6 10 11 6 7 5 12 11 18

6 21 6 5 24 7 16 21 23 15

11 8 6 8 14 11 6 9 6 10

(a) Construct an ordered stem-and-leaf display.

(b) Find the five-number summary of the data and draw
a box-and-whisker diagram.

(c) Calculate the IQR and the locations of the inner and
outer fences.

(d) Draw a box plot that shows the fences, suspected
outliers, and outliers.

(e) Find the 90th percentile.

6.2-7. Let X denote the concentration of calcium car-
bonate (CaCO3) in milligrams per liter. Following are 20
observations of X:

130.8 129.9 131.5 131.2 129.5

132.7 131.5 127.8 133.7 132.2

134.8 131.7 133.9 129.8 131.4

128.8 132.7 132.8 131.4 131.3

(a) Construct an ordered stem-and-leaf display, using
stems of 127, 128, . . . , 134.

(b) Find the midrange, range, interquartile range, median,
sample mean, and sample variance.

(c) Draw a box-and-whisker diagram.

6.2-8. The weights (in grams) of 25 indicator housings
used on gauges are as follows:

102.0 106.3 106.6 108.8 107.7

106.1 105.9 106.7 106.8 110.2

101.7 106.6 106.3 110.2 109.9

102.0 105.8 109.1 106.7 107.3

102.0 106.8 110.0 107.9 109.3

(a) Construct an ordered stem-and-leaf display, using
integers as the stems and tenths as the leaves.

(b) Find the five-number summary of the data and draw
a box plot.

(c) Are there any suspected outliers? Are there any out-
liers?

6.2-9. In Exercise 6.1-4, the melting points of a firm’s
alloy filaments are given for a sample of 50 filaments.

(a) Construct a stem-and-leaf diagram of those melting
points, using as stems 30f , 30s, . . . , 33f .

(b) Find the five-number summary for these melting
points.

(c) Construct a box-and-whisker diagram.

(d) Describe the symmetry of the data.

6.2-10. In Exercise 6.1-7, lead concentrations near the
San Diego Freeway in 1976 are given. During the fall
of 1977, the weekday afternoon lead concentrations (in
μg/m3) at the measurement station near the San Diego
Freeway in Los Angeles were as follows:

9.5 10.7 8.3 9.8 9.1 9.4 9.6 11.9 9.5 12.6 10.5

8.9 11.4 12.0 12.4 9.9 10.9 12.3 11.0 9.2 9.3 9.3

10.5 9.4 9.4 8.2 10.4 9.3 8.7 9.8 9.1 2.9 9.8

5.7 8.2 8.1 8.8 9.7 8.1 8.8 10.3 8.6 10.2 9.4

14.8 9.9 9.3 8.2 9.9 11.6 8.7 5.0 9.9 6.3 6.5

10.2 8.8 8.0 8.7 8.9 6.8 6.6 7.3 16.7

(a) Construct a frequency distribution and display the
results in the form of a histogram. Is this distribution
symmetric?

(b) Calculate the sample mean and sample standard devi-
ation.
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(c) Locate x, x ± s on your histogram. How many obser-
vations lie within one standard deviation of the mean?
How many lie within two standard deviations of the
mean?

(d) Using the data from Exercise 6.1-7 and the data from
this exercise, construct a back-to-back stem-and-leaf
diagram with integer stems in the center and the
leaves for 1976 going to the left and those for 1977
going to the right.

(e) Construct box-and-whisker displays of both sets of
data on the same graph.

(f) Use your numerical and graphical results to interpret
what you see.

REMARK In the spring of 1977, a new traffic lane was
added to the freeway. This lane reduced traffic congestion
but increased traffic speed.

6.3 ORDER STATISTICS
Order statistics are the observations of the random sample, arranged, or ordered,
in magnitude from the smallest to the largest. In recent years, the importance of
order statistics has increased owing to the more frequent use of nonparametric infer-
ences and robust procedures. However, order statistics have always been prominent
because, among other things, they are needed to determine rather simple statistics
such as the sample median, the sample range, and the empirical cdf. Recall that in
Section 6.2 we discussed observed order statistics in connection with descriptive and
exploratory statistical methods. We will consider certain interesting aspects about
their distributions in this section.

In most of our discussions about order statistics, we will assume that the n
independent observations come from a continuous-type distribution. This means,
among other things, that the probability of any two observations being equal is zero.
That is, the probability is 1 that the observations can be ordered from smallest to
largest without having two equal values. Of course, in practice, we do frequently
observe ties; but if the probability of a tie is small, the distribution theory that fol-
lows will hold approximately. Thus, in the discussion here, we are assuming that the
probability of a tie is zero.

Example
6.3-1

The values x1 = 0.62, x2 = 0.98, x3 = 0.31, x4 = 0.81, and x5 = 0.53 are the n = 5
observed values of five independent trials of an experiment with pdf f (x) = 2x,
0 < x < 1. The observed order statistics are

y1 = 0.31 < y2 = 0.53 < y3 = 0.62 < y4 = 0.81 < y5 = 0.98.

Recall that the middle observation in the ordered arrangement, here y3 = 0.62, is
called the sample median and the difference of the largest and the smallest, here

y5 − y1 = 0.98 − 0.31 = 0.67,

is called the sample range.

If X1, X2, . . . , Xn are observations of a random sample of size n from a
continuous-type distribution, we let the random variables

Y1 < Y2 < · · · < Yn
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denote the order statistics of that sample. That is,

Y1 = smallest of X1, X2, . . . , Xn,

Y2 = second smallest of X1, X2, . . . , Xn,
...

Yn = largest of X1, X2, . . . , Xn.

There is a very simple procedure for determining the cdf of the rth order statis-
tic, Yr. This procedure depends on the binomial distribution and is illustrated in
Example 6.3-2.

Example
6.3-2

Let Y1 < Y2 < Y3 < Y4 < Y5 be the order statistics associated with n indepen-
dent observations X1, X2, X3, X4, X5, each from the distribution with pdf f (x) = 2x,
0 < x < 1. Consider P(Y4 < 1/2). For the event {Y4 < 1/2} to occur, at least
four of the random variables X1, X2, X3, X4, X5 must be less than 1/2, because Y4
is the fourth smallest among the five observations. Thus, if the event {Xi < 1/2},
i = 1, 2, . . . , 5, is called “success,” we must have at least four successes in the five
mutually independent trials, each of which has probability of success

P
(

Xi ≤ 1
2

)
=
∫ 1/2

0
2x dx =

(
1
2

)2

= 1
4

.

Hence,

P
(

Y4 ≤ 1
2

)
=
(

5
4

)(
1
4

)4(3
4

)
+
(

1
4

)5

= 0.0156.

In general, if 0 < y < 1, then the cdf of Y4 is

G(y) = P(Y4 < y) =
(

5
4

)
(y2)4(1 − y2) + (y2)5,

since this represents the probability of at least four “successes” in five independent
trials, each of which has probability of success

P(Xi < y) =
∫ y

0
2x dx = y2.

For 0 < y < 1, the pdf of Y4 is therefore

g(y) = G′(y) =
(

5
4

)
4(y2)3(2y)(1 − y2) +

(
5
4

)
(y2)4(−2y) + 5(y2)4(2y)

= 5!
3! 1! (y2)3(1 − y2)(2y), 0 < y < 1.

Note that in this example the cdf of each X is F(x) = x2 when 0 < x < 1. Thus,

g(y) = 5!
3! 1! [F(y)]3 [1 − F(y)] f (y), 0 < y < 1.

The preceding example should make the following generalization easier to read:
Let Y1 < Y2 < · · · < Yn be the order statistics of n independent observations from
a distribution of the continuous type with cdf F(x) and pdf F ′(x) = f (x), where
0 < F(x) < 1 for a < x < b and F(a) = 0, F(b) = 1. (It is possible that a = −∞
and/or b = +∞.) The event that the rth order statistic Yr is at most y, {Yr ≤ y}, can
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occur if and only if at least r of the n observations are less than or equal to y. That
is, here the probability of “success” on each trial is F(y), and we must have at least r
successes. Thus,

Gr(y) = P(Yr ≤ y) =
n∑

k=r

(
n
k

)
[F(y)]k[1 − F(y)]n−k.

Rewriting this slightly, we have

Gr(y) =
n−1∑
k=r

(
n
k

)
[F(y)]k[1 − F(y)]n−k + [F(y)]n.

Hence, the pdf of Yr is

gr(y) = G′
r(y) =

n−1∑
k=r

(
n
k

)
(k)[F(y)]k−1f (y)[1 − F(y)]n−k

+
n−1∑
k=r

(
n
k

)
[F(y)]k(n − k)[1 − F(y)]n−k−1[−f (y)]

+ n[F(y)]n−1f (y). (6.3-1)

However, since(
n
k

)
k = n!

(k − 1)! (n − k)! and
(

n
k

)
(n − k) = n!

k! (n − k − 1)! ,

it follows that the pdf of Yr is

gr(y) = n!
(r − 1)! (n − r)! [F(y)]r−1[1 − F(y)]n−rf (y), a < y < b,

which is the first term of the first summation in gr(y) = G′
r(y), Equation 6.3-1. The

remaining terms in gr(y) = G′
r(y) sum to zero because the second term of the first

summation (when k = r + 1) equals the negative of the first term in the second
summation (when k = r), and so on. Finally, the last term of the second summation
equals the negative of n[F(y)]n−1f (y). To see this clearly, the student is urged to write
out a number of terms in these summations. (See Exercise 6.3-4.)

It is worth noting that the pdf of the smallest order statistic is

g1(y) = n[1 − F(y)]n−1f (y), a < y < b,

and the pdf of the largest order statistic is

gn(y) = n[F(y)]n−1f (y), a < y < b.

REMARK There is one quite satisfactory way to construct heuristically the expres-
sion for the pdf of Yr. To do this, we must recall the multinomial probability and
then consider the probability element gr(y)(�y) of Yr. If the length �y is very small,
gr(y)(�y) represents approximately the probability

P(y < Yr ≤ y + �y).

Thus, we want the probability, gr(y)(�y), that (r−1) items fall less than y, that (n−r)
items are greater than y + �y, and that one item falls between y and y + �y. Recall
that the probabilities on a single trial are
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P(X ≤ y) = F(y),

P(X > y + �y) = 1 − F(y + �y) ≈ 1 − F(y),

P(y < X ≤ y + �y) ≈ f (y)(�y).

Thus, the multinomial probability is approximately

gr(y)(�y) = n!
(r − 1)! 1! (n − r)! [F(y)]r−1[1 − F(y)]n−r[f (y)(�y)].

If we divide both sides by the length �y, the formula for gr(y) results.

Example
6.3-3

Returning to Example 6.3-2, we shall now graph the pdfs of the order statistics
Y1 < Y2 < Y3 < Y4 < Y5 when sampling from a distribution with pdf f (x) =
2x, 0 < x < 1, and cdf F(x) = x2, 0 < x < 1. These graphs are given in Figure 6.3-1.
The respective pdfs and their means are as follows:

g1(y) = 10y(1 − y2)4, 0 < y < 1; μ1 =
256
693

,

g2(y) = 40y3(1 − y2)3, 0 < y < 1; μ2 =
128
231

,

g3(y) = 60y5(1 − y2)2, 0 < y < 1; μ3 =
160
231

,

g4(y) = 40y7(1 − y2), 0 < y < 1; μ4 =
80
99

,

g5(y) = 10y9, 0 < y < 1; μ5 =
10
11

.

Recall that in Theorem 5.1-2 we proved that if X has a cdf F(x) of the con-
tinuous type, then F(X) has a uniform distribution on the interval from 0 to 1. If
Y1 < Y2 < · · · < Yn are the order statistics of n independent observations
X1, X2, . . . , Xn, then

F(Y1) < F(Y2) < · · · < F(Yn),

r = 1 r = 2

r = 3

r = 4

r = 5

2

4

6

8

10

0.2 0.4 0.6 0.8 1

Figure 6.3-1 pdfs of order statistics,
f (x) = 2x, 0 < x < 1
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because F is a nondecreasing function and the probability of an equality is again
zero. Note that this ordering could be looked upon as an ordering of the mutually
independent random variables F(X1), F(X2), . . . , F(Xn), each of which is U(0, 1).
That is,

W1 = F(Y1) < W2 = F(Y2) < · · · < Wn = F(Yn)

can be thought of as the order statistics of n independent observations from that
uniform distribution. Since the cdf of U(0, 1) is G(w) = w, 0 < w < 1, the pdf of the
rth order statistic, Wr = F(Yr), is

hr(w) = n!
(r − 1)! (n − r)! wr−1(1 − w)n−r, 0 < w < 1.

Of course, the mean, E(Wr) = E[F(Yr)] of Wr = F(Yr), is given by the integral

E(Wr) =
∫ 1

0
w

n!
(r − 1)! (n − r)! wr−1(1 − w)n−r dw.

This integral can be evaluated by integrating by parts several times, but it is easier to
obtain the answer if we rewrite the integration as follows:

E(Wr) =
(

r
n + 1

)∫ 1

0

(n + 1)!
r! (n − r)!wr(1 − w)n−r dw.

The integrand in this last expression can be thought of as the pdf of the (r + 1)st
order statistic of n + 1 independent observations from a U(0, 1) distribution. This is
a beta pdf with α = r + 1 and β = n − r + 1; hence, the integral must equal 1, and it
follows that

E(Wr) = r
n + 1

, r = 1, 2, . . . , n.

There is an extremely interesting interpretation of Wr = F(Yr). Note that F(Yr)
is the cumulated probability up to and including Yr or, equivalently, the area under
f (x) = F ′(x) but less than Yr. Consequently, F(Yr) can be treated as a random area.
Since F(Yr−1) is also a random area, F(Yr) − F(Yr−1) is the random area under
f (x) between Yr−1 and Yr. The expected value of the random area between any two
adjacent order statistics is then

E[F(Yr) − F(Yr−1)] = E[F(Yr)] − E[F(Yr−1)]

= r
n + 1

− r − 1
n + 1

= 1
n + 1

.

Also, it is easy to show (see Exercise 6.3-6) that

E[F(Y1)] = 1
n + 1

and E[1 − F(Yn)] = 1
n + 1

.

That is, the order statistics Y1 < Y2 < · · · < Yn partition the support of X into n + 1
parts and thus create n + 1 areas under f (x) and above the x-axis. On the average,
each of the n + 1 areas equals 1/(n + 1).

If we recall that the (100p)th percentile πp is such that the area under f (x) to the
left of πp is p, then the preceding discussion suggests that we let Yr be an estimator
of πp, where p = r/(n + 1). For this reason, we define the (100p)th percentile of the
sample as Yr, where r = (n+1)p. In case (n+1)p is not an integer, we use a weighted
average (or an average) of the two adjacent order statistics Yr and Yr+1, where r is
the greatest integer [(n + 1)p] (or, 	(n + 1)p
) in (n + 1)p. In particular, the sample
median is
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m̃ =

⎧⎪⎨⎪⎩
Y(n+1)/2, when n is odd,

Yn/2 + Y(n/2)+1

2
, when n is even.

Example
6.3-4

Let X equal the weight of soap in a “1000-gram” bottle. A random sample of n = 12
observations of X yielded the following weights, which have been ordered:

1013 1019 1021 1024 1026 1028

1033 1035 1039 1040 1043 1047

Since n = 12 is even, the sample median is

m̃ = y6 + y7

2
= 1028 + 1033

2
= 1030.5.

The location of the 25th percentile (or first quartile) is

(n + 1)(0.25) = (12 + 1)(0.25) = 3.25.

Thus, using a weighted average, we find that the first quartile is

q̃1 = y3 + (0.25)(y4 − y3) = (0.75)y3 + (0.25)y4

= (0.75)(1021) + (0.25)(1024) = 1021.75.

Similarly, the 75th percentile (or third quartile) is

q̃3 = y9 + (0.75)(y10 − y9) = (0.25)y9 + (0.75)y10

= (0.25)(1039) + (0.75)(1040) = 1039.75,

because (12 + 1)(0.75) = 9.75. Since (12 + 1)(0.60) = 7.8, the 60th percentile is

π̃0.60 = (0.2)y7 + (0.8)y8 = (0.2)(1033) + (0.8)(1035) = 1034.6.

The (100p)th percentile of a distribution is often called the quantile of order
p. So if y1 ≤ y2 ≤ · · · ≤ yn are the order statistics associated with the sample
x1, x2, . . . , xn, then yr is called the sample quantile of order r/(n+1) as well as the
100r/(n+1)th sample percentile. Also, the percentile πp of a theoretical distribution
is the quantile of order p. Now, suppose the theoretical distribution is a good model
for the observations. Then we plot (yr, πp), where p = r/(n+1), for several values of
r (possibly even for all r values, r = 1, 2, . . . , n); we would expect these points (yr, πp)
to lie close to a line through the origin with slope equal to 1 because yr ≈ πp. If they
are not close to that line, then we would doubt that the theoretical distribution is a
good model for the observations. The plot of (yr, πp) for several values of r is called
the quantile–quantile plot or, more simply, the q–q plot.

Given a set of observations of a random variable X, how can we decide, for
example, whether or not X has an approximate normal distribution? If we have a
large number of observations of X, a stem-and-leaf diagram or a histogram of the
observations can often be helpful. (See Exercises 6.2-1 and 6.1-3, respectively.) For
small samples, a q–q plot can be used to check on whether the sample arises from
a normal distribution. For example, suppose the quantiles of a sample were plotted
against the corresponding quantiles of a certain normal distribution and the pairs
of points generated were on a straight line with slope 1 and intercept 0. Of course,
we would then believe that we have an ideal sample from that normal distribution
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with that certain mean and standard deviation. Such a plot, however, requires that
we know the mean and the standard deviation of this normal distribution, and we
usually do not. However, since the quantile, qp, of N(μ, σ 2) is related to the corre-
sponding one, z1−p, of N(0, 1) by qp = μ + σz1−p, we can always plot the quantiles
of the sample against the corresponding ones of N(0, 1) and get the needed informa-
tion. That is, if the sample quantiles are plotted as the x-coordinates of the pairs and
the N(0, 1) quantiles as the y-coordinates, and if the graph is almost a straight line,
then it is reasonable to assume that the sample arises from a normal distribution.
Moreover, the reciprocal of the slope of that straight line is a good estimate of the
standard deviation σ because z1−p = (qp − μ)/σ .

Example
6.3-5

In researching groundwater it is often important to know the characteristics of the
soil at a certain site. Many of these characteristics, such as porosity, are at least par-
tially dependent upon the grain size. The diameter of individual grains of soil can be
measured. Here are the diameters (in mm) of 30 randomly selected grains:

1.24 1.36 1.28 1.31 1.35 1.20 1.39 1.35 1.41 1.31

1.28 1.26 1.37 1.49 1.32 1.40 1.33 1.28 1.25 1.39

1.38 1.34 1.40 1.27 1.33 1.36 1.43 1.33 1.29 1.34

For these data, x = 1.33 and s2 = 0.0040. May we assume that these are observa-
tions of a random variable X that is N(1.33, 0.0040)? To help answer this question,
we shall construct a q–q plot of the standard normal quantiles that correspond to
p = 1/31, 2/31, . . . , 30/31 versus the ordered observations. To find these quantiles, it
is helpful to use the computer.

k Diameters
in mm (x)

p = k/31 z1−p k Diameters
in mm (x)

p = k/31 z1−p

1 1.20 0.0323 −1.85 16 1.34 0.5161 0.04

2 1.24 0.0645 −1.52 17 1.34 0.5484 0.12

3 1.25 0.0968 −1.30 18 1.35 0.5806 0.20

4 1.26 0.1290 −1.13 19 1.35 0.6129 0.29

5 1.27 0.1613 −0.99 20 1.36 0.6452 0.37

6 1.28 0.1935 −0.86 21 1.36 0.6774 0.46

7 1.28 0.2258 −0.75 22 1.37 0.7097 0.55

8 1.28 0.2581 −0.65 23 1.38 0.7419 0.65

9 1.29 0.2903 −0.55 24 1.39 0.7742 0.75

10 1.31 0.3226 −0.46 25 1.39 0.8065 0.86

11 1.31 0.3548 −0.37 26 1.40 0.8387 0.99

12 1.32 0.3871 −0.29 27 1.40 0.8710 1.13

13 1.33 0.4194 −0.20 28 1.41 0.9032 1.30

14 1.33 0.4516 −0.12 29 1.43 0.9355 1.52

15 1.33 0.4839 −0.04 30 1.49 0.9677 1.85
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Figure 6.3-2 q–q plot, N(0, 1) quantiles versus
grain diameters

A q–q plot of these data is shown in Figure 6.3-2. Note that the points do fall
close to a straight line, so the normal probability model seems to be appropriate on
the basis of these few data.

Exercises

6.3-1. Some biology students were interested in analyz-
ing the amount of time that bees spend gathering nectar
in flower patches. Thirty-nine bees visited a high-density
flower patch and spent the following times (in seconds)
gathering nectar:

235 210 95 146 195 840 185 610 680 990

146 404 119 47 9 4 10 169 270 95

329 151 211 127 154 35 225 140 158 116

46 113 149 420 120 45 10 18 105

(a) Find the order statistics.

(b) Find the median and 80th percentile of the sample.

(c) Determine the first and third quartiles (i.e., 25th and
75th percentiles) of the sample.

6.3-2. Let X equal the forced vital capacity (the volume
of air a person can expel from his or her lungs) of a male
freshman. Seventeen observations of X, which have been
ordered, are

3.7 3.8 4.0 4.3 4.7 4.8 4.9 5.0

5.2 5.4 5.6 5.6 5.6 5.7 6.2 6.8 7.6

(a) Find the median, the first quartile, and the third
quartile.

(b) Find the 35th and 65th percentiles.

6.3-3. Let Y1 < Y2 < Y3 < Y4 < Y5 be the order statis-
tics of five independent observations from an exponential
distribution that has a mean of θ = 3.

(a) Find the pdf of the sample median Y3.

(b) Compute the probability that Y4 is less than 5.

(c) Determine P(1 < Y1).

6.3-4. In the expression for gr(y) = G′
r(y) in Equat-

ion 6.3-1, let n = 6, and r = 3, and write out the
summations, showing that the “telescoping” suggested in
the text is achieved.

6.3-5. Let Y1 < Y2 < · · · < Y8 be the order statistics of
eight independent observations from a continuous-type
distribution with 70th percentile π0.7 = 27.3.

(a) Determine P(Y7 < 27.3).

(b) Find P(Y5 < 27.3 < Y8).

6.3-6. Let W1 < W2 < · · · < Wn be the order statistics of
n independent observations from a U(0, 1) distribution.

(a) Find the pdf of W1 and that of Wn.

(b) Use the results of (a) to verify that E(W1) = 1/(n+1)
and E(Wn) = n/(n + 1).

(c) Show that the pdf of Wr is beta.

6.3-7. Let Y1 < Y2 < · · · < Y19 be the order statistics
of n = 19 independent observations from the exponential
distribution with mean θ .
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(a) What is the pdf of Y1?

(b) Using integration, find the value of E[F(Y1)], where
F is the cdf of the exponential distribution.

6.3-8. Let W1 < W2 < · · · < Wn be the order statistics of
n independent observations from a U(0, 1) distribution.

(a) Show that E(W2
r ) = r(r + 1)/(n + 1)(n + 2), using

a technique similar to that used in determining that
E(Wr) = r/(n + 1).

(b) Find the variance of Wr.

6.3-9. Let Y1 < Y2 < · · · < Yn be the order statistics of a
random sample of size n from an exponential distribution
with pdf f (x) = e−x, 0 < x < ∞.

(a) Find the pdf of Yr.

(b) Determine the pdf of U = e−Yr .

6.3-10. Use the heuristic argument to show that the joint
pdf of the two order statistics Yi < Yj is

g (yi, yj) = n!
(i − 1)!(j − i − 1)!(n − j)!
× [F(yi)]i−1[F(yj) − F(yi)]j−i−1

× [1 − F(yj)]n−jf (yi)f (yj), −∞ <yi <yj <∞.

6.3-11. Use the result of Exercise 6.3-10.

(a) Find the joint pdf of Y1 and Yn, the first and the nth
order statistics of a random sample of size n from the
U(0, 1) distribution.

(b) Find the joint and the marginal pdfs of W1 = Y1/Yn
and W2 = Yn.

(c) Are W1 and W2 independent?

(d) Use simulation to confirm your theoretical results.

6.3-12. Nine measurements are taken on the strength of
a certain metal. In order, they are 7.2, 8.9, 9.7, 10.5, 10.9,

11.7, 12.9, 13.9, 15.3, and these values correspond to the
10th, 20th, . . . , 90th percentiles of this sample. Construct
a q–q plot of the measurements against the same per-
centiles of N(0, 1). Does it seem reasonable that the
underlying distribution of strengths could be normal?

6.3-13. Some measurements (in mm) were made on spec-
imens of the spider Sosippus floridanus, which is native to
Florida. Here are the lengths of nine female spiders and
nine male spiders.

Female spiders 11.06 13.87 12.93 15.08 17.82

14.14 12.26 17.82 20.17

Male spiders 12.26 11.66 12.53 13.00 11.79

12.46 10.65 10.39 12.26

(a) Construct a q–q plot of the female spider lengths. Do
they appear to be normally distributed?

(b) Construct a q–q plot of the male spider lengths. Do
they appear to be normally distributed?

6.3-14. An interior automotive supplier places several
electrical wires in a harness. A pull test measures the force
required to pull spliced wires apart. A customer requires
that each wire that is spliced into the harness withstand
a pull force of 20 pounds. Let X equal the pull force
required to pull a spliced wire apart. The following data
give the values of a random sample of n = 20 observations
of X:

28.8 24.4 30.1 25.6 26.4 23.9 22.1 22.5 27.6 28.1

20.8 27.7 24.4 25.1 24.6 26.3 28.2 22.2 26.3 24.4

(a) Construct a q–q plot, using the ordered array and the
corresponding quantiles of N(0, 1).

(b) Does X appear to have a normal distribution?

6.4 MAXIMUM LIKELIHOOD ESTIMATION
In earlier chapters, we alluded to estimating characteristics of the distribution from
the corresponding ones of the sample, hoping that the latter would be reasonably
close to the former. For example, the sample mean x can be thought of as an estimate
of the distribution mean μ, and the sample variance s2 can be used as an estimate of
the distribution variance σ 2. Even the relative frequency histogram associated with
a sample can be taken as an estimate of the pdf of the underlying distribution. But
how good are these estimates? What makes an estimate good? Can we say anything
about the closeness of an estimate to an unknown parameter?

In this section, we consider random variables for which the functional form of
the pmf or pdf is known, but the distribution depends on an unknown parameter
(say, θ) that may have any value in a set (say, �) called the parameter space. For
example, perhaps it is known that f (x; θ) = (1/θ)e−x/θ , 0 < x < ∞, and that θ ∈ � =
{θ : 0 < θ < ∞}. In certain instances, it might be necessary for the experimenter to
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select precisely one member of the family {f (x, θ), θ ∈ �} as the most likely pdf of the
random variable. That is, the experimenter needs a point estimate of the parameter
θ , namely, the value of the parameter that corresponds to the selected pdf.

In one common estimation scenario, we take a random sample from the dis-
tribution to elicit some information about the unknown parameter θ . That is, we
repeat the experiment n independent times, observe the sample, X1, X2, . . . , Xn, and
try to estimate the value of θ by using the observations x1, x2, . . . , xn. The function of
X1, X2, . . . , Xn used to estimate θ—say, the statistic u(X1, X2, . . . , Xn)—is called an
estimator of θ . We want it to be such that the computed estimate u(x1, x2, . . . , xn) is
usually close to θ . Since we are estimating one member of θ ∈ �, such an estimator
is often called a point estimator.

The following example should help motivate one principle that is often used in
finding point estimates: Suppose that X is b(1, p), so that the pmf of X is

f (x; p) = px(1 − p)1−x, x = 0, 1, 0 ≤ p ≤ 1.

We note that p ∈ � = {p : 0 ≤ p ≤ 1}, where � represents the parameter
space—that is, the space of all possible values of the parameter p. Given a ran-
dom sample X1, X2, . . . , Xn, the problem is to find an estimator u(X1, X2, . . . , Xn)
such that u(x1, x2, . . . , xn) is a good point estimate of p, where x1, x2, . . . , xn are the
observed values of the random sample. Now, the probability that X1, X2, . . . , Xn
takes these particular values is (with 	 xi denoting

∑n
i=1 xi)

P(X1 = x1, . . . , Xn = xn) =
n∏

i=1

pxi(1 − p)1−xi = p	 xi(1 − p)n−	 xi ,

which is the joint pmf of X1, X2, . . . , Xn evaluated at the observed values. One
reasonable way to proceed toward finding a good estimate of p is to regard this
probability (or joint pmf) as a function of p and find the value of p that maximizes
it. That is, we find the p value most likely to have produced these sample values.
The joint pmf, when regarded as a function of p, is frequently called the likelihood
function. Thus, here the likelihood function is

L(p) = L(p; x1, x2, . . . , xn)

= f (x1; p)f (x2; p) · · · f (xn; p)

= p	 xi(1 − p)n−	 xi , 0 ≤ p ≤ 1.

If 	n
i=1xi = 0, then L(p) = (1−p)n, which is maximized over p ∈ [0, 1] by taking

p̂ = 0. If, on the other hand, 	n
i=1xi = n, then L(p) = pn and this is maximized over

p ∈ [0, 1] by taking p̂ = 1. If 	n
i=1xi equals neither 0 nor n, then L(0) = L(1) = 0

while L(p) > 0 for all p ∈ (0, 1); thus, in this case it suffices to maximize L(p) for
0 < p < 1, which we do by standard methods of calculus. The derivative of L(p) is

L′(p) = (	 xi)p	 xi−1(1 − p)n−	 xi − (n − 	 xi)p	 xi(1 − p)n−	 xi−1.

Setting this first derivative equal to zero gives us, with the restriction that 0 < p < 1,

p	 xi(1 − p)n−	 xi

(
	 xi

p
− n − 	 xi

1 − p

)
= 0.

Since 0 < p < 1, the preceding equation equals zero when

	 xi

p
− n − 	 xi

1 − p
= 0. (6.4-1)
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Multiplying each member of Equation 6.4-1 by p(1 − p) and simplifying, we obtain

n∑
i=1

xi − np = 0

or, equivalently,

p =
∑n

i=1 xi

n
= x.

It can be shown that L′′(x) < 0, so that L(x) is a maximum. The corresponding
statistic, namely, (

∑n
i=1 Xi)/n = X, is called the maximum likelihood estimator and

is denoted by p̂; that is,

p̂ = 1
n

n∑
i=1

Xi = X.

When finding a maximum likelihood estimator, it is often easier to find the value
of the parameter that maximizes the natural logarithm of the likelihood function
rather than the value of the parameter that maximizes the likelihood function itself.
Because the natural logarithm function is a strictly increasing function, the solutions
will be the same. To see this, note that for 0 < p < 1, the example we have been
considering gives us

ln L(p) =
(

n∑
i=1

xi

)
ln p +

(
n −

n∑
i=1

xi

)
ln(1 − p).

To find the maximum, we set the first derivative equal to zero to obtain

d [ln L(p)]
dp

=
(

n∑
i=1

xi

)(
1
p

)
+
(

n −
n∑

i=1

xi

)( −1
1 − p

)
= 0,

which is the same as Equation 6.4-1. Thus, the solution is p = x and the maximum
likelihood estimator for p is p̂ = X.

Motivated by the preceding example, we present the formal definition of
maximum likelihood estimators (this definition is used in both the discrete and
continuous cases).

Let X1, X2, . . . , Xn be a random sample from a distribution that depends on
one or more unknown parameters θ1, θ2, . . . , θm with pmf or pdf that is denoted
by f (x; θ1, θ2, . . . , θm). Suppose that (θ1, θ2, . . . , θm) is restricted to a given parameter
space �. Then the joint pmf or pdf of X1, X2, . . . , Xn, namely,

L(θ1, θ2, . . . , θm) = f (x1; θ1, . . . , θm)f (x2; θ1, . . . , θm)

· · · f (xn; θ1, . . . , θm), (θ1, θ2, . . . , θm) ∈ �,

when regarded as a function of θ1, θ2, . . . , θm, is called the likelihood function. Say

[u1(x1, . . . , xn), u2(x1, . . . , xn), . . . , um(x1, . . . , xn)]
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is that m-tuple in � that maximizes L(θ1, θ2, . . . , θm). Then

θ̂1 = u1(X1, . . . , Xn),

θ̂2 = u2(X1, . . . , Xn),

...

θ̂m = um(X1, . . . , Xn)

are maximum likelihood estimators of θ1, θ2, . . . , θm, respectively; and the corre-
sponding observed values of these statistics, namely,

u1(x1, . . . , xn), u2(x1, . . . , xn), . . . , um(x1, . . . , xn),

are called maximum likelihood estimates. In many practical cases, these estimators
(and estimates) are unique.

For many applications, there is just one unknown parameter. In these cases, the
likelihood function is given by

L(θ) =
n∏

i=1

f (xi; θ).

Some additional examples will help clarify these definitions.

Example
6.4-1

Let X1, X2, . . . , Xn be a random sample from the exponential distribution with pdf

f (x; θ) = 1
θ

e−x/θ , 0 < x < ∞, θ ∈ � = {θ : 0 < θ < ∞}.

The likelihood function is given by

L(θ) = L(θ ; x1, x2, . . . , xn)

=
(

1
θ

e−x1/θ

)(
1
θ

e−x2/θ

)
· · ·

(
1
θ

e−xn/θ

)

= 1
θn exp

(−∑n
i=1 xi

θ

)
, 0 < θ < ∞.

The natural logarithm of L(θ) is

ln L(θ) = −(n) ln(θ) − 1
θ

n∑
i=1

xi, 0 < θ < ∞.

Thus,

d [ln L(θ)]
dθ

= −n
θ

+
∑n

i=1 xi

θ2
= 0.

The solution of this equation for θ is

θ = 1
n

n∑
i=1

xi = x.
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Note that

d [ln L(θ)]
dθ

= 1
θ

(
−n + n x

θ

) > 0, θ < x,

= 0, θ = x,

< 0, θ > x.

Hence, ln L(θ) does have a maximum at x, and it follows that the maximum likeli-
hood estimator for θ is

θ̂ = X = 1
n

n∑
i=1

Xi.

Example
6.4-2

Let X1, X2, . . . , Xn be a random sample from the geometric distribution with pmf
f (x; p) = (1 − p)x−1p, x = 1, 2, 3, . . . . The likelihood function is given by

L(p) = (1 − p)x1−1p(1 − p)x2−1p · · · (1 − p)xn−1p

= pn(1 − p)	 xi−n, 0 ≤ p ≤ 1.

The natural logarithm of L(p) is

ln L(p) = n ln p +
(

n∑
i=1

xi − n

)
ln(1 − p), 0 < p < 1.

Thus, restricting p to 0 < p < 1, so as to be able to take the derivative, we have

d ln L(p)
dp

= n
p

−
∑n

i=1 xi − n
1 − p

= 0.

Solving for p, we obtain

p = n∑n
i=1 xi

= 1
x

,

and, by the second derivative test, this solution provides a maximum. So the
maximum likelihood estimator of p is

p̂ = n∑n
i=1 Xi

= 1

X
.

This estimator agrees with our intuition because, in n observations of a geometric
random variable, there are n successes in the

∑n
i=1 xi trials. Thus, the estimate of p is

the number of successes divided by the total number of trials.

In the following important example, we find the maximum likelihood estimators
of the parameters associated with the normal distribution.

Example
6.4-3

Let X1, X2, . . . , Xn be a random sample from N(θ1, θ2), where

� = {(θ1, θ2) : −∞ < θ1 < ∞, 0 < θ2 < ∞}.
That is, here we let θ1 = μ and θ2 = σ 2. Then

L(θ1, θ2) =
n∏

i=1

1√
2πθ2

exp

[
− (xi − θ1)2

2θ2

]
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or, equivalently,

L(θ1, θ2) =
(

1√
2πθ2

)n

exp

[
−∑n

i=1(xi − θ1)2

2θ2

]
, (θ1, θ2) ∈ �.

The natural logarithm of the likelihood function is

ln L(θ1, θ2) = −n
2

ln(2πθ2) −
∑n

i=1 (xi − θ1)2

2θ2
.

The partial derivatives with respect to θ1 and θ2 are

∂ (ln L)
∂ θ1

= 1
θ2

n∑
i=1

(xi − θ1)

and

∂ (ln L)
∂ θ2

= −n
2θ2

+ 1

2θ2
2

n∑
i=1

(xi − θ1)2.

The equation ∂ (ln L)/∂ θ1 = 0 has the solution θ1 = x. Setting ∂ (ln L)/∂ θ2 = 0 and
replacing θ1 by x yields

θ2 = 1
n

n∑
i=1

(xi − x)2.

By considering the usual condition on the second-order partial derivatives, we see
that these solutions do provide a maximum. Thus, the maximum likelihood estima-
tors of μ = θ1 and σ 2 = θ2 are

θ̂1 = X and θ̂2 = 1
n

n∑
i=1

(Xi − X)2 = V.

It is interesting to note that in our first illustration, where p̂ = X, and in
Example 6.4-1, where θ̂ = X, the expected value of the estimator is equal to the
corresponding parameter. This observation leads to the following definition.

Definition 6.4-1
If E[u(X1, X2, . . . , Xn)] = θ , then the statistic u(X1, X2, . . . , Xn) is called an
unbiased estimator of θ . Otherwise, it is said to be biased.

Example
6.4-4

Let Y1 < Y2 < Y3 < Y4 be the order statistics of a random sample X1, X2, X3, X4
from a uniform distribution with pdf f (x; θ) = 1/θ , 0 < x ≤ θ . The likelihood
function is

L(θ) =
(

1
θ

)4

, 0 < xi ≤ θ , i = 1, 2, 3, 4,

and equals zero if θ < xi or if xi ≤ 0. To maximize L(θ), we must make θ as small as
possible; hence, the maximum likelihood estimator is

θ̂ = max(Xi) = Y4
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because θ cannot be less than any Xi. Since F(x; θ) = x/θ , 0 < x ≤ θ , the pdf of
Y4 is

g4(y4) = 4!
3!1!

(y4

θ

)3
(

1
θ

)
= 4

y3
4

θ4
, 0 < y4 ≤ θ .

Accordingly,

E(Y4) =
∫ θ

0
y4 · 4

y3
4

θ4
dy4 = 4

5
θ

and Y4 is a biased estimator of θ . However, 5Y4/4 is unbiased.

Example
6.4-5

We have shown that when sampling from N(θ1 = μ, θ2 = σ 2), one finds that the
maximum likelihood estimators of μ and σ 2 are

θ̂1 = μ̂ = X and θ̂2 = σ̂ 2 = (n − 1)S2

n
.

Recalling that the distribution of X is N(μ, σ 2/n), we see that E(X) = μ; thus, X is
an unbiased estimator of μ.

In Theorem 5.5-2, we showed that the distribution of (n − 1)S2/σ 2 is χ2(n−1).
Hence,

E(S2) = E

[
σ 2

n − 1
(n − 1)S2

σ 2

]
= σ 2

n − 1
(n − 1) = σ 2.

That is, the sample variance

S2 = 1
n − 1

n∑
i=1

(Xi − X)2

is an unbiased estimator of σ 2. Consequently, since

E(θ̂2) = n − 1
n

E(S2) = n − 1
n

σ 2,

θ̂2 is a biased estimator of θ2 = σ 2.

Sometimes it is impossible to find maximum likelihood estimators in a conve-
nient closed form, and numerical methods must be used to maximize the likelihood
function. For example, suppose that X1, X2, . . . , Xn is a random sample from a
gamma distribution with parameters α = θ1 and β = θ2, where θ1 > 0, θ2 > 0. It
is difficult to maximize

L(θ1, θ2; x1, . . . , xn) =
[

1

�(θ1)θθ1
2

]n

(x1x2 · · · xn)θ1−1 exp

(
−

n∑
i=1

xi/θ2

)

with respect to θ1 and θ2, owing to the presence of the gamma function �(θ1). Thus,
numerical methods must be used to maximize L once x1, x2, . . . , xn are observed.

There are other ways, however, to easily obtain point estimates of θ1 and θ2.
One of the early methods was to simply equate the first sample moment to the first
theoretical moment. Next, if needed, the two second moments are equated, then the
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third moments, and so on, until we have enough equations to solve for the parame-
ters. As an illustration, in the gamma distribution situation, let us simply equate the
first two moments of the distribution to the corresponding moments of the empirical
distribution. This seems like a reasonable way in which to find estimators, since the
empirical distribution converges in some sense to the probability distribution, and
hence corresponding moments should be about equal. In this situation, we have

θ1θ2 = X, θ1θ
2
2 = V,

the solutions of which are

θ̃1 = X
2

V
and θ̃2 = V

X
.

We say that these latter two statistics, θ̃1 and θ̃2, are respective estimators of θ1 and
θ2 found by the method of moments.

To generalize this discussion, let X1, X2, . . . , Xn be a random sample of size n
from a distribution with pdf f (x; θ1, θ2, . . . , θr), (θ1, . . . , θr) ∈ �. The expectation
E(Xk) is frequently called the kth moment of the distribution, k = 1, 2, 3, . . . . The
sum Mk = ∑n

i=1 Xk
i /n is the kth moment of the sample, k = 1, 2, 3, . . . . The method

of moments can be described as follows. Equate E(Xk) to Mk, beginning with
k = 1 and continuing until there are enough equations to provide unique solutions
for θ1, θ2, . . . , θr — say, hi(M1, M2, . . .), i = 1, 2, . . . , r, respectively. Note that this
could be done in an equivalent manner by equating μ = E(X) to X and E[(X −μ)k]
to

∑n
i=1 (Xi − X)k/n, k = 2, 3, and so on, until unique solutions for θ1, θ2, . . . , θr

are obtained. This alternative procedure was used in the preceding illustration. In
most practical cases, the estimator θ̃i = hi(M1, M2, . . .) of θi, found by the method of
moments, is an estimator of θi that in some sense gets close to that parameter when
n is large, i = 1, 2, . . . , r.

The next two examples—the first for a one-parameter family and the second for
a two-parameter family—illustrate the method-of-moments technique for finding
estimators.

Example
6.4-6

Let X1, X2, . . . , Xn be a random sample of size n from the distribution with pdf
f (x; θ) = θxθ−1, 0 < x < 1, 0 < θ < ∞. Sketch the graphs of this pdf for
θ = 1/4, 1, and 4. Note that sets of observations for these three values of θ would
look very different. How do we estimate the value of θ? The mean of this distribution
is given by

E(X) =
∫ 1

0
x θ xθ−1 dx = θ

θ + 1
.

We shall set the distribution mean equal to the sample mean and solve for θ . We
have

x = θ

θ + 1
.

Solving for θ , we obtain the method-of-moments estimator,

θ̃ = X

1 − X
.

Thus, an estimate of θ by the method of moments is x/(1 − x).
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Recall that in the method of moments, if two parameters have to be estimated,
the first two sample moments are set equal to the first two distribution moments that
are given in terms of the unknown parameters. These two equations are then solved
simultaneously for the unknown parameters.

Example
6.4-7

Let the distribution of X be N(μ, σ 2). Then

E(X) = μ and E(X2) = σ 2 + μ2.

For a random sample of size n, the first two moments are given by

m1 = 1
n

n∑
i=1

xi and m2 = 1
n

n∑
i=1

x2
i .

We set m1 = E(X) and m2 = E(X2) and solve for μ and σ 2. That is,

1
n

n∑
i=1

xi = μ and
1
n

n∑
i=1

x2
i = σ 2 + μ2.

The first equation yields x as the estimate of μ. Replacing μ2 with x2 in the second
equation and solving for σ 2, we obtain

1
n

n∑
i=1

x2
i − x2 =

n∑
i=1

(xi − x)2

n
= v

as the solution of σ 2. Thus, the method-of-moments estimators for μ and σ 2 are
μ̃ = X and σ̃ 2 = V, which are the same as the maximum likelihood estimators. Of
course, μ̃ = X is unbiased, whereas σ̃ 2 = V is biased.

In Example 6.4-5, we showed that X and S2 are unbiased estimators of μ and σ 2,
respectively, when one is sampling from a normal distribution. This is also true when
one is sampling from any distribution with a finite variance σ 2. That is, E(X) = μ

and E(S2) = σ 2, provided that the sample arises from a distribution with variance
σ 2 < ∞. (See Exercise 6.4-11.) Although S2 is an unbiased estimator of σ 2, S is a
biased estimator of σ . In Exercise 6.4-14, you are asked to show that, when one is
sampling from a normal distribution, cS is an unbiased estimator of σ , where

c =
√

n − 1 �

(
n − 1

2

)
√

2 �
(n

2

) .

REMARK Later we show that S2 is an unbiased estimator of σ 2, provided it exists,
for every distribution, not just the normal.

Exercises

6.4-1. Let X1, X2, . . . , Xn be a random sample from
N(μ, σ 2), where the mean θ = μ is such that −∞ <

θ < ∞ and σ 2 is a known positive number. Show that
the maximum likelihood estimator for θ is θ̂ = X.

6.4-2. A random sample X1, X2, . . . , Xn of size
n is taken from N( μ, σ 2), where the variance
θ = σ 2 is such that 0 < θ < ∞ and μ is
a known real number. Show that the maximum
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likelihood estimator for θ is θ̂ = (1/n)
∑n

i=1 (Xi − μ)2

and that this estimator is an unbiased estimator of θ .

6.4-3. A random sample X1, X2, . . . , Xn of size n is taken
from a Poisson distribution with a mean of λ, 0 < λ < ∞.

(a) Show that the maximum likelihood estimator for λ is
λ̂ = X.

(b) Let X equal the number of flaws per 100 feet of a used
computer tape. Assume that X has a Poisson distribu-
tion with a mean of λ. If 40 observations of X yielded
5 zeros, 7 ones, 12 twos, 9 threes, 5 fours, 1 five, and 1
six, find the maximum likelihood estimate of λ.

6.4-4. For determining half-lives of radioactive isotopes,
it is important to know what the background radiation is
in a given detector over a specific period. The following
data were taken in a γ -ray detection experiment over 98
ten-second intervals:

58 50 57 58 64 63 54 64 59 41 43 56 60 50

46 59 54 60 59 60 67 52 65 63 55 61 68 58

63 36 42 54 58 54 40 60 64 56 61 51 48 50

60 42 62 67 58 49 66 58 57 59 52 54 53 53

57 43 73 65 45 43 57 55 73 62 68 55 51 55

53 68 58 53 51 73 44 50 53 62 58 47 63 59

59 56 60 59 50 52 62 51 66 51 56 53 59 57

Assume that these data are observations of a Poisson
random variable with mean λ.

(a) Find the values of x and s2.

(b) What is the value of the maximum likelihood estima-
tor of λ?

(c) Is S2 an unbiased estimator of λ?

(d) Which of x and s2 would you recommend for estimat-
ing λ? Why? You could compare the variance of X
with the variance of S2, which is

Var(S2) = λ(2λn + n − 1)
n(n − 1)

.

6.4-5. Let X1, X2, . . . , Xn be a random sample from dis-
tributions with the given probability density functions. In
each case, find the maximum likelihood estimator θ̂ .

(a) f (x; θ) = (1/θ2) x e−x/θ , 0 < x < ∞, 0 < θ < ∞.

(b) f (x; θ) = (1/2θ3) x2 e−x/θ , 0 < x < ∞, 0 < θ < ∞.

(c) f (x; θ) = (1/2) e−|x−θ |, −∞ < x < ∞, −∞< θ <∞.

Hint: Finding θ involves minimizing
∑ |xi − θ |, which

is a difficult problem. When n = 5, do it for x1 = 6.1,
x2 = −1.1, x3 = 3.2, x4 = 0.7, and x5 = 1.7, and you
will see the answer. (See also Exercise 2.2-8.)

6.4-6. Find the maximum likelihood estimates for θ1 = μ

and θ2 = σ 2 if a random sample of size 15 from N(μ, σ 2)
yielded the following values:

31.5 36.9 33.8 30.1 33.9

35.2 29.6 34.4 30.5 34.2

31.6 36.7 35.8 34.5 32.7

6.4-7. Let f (x; θ) = θxθ−1, 0 < x < 1, θ ∈ � = {θ : 0 <

θ < ∞}. Let X1, X2, . . . , Xn denote a random sample of
size n from this distribution.

(a) Sketch the pdf of X for (i) θ = 1/2, (ii) θ = 1, and (iii)
θ = 2.

(b) Show that θ̂ = −n/ ln
(∏n

i=1 Xi
)

is the maximum
likelihood estimator of θ .

(c) For each of the following three sets of 10 observa-
tions from the given distribution, calculate the values
of the maximum likelihood estimate and the method-
of-moments estimate of θ :

(i) 0.0256 0.3051 0.0278 0.8971 0.0739

0.3191 0.7379 0.3671 0.9763 0.0102

(ii) 0.9960 0.3125 0.4374 0.7464 0.8278

0.9518 0.9924 0.7112 0.2228 0.8609

(iii) 0.4698 0.3675 0.5991 0.9513 0.6049

0.9917 0.1551 0.0710 0.2110 0.2154

6.4-8. Let f (x; θ) = (1/θ)x(1−θ)/θ , 0 < x < 1, 0 < θ <

∞.

(a) Show that the maximum likelihood estimator of θ is
θ̂ = −(1/n)

∑n
i=1 ln Xi.

(b) Show that E( θ̂ ) = θ and thus that θ̂ is an unbiased
estimator of θ .

6.4-9. Let X1, X2, . . . , Xn be a random sample of size n
from the exponential distribution whose pdf is f (x; θ) =
(1/θ)e−x/θ , 0 < x < ∞, 0 < θ < ∞.

(a) Show that X is an unbiased estimator of θ .

(b) Show that the variance of X is θ2/n.

(c) What is a good estimate of θ if a random sample of
size 5 yielded the sample values 3.5, 8.1, 0.9, 4.4, and
0.5?

6.4-10. Let X1, X2, . . . , Xn be a random sample of size n
from a geometric distribution for which p is the probabil-
ity of success.

(a) Use the method of moments to find a point estimate
for p.

(b) Explain intuitively why your estimate makes good
sense.
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(c) Use the following data to give a point estimate of p:

3 34 7 4 19 2 1 19 43 2

22 4 19 11 7 1 2 21 15 16

6.4-11. Let X1, X2, . . . , Xn be a random sample from a
distribution having finite variance σ 2. Show that

S2 =
n∑

i=1

(Xi − X)2

n − 1

is an unbiased estimator of σ 2. Hint: Write

S2 = 1
n − 1

(
n∑

i=1

X2
i − nX

2
)

and compute E(S2).

6.4-12. Let X1, X2, . . . , Xn be a random sample from
b(1, p) (i.e., n Bernoulli trials). Thus,

Y =
n∑

i=1

Xi is b(n, p).

(a) Show that X = Y/n is an unbiased estimator of p.

(b) Show that Var(X) = p(1 − p)/n.

(c) Show that E[X(1 − X)/n] = (n − 1)[p(1 − p)/n2].

(d) Find the value of c so that cX(1 − X) is an unbiased
estimator of Var(X) = p(1 − p)/n.

6.4-13. Let X1, X2, . . . , Xn be a random sample from a
uniform distribution on the interval (θ − 1, θ + 1).

(a) Find the method-of-moments estimator of θ .

(b) Is your estimator in part (a) an unbiased estimator of
θ?

(c) Given the following n = 5 observations of X, give a
point estimate of θ :

6.61 7.70 6.98 8.36 7.26

(d) The method-of-moments estimator actually has
greater variance than the maximum likelihood estima-
tor of θ , namely [min(Xi)+max(Xi)]/2. Compute the
value of the latter estimator for the n = 5 observations
in (c).

6.4-14. Let X1, X2, . . . , Xn be a random sample of size n
from a normal distribution.

(a) Show that an unbiased estimator of σ is cS, where

c =
√

n − 1 �

(
n − 1

2

)
√

2 �
(n

2

) .

Hint: Recall that the distribution of (n − 1)S2/σ 2 is
χ2(n−1).

(b) Find the value of c when n = 5; when n = 6.

(c) Graph c as a function of n. What is the limit of c as n
increases without bound?

6.4-15. Given the following 25 observations from a
gamma distribution with mean μ = αθ and variance
σ 2 = αθ2, use the method-of-moments estimators to find
point estimates of α and θ :

6.9 7.3 6.7 6.4 6.3 5.9 7.0 7.1 6.5 7.6 7.2 7.1 6.1

7.3 7.6 7.6 6.7 6.3 5.7 6.7 7.5 5.3 5.4 7.4 6.9

6.4-16. An urn contains 64 balls, of which N1 are orange
and N2 are blue. A random sample of n = 8 balls is
selected from the urn without replacement, and X is equal
to the number of orange balls in the sample. This exper-
iment was repeated 30 times (the 8 balls being returned
to the urn before each repetition), yielding the following
data:

3 0 0 1 1 1 1 3 1 1 2 0 1 3 1

0 1 0 2 1 1 2 3 2 2 4 3 1 1 2

Using these data, guess the value of N1 and give a reason
for your guess.

6.4-17. Let the pdf of X be defined by

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
4
θ2

)
x, 0 < x ≤ θ

2
,

−
(

4
θ2

)
x + 4

θ
,

θ

2
< x ≤ θ ,

0, elsewhere,

where θ ∈ � = {θ : 0 <θ ≤ 2}.
(a) Sketch the graph of this pdf when θ = 1/2, θ = 1, and

θ = 2.

(b) Find an estimator of θ by the method of moments.

(c) For the following observations of X, give a point
estimate of θ :

0.3206 0.2408 0.2577 0.3557 0.4188

0.5601 0.0240 0.5422 0.4532 0.5592

6.4-18. Let independent random samples, each of size
n, be taken from the k normal distributions with means
μj = c + d[j − (k + 1)/2], j = 1, 2, . . . , k, respectively,
and common variance σ 2. Find the maximum likelihood
estimators of c and d.

6.4-19. Let the independent normal random vari-
ables Y1, Y2, . . . , Yn have the respective distributions
N(μ, γ 2x2

i ), i = 1, 2, . . . , n, where x1, x2, . . . , xn are known
but not all the same and no one of which is equal to
zero. Find the maximum likelihood estimators for μ

and γ 2.
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6.5 A SIMPLE REGRESSION PROBLEM
There is often interest in the relation between two variables—for example, the
temperature at which a certain chemical reaction is performed and the yield of a
chemical compound resulting from the reaction. Frequently, one of these variables,
say, x, is known in advance of the other, so there is interest in predicting a future ran-
dom variable Y. Since Y is a random variable, we cannot predict its future observed
value Y = y with certainty. Let us first concentrate on the problem of estimating the
mean of Y—that is, E(Y | x). Now, E(Y | x) is usually a function of x. For example,
in our illustration with the yield, say Y, of the chemical reaction, we might expect
E(Y | x) to increase with increasing temperature x. Sometimes E(Y | x) = μ(x) is
assumed to be of a given form, such as linear, quadratic, or exponential; that is,
μ(x) could be assumed to be equal to α + βx, α + βx + γ x2, or αeβx. To estimate
E(Y | x) = μ(x), or, equivalently, the parameters α, β, and γ , we observe the random
variable Y for each of n possibly different values of x—say, x1, x2, . . . , xn. Once the n
independent experiments have been performed, we have n pairs of known numbers
(x1, y1), (x2, y2), . . . , (xn, yn). These pairs are then used to estimate the mean E(Y | x).
Problems like this are often classified under regression because E(Y | x) = μ(x) is
frequently called a regression curve.

REMARK A model for the mean that is of the form α + βx + γ x2 is called a linear
model because it is linear in the parameters, α, β, and γ . Note, however, that a plot
of this model versus x is not a straight line unless γ = 0. Thus, a linear model may be
nonlinear in x. On the other hand, αeβx is not a linear model, because it is not linear
in α and β.

Let us begin with the case in which E(Y | x) = μ(x) is a linear function of x. The
data points are (x1, y1), (x2, y2), . . . , (xn, yn), so the first problem is that of fitting a
straight line to the set of data. (See Figure 6.5-1.) In addition to assuming that the
mean of Y is a linear function, we assume that, for a particular value of x, the value
of Y will differ from its mean by a random amount ε. We further assume that the
distribution of ε is N(0, σ 2). So we have, for our linear model,

Yi = α1 + βxi + εi,

y

x66

70

74

78

82

86

90

94

48 52 56 60 64 68 72 76 80 84

y = μ(x)

(xi, yi)

(xi, μ(xi))

Figure 6.5-1 Scatter plot and the line y = μ(x)
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where εi, for i = 1, 2, . . . , n, are independent and N(0, σ 2). The unknown parameters
α1 and β are the Y-intercept and slope, respectively, of the line μ(x) = α1 + βx.

We shall now find point estimates, specifically maximum likelihood estimates,
for α1, β, and σ 2. For convenience, we let α1 = α − β x, so that

Yi = α + β(xi − x) + εi, where x = 1
n

n∑
i=1

xi.

Then Yi is equal to a nonrandom quantity, α+β(xi−x), plus a mean-zero normal ran-
dom variable εi. Hence, Y1, Y2, . . . , Yn are mutually independent normal variables
with respective means α + β(xi − x), i = 1, 2, . . . , n, and unknown variance σ 2. Their
joint pdf is therefore the product of the individual probability density functions; that
is, the likelihood function equals

L(α, β, σ 2) =
n∏

i=1

1√
2πσ 2

exp

{
− [yi − α − β(xi − x)]2

2σ 2

}

=
(

1
2πσ 2

)n/2

exp

{
−
∑n

i=1 [yi − α − β(xi − x)]2

2σ 2

}
.

To maximize L(α, β, σ 2) or, equivalently, to minimize

− ln L(α, β, σ 2) = n
2

ln(2πσ 2) +
∑n

i=1 [yi − α − β(xi − x)]2

2σ 2
,

we must select α and β to minimize

H(α, β) =
n∑

i=1

[yi − α − β(xi − x)]2.

Since |yi − α − β(xi − x)| = |yi − μ(xi)| is the vertical distance from the point
(xi, yi) to the line y = μ(x), we note that H(α, β) represents the sum of the squares
of those distances. Thus, selecting α and β so that the sum of the squares is mini-
mized means that we are fitting the straight line to the data by the method of least
squares. Accordingly, the maximum likelihood estimates of α and β are also called
least squares estimates.

To minimize H(α, β), we find the two first-order partial derivatives

∂H(α, β)
∂α

= 2
n∑

i=1

[yi − α − β(xi − x)](−1)

and

∂H(α, β)
∂β

= 2
n∑

i=1

[yi − α − β(xi − x)][−(xi − x)].

Setting ∂H(α, β)/∂α = 0, we obtain

n∑
i=1

yi − nα − β

n∑
i=1

(xi − x) = 0.
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Since
n∑

i=1

(xi − x) = 0,

we have
n∑

i=1

yi − nα = 0;

thus,

α̂ = Y.

With α replaced by y, the equation ∂H(α, β)/∂β = 0 yields

n∑
i=1

(yi − y)(xi − x) − β

n∑
i=1

(xi − x)2 = 0

or, equivalently,

β̂ =
∑n

i=1 (Yi − Y)(xi − x)∑n
i=1 (xi − x)2

=
∑n

i=1 Yi(xi − x)∑n
i=1 (xi − x)2

.

Standard methods of multivariate calculus can be used to show that this solution
obtained by equating the first-order partial derivatives of H(α, β) to zero is indeed
a point of minimum. Hence, the line that best estimates the mean line, μ(x) =
α + β(xi − x), is α̂ + β̂(xi − x), where

α̂ = y (6.5-1)

and

β̂ =
∑n

i=1 yi(xi − x)∑n
i=1 (xi − x)2

=
∑n

i=1 xiyi −
(

1
n

)(∑n
i=1 xi

)(∑n
i=1 yi

)
∑n

i=1 x2
i −

(
1
n

)(∑n
i=1 xi

)2 . (6.5-2)

To find the maximum likelihood estimator of σ 2, consider the partial derivative

∂[− ln L(α, β, σ 2)]
∂(σ 2)

= n
2σ 2

−
∑n

i=1 [yi − α − β(xi − x)]2

2(σ 2)2
.

Setting this equal to zero and replacing α and β by their solutions α̂ and β̂, we obtain

σ̂ 2 = 1
n

n∑
i=1

[Yi − α̂ − β̂(xi − x)]2. (6.5-3)

A formula that is useful in calculating nσ̂ 2 is

nσ̂ 2 =
n∑

i=1

y2
i − 1

n

(
n∑

i=1

yi

)2

− β̂

n∑
i=1

xiyi + β̂

(
1
n

)( n∑
i=1

xi

)(
n∑

i=1

yi

)
. (6.5-4)

Note that the summand in Equation 6.5-3 for σ̂ 2 is the square of the difference
between the value of Yi and the estimated mean of Yi. Let Ŷi = α̂ + β̂(xi − x),
the estimated mean value of Yi, given x. The difference

Yi − Ŷi = Yi − α̂ − β̂(xi − x)
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Table 6.5-1 Calculations for test score data

x y x2 xy y2 ŷ y − ŷ (y − ŷ)2

70 77 4,900 5,390 5,929 82.561566 −5.561566 30.931016

74 94 5,476 6,956 8,836 85.529956 8.470044 71.741645

72 88 5,184 6,336 7,744 84.045761 3.954239 15.636006

68 80 4,624 5,440 6,400 81.077371 −1.077371 1.160728

58 71 3,364 4,118 5,041 73.656395 −2.656395 7.056434

54 76 2,916 4,104 5,776 70.688004 5.311996 28.217302

82 88 6,724 7,216 7,744 91.466737 −3.466737 12.018265

64 80 4,096 5,120 6,400 78.108980 1.891020 3.575957

80 90 6,400 7,200 8,100 89.982542 0.017458 0.000305

61 69 3,721 4,209 4,761 75.882687 −6.882687 47.371380

683 813 47,405 56,089 66,731 812.999999 0.000001 217.709038

is called the ith residual, i = 1, 2, . . . , n. The maximum likelihood estimate of σ 2 is
then the sum of the squares of the residuals divided by n. It should always be true
that the sum of the residuals is equal to zero. However, in practice, due to rounding
off, the sum of the observed residuals, yi − ŷi, sometimes differs slightly from zero. A
graph of the residuals plotted as a scatter plot of the points xi, yi − ŷi, i = 1, 2, . . . , n,
can show whether or not linear regression provides the best fit.

Example
6.5-1

The data plotted in Figure 6.5-1 are 10 pairs of test scores of 10 students in a
psychology class, x being the score on a preliminary test and y the score on the
final examination. The values of x and y are shown in Table 6.5-1. The sums that
are needed to calculate estimates of the parameters are also given. Of course, the
estimates of α and β have to be found before the residuals can be calculated.

Thus, α̂ = 813/10 = 81.3, and

β̂ = 56, 089 − (683)(813)/10
47, 405 − (683)(683)/10

= 561.1
756.1

= 0.742.

Since x = 683/10 = 68.3, the least squares regression line is

ŷ = 81.3 + (0.742)(x − 68.3).

The maximum likelihood estimate of σ 2 is

σ̂ 2 = 217.709038
10

= 21.7709.

A plot of the residuals for these data is shown in Figure 6.5-2.

We shall now consider the problem of finding the distributions of α̂, β̂, and
σ̂ 2 (or distributions of functions of these estimators). We would like to be able to
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Figure 6.5-2 Residuals plot for data in Table 6.5-1

say something about the error of the estimates to find confidence intervals for the
parameters.

The preceding discussion treated x1, x2, . . . , xn as nonrandom constants. Of
course, many times they can be set by the experimenter; for example, an exper-
imental chemist might produce a compound at many different temperatures. But
these numbers might instead be observations on an earlier random variable, such
as an SAT score or a preliminary test grade (as in Example 6.5-1). Nevertheless,
we consider the problem on the condition that the x-values are given in either case.
Thus, in finding the distributions of α̂, β̂, and σ̂ 2, the only random variables are
Y1, Y2, . . . , Yn.

Since α̂ is a linear function of independent and normally distributed random
variables, α̂ has a normal distribution with mean

E( α̂ ) = E

(
1
n

n∑
i=1

Yi

)
= 1

n

n∑
i=1

E(Yi)

= 1
n

n∑
i=1

[α + β(xi − x )] = α

and variance

Var( α̂ ) =
(

1
n

)2 n∑
i=1

Var(Yi) = σ 2

n
.

The estimator β̂ is also a linear function of Y1, Y2, . . . , Yn and hence has a normal
distribution with mean

E( β̂ ) =
∑n

i=1 (xi − x )E(Yi)∑n
i=1 (xi − x )2

=
∑n

i=1 (xi − x )[α + β(xi − x )]∑n
i=1 (xi − x )2

= α
∑n

i=1 (xi − x ) + β
∑n

i=1 (xi − x )2∑n
i=1 (xi − x )2

= β
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and variance

Var( β̂ ) =
n∑

i=1

[
xi − x∑n

j=1 (xj − x )2

]2

Var(Yi)

=
∑n

i=1 (xi − x )2[∑n
i=1 (xi − x )2

]2
σ 2 = σ 2∑n

i=1 (xi − x )2
.

STATISTICAL COMMENTS We now give an illustration (see Ledolter and Hogg
in the References) using data from the Challenger explosion on January 28, 1986. It
would not be appropriate to actually carry out an analysis of these data using the
regression methods introduced in this section, for they require the variables to be
continuous while in this case the Y variable is discrete. Rather, we present the illus-
tration to make the point that it can be very important to examine the relationship
between two variables, and to do so using all available data.

The Challenger space shuttle was launched from Cape Kennedy in Florida on
a very cold January morning. Meteorologists had forecasted temperatures (as of
January 27) in the range of 26◦–29◦ Fahrenheit. The night before the launch there
was much debate among engineers and NASA officials whether a launch under such
low-temperature conditions would be advisable. Several engineers advised against a
launch because they thought that O-ring failures were related to temperature. Data
on O-ring failures experienced in previous launches were available and were studied
the night before the launch. There were seven previous incidents of known distressed
O-rings. Figure 6.5-3(a) displays this information; it is a simple scatter plot of the
number of distressed rings per launch against temperature at launch.

From this plot alone, there does not seem to be a strong relationship between the
number of O-ring failures and temperature. On the basis of this information, along
with many other technical and political considerations, it was decided to launch the
Challenger space shuttle. As you all know, the launch resulted in disaster: the loss of
seven lives and billions of dollars, and a serious setback to the space program.

One may argue that engineers looked at the scatter plot of the number of fail-
ures against temperature but could not see a relationship. However, this argument
misses the fact that engineers did not display all the data that were relevant to the
question. They looked only at instances in which there were failures; they ignored

forecasted
temperatures
at launch time

number of
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temp.
(°F)
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(b)
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(a)

Figure 6.5-3 Number of distressed rings per launch versus temperature



Section 6.5 A Simple Regression Problem 273

the cases where there were no failures. In fact, there were 17 previous launches in
which no failures occurred. A scatter plot of the number of distressed O-rings per
launch against temperature using data from all previous shuttle launches is given in
Figure 6.5-3(b).

It is difficult to look at these data and not see a relationship between failures
and temperature. Moreover, one recognizes that an extrapolation is required and
that an inference about the number of failures outside the observed range of tem-
perature is needed. The actual temperature at launch was 31◦F, while the lowest
temperature recorded at a previous launch was 53◦F. It is always very dangerous
to extrapolate inferences to a region for which one does not have data. If NASA
officials had looked at this plot, certainly the launch would have been delayed. This
example shows why it is important to have statistically minded engineers involved in
important decisions.

These comments raise two interesting points: (1) It is important to produce a
scatter plot of one variable against another. (2) It is also important to plot relevant
data. Yes, it is true that some data were used in making the decision to launch the
Challenger. But not all the relevant data were utilized. To make good decisions, it
takes knowledge of statistics as well as subject knowledge, common sense, and an
ability to question the relevance of information. �

Exercises

6.5-1. Show that the residuals, Yi − Ŷi (i = 1, 2, . . . , n),
from the least squares fit of the simple linear regression
model sum to zero.

6.5-2. In some situations where the regression model is
useful, it is known that the mean of Y when X = 0 is
equal to 0, i.e., Yi = βxi + εi where εi for i = 1, 2, . . . , n
are independent and N(0, σ 2).

(a) Obtain the maximum likelihood estimators, β̂ and σ̂ 2,
of β and σ 2 under this model.

(b) Find the distributions of β̂ and σ̂ 2. (You may use, with-
out proof, the fact that β̂ and σ̂ 2 are independent,
together with Theorem 9.3-1.)

6.5-3. The midterm and final exam scores of 10 students
in a statistics course are tabulated as shown.

(a) Calculate the least squares regression line for these
data.

(b) Plot the points and the least squares regression line on
the same graph.

(c) Find the value of σ̂ 2.

Midterm Final Midterm Final

70 87 67 73

74 79 70 83

80 88 64 79

84 98 74 91

80 96 82 94

6.5-4. The final grade in a calculus course was predicted
on the basis of the student’s high school grade point aver-
age in mathematics, Scholastic Aptitude Test (SAT) score
in mathematics, and score on a mathematics entrance
examination. The predicted grades x and the earned
grades y for 10 students are given (2.0 represents a C, 2.3
a C+, 2.7 a B–, etc.).

(a) Calculate the least squares regression line for these
data.

(b) Plot the points and the least squares regression line on
the same graph.

(c) Find the value of σ̂ 2.

x y x y

2.0 1.3 2.7 3.0

3.3 3.3 4.0 4.0

3.7 3.3 3.7 3.0

2.0 2.0 3.0 2.7

2.3 1.7 2.3 3.0

6.5-5. A student who considered himself to be a “car guy”
was interested in how the horsepower and weight of a car
affected the time that it takes the car to go from 0 to 60
mph. The following table gives, for each of 14 cars, the
horsepower, the time in seconds to go from 0 to 60 mph,
and the weight in pounds:
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Horsepower 0–60 Weight Horsepower 0–60 Weight

230 8.1 3516 282 6.2 3627

225 7.8 3690 300 6.4 3892

375 4.7 2976 220 7.7 3377

322 6.6 4215 250 7.0 3625

190 8.4 3761 315 5.3 3230

150 8.4 2940 200 6.2 2657

178 7.2 2818 300 5.5 3518

(a) Calculate the least squares regression line for “0–60”
versus horsepower.

(b) Plot the points and the least squares regression line on
the same graph.

(c) Calculate the least squares regression line for “0–60”
versus weight.

(d) Plot the points and the least squares regression line on
the same graph.

(e) Which of the two variables, horsepower or weight, has
the most effect on the “0–60” time?

6.5-6. Let x and y equal the ACT scores in social sci-
ence and natural science, respectively, for a student who
is applying for admission to a small liberal arts college. A
sample of n = 15 such students yielded the following data:

x y x y x y

32 28 30 27 26 32

23 25 17 23 16 22

23 24 20 30 21 28

23 32 17 18 24 31

26 31 18 18 30 26

(a) Calculate the least squares regression line for these
data.

(b) Plot the points and the least squares regression line on
the same graph.

(c) Find point estimates for α, β, and σ 2.

6.5-7. The Federal Trade Commission measured the num-
ber of milligrams of tar and carbon monoxide (CO) per
cigarette for all domestic cigarettes. Let x and y equal
the measurements of tar and CO, respectively, for 100-
millimeter filtered and mentholated cigarettes. A sample
of 12 brands yielded the following data:

Brand x y Brand x y

Capri 9 6 Now 3 4

Carlton 4 6 Salem 17 18

Kent 14 14 Triumph 6 8

Kool Milds 12 12 True 7 8

Marlboro Lights 10 12 Vantage 8 13

Merit Ultras 5 7 Virginia Slims 15 13

(a) Calculate the least squares regression line for these
data.

(b) Plot the points and the least squares regression line on
the same graph.

(c) Find point estimates for α, β, and σ 2.

6.5-8. The data in the following table, part of a set of data
collected by Ledolter and Hogg (see References), pro-
vide the number of miles per gallon (mpg) for city and
highway driving of 2007 midsize-model cars, as well as the
curb weight of the cars:

mpg mpg Curb
Type City Hwy Weight

Ford Fusion V6 SE 20 28 3230

Chevrolet Sebring Sedan Base 24 32 3287

Toyota Camry Solara SE 24 34 3240

Honda Accord Sedan 20 29 3344

Audi A6 3.2 21 29 3825

BMW 5-series 525i Sedan 20 29 3450

Chrysler PT Cruiser Base 22 29 3076

Mercedes E-Class E350 Sedan 19 26 3740

Volkswagen Passat Sedan 2.0T 23 32 3305

Nissan Altima 2.5 26 35 3055

Kia Optima LX 24 34 3142

(a) Find the least squares regression line for highway mpg
(y) and city mpg (x).

(b) Plot the points and the least squares regression line on
the same graph.

(c) Repeat parts (a) and (b) for the regression of highway
mpg (y) on curb weight (x).

6.5-9. Using an Instron 4204, rectangular strips of
Plexiglas� were stretched to failure in a tensile test. The
following data give the change in length, in millimeters
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(mm), before breaking (x) and the cross–sectional area in
square millimeters (mm2) (y):

(5.28, 52.36) (5.40, 52.58) (4.65, 51.07) (4.76, 52.28) (5.55, 53.02)

(5.73, 52.10) (5.84, 52.61) (4.97, 52.21) (5.50, 52.39) (6.24, 53.77)

(a) Find the equation of the least squares regression line.

(b) Plot the points and the line on the same graph.

(c) Interpret your output.

6.5-10. The “golden ratio” is φ = (1 + √
5)/2. John Putz,

a mathematician who was interested in music, analyzed
Mozart’s sonata movements, which are divided into two
distinct sections, both of which are repeated in perfor-
mance (see References). The length of the “Exposition”
in measures is represented by a and the length of the
“Development and Recapitulation” is represented by b.
Putz’s conjecture was that Mozart divided his movements
close to the golden ratio. That is, Putz was interested in
studying whether a scatter plot of a + b against b not only
would be linear, but also would actually fall along the line
y = φx. Here are the data in tabular form, in which the
first column identifies the piece and movement by the
Köchel cataloging system:

(a) Make a scatter plot of the points a + b against the
points b. Is this plot linear?

(b) Find the equation of the least squares regression line.
Superimpose it on the scatter plot.

Köchel a b a + b Köchel a b a + b

279, I 38 62 100 279, II 28 46 74

279, III 56 102 158 280, I 56 88 144

280, II 24 36 60 280, III 77 113 190

281, I 40 69 109 281, II 46 60 106

282, I 15 18 33 282, III 39 63 102

283, I 53 67 120 283, II 14 23 37

283, III 102 171 273 284, I 51 76 127

309, I 58 97 155 311, I 39 73 112

310, I 49 84 133 330, I 58 92 150

330, III 68 103 171 332, I 93 136 229

332, III 90 155 245 333, I 63 102 165

333, II 31 50 81 457, I 74 93 167

533, I 102 137 239 533, II 46 76 122

545, I 28 45 73 547a, I 78 118 196

570, I 79 130 209

(c) On the scatter plot, superimpose the line y = φx.
Compare this line with the least squares regression
line (graphically if you wish).

(d) Find the sample mean of the points (a + b)/b. Is the
mean close to φ?

6.6* ASYMPTOTIC DISTRIBUTIONS OF MAXIMUM LIKELIHOOD
ESTIMATORS

Let us consider a distribution of the continuous type with pdf f (x; θ) such that the
parameter θ is not involved in the support of the distribution. Moreover, we want
f (x; θ) to possess a number of mathematical properties that we do not list here.
However, in particular, we want to be able to find the maximum likelihood estimator
θ̂ by solving

∂[ln L(θ)]
∂θ

= 0,

where here we use a partial derivative sign because L(θ) involves x1, x2, . . . , xn, too.
That is,

∂[ln L(θ̂)]
∂θ

= 0,

where now, with θ̂ in this expression, L( θ̂ ) = f (X1; θ̂ )f (X2; θ̂ ) · · · f (Xn; θ̂ ). We can
approximate the left-hand member of this latter equation by a linear function found
from the first two terms of a Taylor’s series expanded about θ , namely,
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∂[ln L(θ)]
∂θ

+ ( θ̂ − θ)
∂2[ln L(θ)]

∂θ2
≈ 0,

when L(θ) = f (X1; θ)f (X2; θ) · · · f (Xn; θ).
Obviously, this approximation is good enough only if θ̂ is close to θ , and an

adequate mathematical proof involves those conditions, which we have not given
here. (See Hogg, McKean, and Craig, 2013.) But a heuristic argument can be made
by solving for θ̂ − θ to obtain

θ̂ − θ =
∂[ln L(θ)]

∂θ

−∂2[ln L(θ)]
∂θ2

. (6.6-1)

Recall that

ln L(θ) = ln f (X1; θ) + ln f (X2; θ) + · · · + ln f (Xn; θ)

and

∂ ln L(θ)
∂θ

=
n∑

i=1

∂[ln f (Xi; θ)]
∂θ

, (6.6-2)

which is the numerator in Equation 6.6-1. However, Equation 6.6-2 gives the sum of
the n independent and identically distributed random variables

Yi = ∂[ln f (Xi; θ)]
∂θ

, i = 1, 2, . . . , n,

and thus, by the central limit theorem, has an approximate normal distribution with
mean (in the continuous case) equal to∫ ∞

−∞
∂[ln f (x; θ)]

∂θ
f (x; θ) dx =

∫ ∞

−∞
∂[f (x; θ)]

∂θ

f (x; θ)
f (x; θ)

dx

=
∫ ∞

−∞
∂[f (x; θ)]

∂θ
dx

= ∂

∂θ

[∫ ∞

−∞
f (x; θ) dx

]
= ∂

∂θ
[1]

= 0.

Clearly, we need a certain mathematical condition that makes it permissible to inter-
change the operations of integration and differentiation in those last steps. Of course,
the integral of f (x; θ) is equal to 1 because it is a pdf.

Since we now know that the mean of each Y is∫ ∞

−∞
∂[ln f (x; θ)]

∂θ
f (x; θ) dx = 0,

let us take derivatives of each member of this equation with respect to θ , obtaining∫ ∞

−∞

{
∂2[ln f (x; θ)]

∂θ2
f (x; θ) + ∂[ln f (x; θ)]

∂θ

∂[f (x; θ)]
∂θ

}
dx = 0.



Section 6.6* Asymptotic Distributions of Maximum Likelihood Estimators 277

However,

∂[f (x; θ)]
∂θ

= ∂[ln f (x; θ)]
∂θ

f (x; θ);

so ∫ ∞

−∞

{
∂[ln f (x; θ)]

∂θ

}2

f (x; θ) dx = −
∫ ∞

−∞
∂2[ln f (x; θ)]

∂θ2
f (x; θ) dx.

Since E(Y) = 0, this last expression provides the variance of Y = ∂[ln f (X; θ)]/∂θ .
Then the variance of the sum in Equation 6.6-2 is n times this value, namely,

−nE

{
∂2[ln f (X; θ)]

∂θ2

}
.

Let us rewrite Equation 6.6-1 as

√
n ( θ̂ − θ)⎛⎝ 1√

−E{∂2[ln f (X; θ)]/∂θ2}

⎞⎠ =

⎛⎝ ∂[ln L(θ)]/∂θ√
−nE{∂2[ln f (X; θ)]/∂θ2}

⎞⎠
⎛⎜⎜⎝ − 1

n
∂2[ln L(θ)]

∂θ2

E{−∂2[ln f (X; θ)]/∂θ2}

⎞⎟⎟⎠
. (6.6-3)

Since it is the sum of n independent random variables (see Equation 6.6-2),

∂[ln f (Xi; θ)]/∂θ , i = 1, 2, . . . , n,

the numerator of the right-hand member of Equation 6.6-3 has an approximate
N(0, 1) distribution, and the aforementioned unstated mathematical conditions
require, in some sense, that

− 1
n

∂2[ln L(θ)]
∂θ2

converge to E{−∂2[ln f (X; θ)]/∂θ2}.

Accordingly, the ratios given in Equation 6.6-3 must be approximately N(0, 1). That
is, θ̂ has an approximate normal distribution with mean θ and standard deviation

1√−nE{∂2[ln f (X; θ)]/∂θ2} .

Example
6.6-1

(Continuation of Example 6.4-1.) With the underlying exponential pdf

f (x; θ) = 1
θ

e−x/θ , 0 < x < ∞, θ ∈ � = {θ : 0 < θ < ∞},

X is the maximum likelihood estimator. Since

ln f (x; θ) = − ln θ − x
θ

and

∂[ln f (x; θ)]
∂θ

= −1
θ

+ x
θ2

and
∂2[ln f (x; θ)]

∂θ
= 1

θ2
− 2x

θ3
,
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we have

−E
[

1
θ2

− 2X
θ3

]
= − 1

θ2
+ 2θ

θ3
= 1

θ2
,

because E(X) = θ . That is, X has an approximate normal distribution with mean
θ and standard deviation θ/

√
n. Thus, the random interval X ± 1.96(θ/

√
n ) has an

approximate probability of 0.95 that it covers θ . Substituting the observed x for θ , as
well as for X, we say that x ± 1.96 x/

√
n is an approximate 95% confidence interval

for θ .

While the development of the preceding result used a continuous-type distri-
bution, the result holds for the discrete type also, as long as the support does not
involve the parameter. This is illustrated in the next example.

Example
6.6-2

(Continuation of Exercise 6.4-3.) If the random sample arises from a Poisson
distribution with pmf

f (x; λ) = λxe−λ

x! , x = 0, 1, 2, . . . ; λ ∈ � = {λ : 0 < λ < ∞},

then the maximum likelihood estimator for λ is λ̂ = X. Now,

ln f (x; λ) = x ln λ − λ − ln x!.
Also,

∂[ln f (x; λ)]
∂λ

= x
λ

− 1 and
∂2[ln f (x; λ)]

∂λ2
= − x

λ2
.

Thus,

−E
(
− X

λ2

)
= λ

λ2
= 1

λ
,

and λ̂ = X has an approximate normal distribution with mean λ and standard devia-
tion

√
λ/n. Finally, x±1.645

√
x/n serves as an approximate 90% confidence interval

for λ. With the data in Exercise 6.4-3, x = 2.225, and it follows that this interval
ranges from 1.837 to 2.613.

It is interesting that there is another theorem which is somewhat related to the
preceding result in that the variance of θ̂ serves as a lower bound for the variance
of every unbiased estimator of θ . Thus, we know that if a certain unbiased esti-
mator has a variance equal to that lower bound, we cannot find a better one, and
hence that estimator is the best in the sense of being the minimum-variance unbi-
ased estimator. So, in the limit, the maximum likelihood estimator is this type of best
estimator.

We describe this Rao–Cramér inequality here without proof. Let X1, X2, . . . ,
Xn be a random sample from a distribution of the continuous type with pdf f (x; θ),
θ ∈ � = {θ : c < θ < d}, where the support of X does not depend upon θ , so that
we can differentiate, with respect to θ , under integral signs like that in the following
integral: ∫ ∞

−∞
f (x; θ) dx = 1.
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If Y = u(X1, X2, . . . , Xn) is an unbiased estimator of θ , then

Var(Y) ≥ 1

n
∫∞
−∞{[∂ ln f (x; θ)/∂θ ]}2f (x; θ) dx

= −1

n
∫∞
−∞[∂2 ln f (x; θ)/∂θ2] f (x; θ) dx

.

Note that the integrals in the denominators are, respectively, the expectations

E

{[
∂ ln f (X; θ)

∂θ

]2
}

and E

[
∂2 ln f (X; θ)

∂θ2

]
;

sometimes one is easier to compute than the other. Note also that although the Rao–
Cramér lower bound has been stated only for a continuous-type distribution, it is
also true for a discrete-type distribution, with summations replacing integrals.

We have computed this lower bound for each of two distributions: exponential
with mean θ and Poisson with mean λ. Those respective lower bounds were θ2/n and
λ/n. (See Examples 6.6-1 and 6.6-2.) Since, in each case, the variance of X equals the
lower bound, then X is the minimum-variance unbiased estimator.

Let us consider another example.

Example
6.6-3

(Continuation of Exercise 6.4-7.) Let the pdf of X be given by

f (x; θ) = θxθ−1, 0 < x < 1, θ ∈ � = {θ : 0 < θ < ∞}.

We then have

ln f (x; θ) = ln θ + (θ − 1) ln x,

∂ ln f (x; θ)
∂θ

= 1
θ

+ ln x,

and

∂2 ln f (x; θ)
∂θ2

= − 1
θ2

.

Since E(−1/θ2) = −1/θ2, the greatest lower bound of the variance of every
unbiased estimator of θ is θ2/n. Moreover, the maximum likelihood estimator
θ̂ = −n/ ln

∏n
i=1 Xi has an approximate normal distribution with mean θ and vari-

ance θ2/n. Thus, in a limiting sense, θ̂ is the minimum variance unbiased estimator
of θ .

To measure the value of estimators, their variances are compared with the Rao–
Cramér lower bound. The ratio of the Rao–Cramér lower bound to the actual
variance of any unbiased estimator is called the efficiency of that estimator. An esti-
mator with an efficiency of, say, 50%, means that 1/0.5 = 2 times as many sample
observations are needed to do as well in estimation as can be done with the minimum
variance unbiased estimator (the 100% efficient estimator).
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Exercises

6.6-1. Let X1, X2, . . . , Xn be a random sample from
N(θ , σ 2), where σ 2 is known.

(a) Show that Y = (X1 + X2)/2 is an unbiased estimator
of θ .

(b) Find the Rao–Cramér lower bound for the variance of
an unbiased estimator of θ for a general n.

(c) What is the efficiency of Y in part (a)?

6.6-2. Let X1, X2, . . . , Xn denote a random sample from
b(1, p). We know that X is an unbiased estimator of
p and that Var( X ) = p(1 − p)/n. (See Exercise
6.4-12.)

(a) Find the Rao–Cramér lower bound for the variance of
every unbiased estimator of p.

(b) What is the efficiency of X as an estimator
of p?

6.6-3. (Continuation of Exercise 6.4-2.) In sampling from
a normal distribution with known mean μ, the maximum
likelihood estimator of θ = σ 2 is θ̂ = ∑n

i=1(Xi − μ)2/n.

(a) Determine the Rao–Cramér lower bound.

(b) What is the approximate distribution of θ̂?

(c) What is the exact distribution of nθ̂/θ , where θ = σ 2?

6.6-4. Find the Rao–Cramér lower bound, and thus the
asymptotic variance of the maximum likelihood estima-
tor θ̂ , if the random sample X1, X2, . . . , Xn is taken from
each of the distributions having the following pdfs:

(a) f (x; θ) = (1/θ2) x e−x/θ , 0 < x < ∞, 0 < θ < ∞.

(b) f (x; θ) = (1/2θ3) x2 e−x/θ , 0 < x < ∞, 0 < θ < ∞.

(c) f (x; θ) = (1/θ) x(1−θ)/θ , 0 < x < 1, 0 < θ < ∞.

6.7 SUFFICIENT STATISTICS
We first define a sufficient statistic Y = u(X1, X2, . . . , Xn) for a parameter, using a
statement that, in most books, is given as a necessary and sufficient condition for suf-
ficiency, namely, the well-known Fisher–Neyman factorization theorem. We do this
because we find that readers at the introductory level can apply such a definition
easily. However, using this definition, we shall note, by examples, its implications,
one of which is also sometimes used as the definition of sufficiency. An understand-
ing of Example 6.7-3 is most important in an appreciation of the value of sufficient
statistics.

Definition 6.7-1
(Factorization Theorem) Let X1, X2, . . . , Xn denote random variables with joint
pdf or pmf f (x1, x2, . . . , xn; θ), which depends on the parameter θ . The statistic
Y = u(X1, X2, . . . , Xn) is sufficient for θ if and only if

f (x1, x2, . . . , xn; θ) = φ[u(x1, x2, . . . , xn); θ ]h(x1, x2, . . . , xn),

where φ depends on x1, x2, . . . , xn only through u(x1, . . . , xn) and h(x1, . . . , xn)
does not depend on θ .

Let us consider several important examples and consequences of this defini-
tion. We first note, however, that in all instances in this book the random variables
X1, X2, . . . , Xn will be of a random sample, and hence their joint pdf or pmf will be
of the form

f (x1; θ)f (x2; θ) · · · f (xn; θ).

Example
6.7-1

Let X1, X2, . . . , Xn denote a random sample from a Poisson distribution with
parameter λ > 0. Then
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f (x1; λ)f (x2; λ) · · · f (xn; λ) = λ	xie−nλ

x1!x2! · · · xn! = (λnxe−nλ)
(

1
x1!x2! · · · xn!

)
,

where x = (1/n)
∑n

i=1 xi. Thus, from the factorization theorem (Definition 6.7-1),
it is clear that the sample mean X is a sufficient statistic for λ. It can easily be
shown that the maximum likelihood estimator for λ is also X, so here the maximum
likelihood estimator is a function of a sufficient statistic.

In Example 6.7-1, if we replace nx by
∑n

i=1 xi, it is quite obvious that the sum∑n
i=1 Xi is also a sufficient statistic for λ. This certainly agrees with our intuition,

because if we know one of the statistics X and
∑n

i=1 Xi, we can easily find the other.
If we generalize this idea, we see that if Y is sufficient for a parameter θ , then every
single-valued function of Y not involving θ , but with a single-valued inverse, is also
a sufficient statistic for θ . The reason is that if we know either Y or that function
of Y, we know the other. More formally, if W = v(Y) = v[u(X1, X2, . . . , Xn)] is
that function and Y = v−1(W) is the single-valued inverse, then the factorization
theorem can be written as

f (x1, x2, . . . , xn; θ) = φ[v−1{v[u(x1, x2, . . . , xn)]}; θ] h(x1, x2, . . . , xn).

The first factor of the right-hand member of this equation depends on x1, x2, . . . , xn
through v[u(x1, x2, . . . , xn)], so W = v[u(X1, X2, . . . , Xn)] is a sufficient statistic for θ .
We illustrate this fact and the factorization theorem with an underlying distribution
of the continuous type.

Example
6.7-2

Let X1, X2, . . . , Xn be a random sample from N(μ, 1), −∞ < μ < ∞. The joint pdf
of these random variables is

1
(2π)n/2

exp

[
−1

2

n∑
i=1

(xi − μ)2

]

= 1
(2π)n/2

exp

[
−1

2

n∑
i=1

[(xi − x) + (x − μ)]2

]

=
{

exp
[
−n

2
(x − μ)2

]}{ 1
(2π)n/2

exp

[
−1

2

n∑
i=1

(xi − x)2

]}
.

From the factorization theorem, we see that X is sufficient for μ. Now, X
3

is also
sufficient for μ, because knowing X

3
is equivalent to having knowledge of the value

of X. However, X
2

does not have this property, and it is not sufficient for μ.

One extremely important consequence of the sufficiency of a statistic Y is that
the conditional probability of any given event A in the support of X1, X2, . . . , Xn,
given that Y = y, does not depend on θ . This consequence is sometimes used as the
definition of sufficiency and is illustrated in the next example.

Example
6.7-3

Let X1, X2, . . . , Xn be a random sample from a distribution with pmf

f (x; p) = px(1 − p)1−x, x = 0, 1,
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where the parameter p is between 0 and 1. We know that

Y = X1 + X2 + · · · + Xn

is b(n, p) and Y is sufficient for p because the joint pmf of X1, X2, . . . , Xn is

px1 (1 − p)1−x1 · · · pxn (1 − p)1−xn = [p	xi(1 − p)n−	xi](1),

where φ(y; p) = py(1−p)n−y and h(x1, x2, . . . , xn) = 1. What, then, is the conditional
probability P(X1 = x1, . . . , Xn = xn | Y = y), where y = 0, 1, . . . , n − 1, or n? Unless
the sum of the nonnegative integers x1, x2, . . . , xn equals y, this conditional probabil-
ity is obviously equal to zero, which does not depend on p. Hence, it is interesting to
consider the solution only when y = x1 +· · ·+ xn. From the definition of conditional
probability, we have

P(X1 = x1, . . . , Xn = xn | Y = y) = P(X1 = x1, . . . , Xn = xn)
P(Y = y)

= px1 (1 − p)1−x1 · · · pxn (1 − p)1−xn(
n
y

)
py(1 − p)n−y

= 1(
n
y

) ,

where y = x1 + · · · + xn. Since y equals the number of ones in the collection
x1, x2, . . . , xn, this answer is only the probability of selecting a particular arrange-
ment, namely, x1, x2, . . . , xn, of y ones and n − y zeros, and does not depend on
the parameter p. That is, given that the sufficient statistic Y = y, the condi-
tional probability of X1 = x1, X2 = x2, . . . , Xn = xn does not depend on the
parameter p.

It is interesting to observe that the underlying pdf or pmf in Examples 6.7-1,
6.7-2, and 6.7-3 can be written in the exponential form

f (x; θ) = exp[K(x)p(θ) + S(x) + q(θ)],

where the support is free of θ . That is, we have, respectively,

e−λλx

x! = exp{x ln λ − ln x! − λ}, x = 0, 1, 2, . . . ,

1√
2π

e−(x−μ)2/2 = exp

{
xμ − x2

2
− μ2

2
− 1

2
ln(2π)

}
, −∞ < x < ∞,

and

px(1 − p)1−x = exp
{

x ln
(

p
1 − p

)
+ ln(1 − p)

}
, x = 0, 1.

In each of these examples, the sum
∑n

i=1 Xi of the observations of the ran-
dom sample is a sufficient statistic for the parameter. This idea is generalized by
Theorem 6.7-1.
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Theorem
6.7-1

Let X1, X2, . . . , Xn be a random sample from a distribution with a pdf or pmf of the
exponential form

f (x; θ) = exp[K(x)p(θ) + S(x) + q(θ)]

on a support free of θ . Then the statistic
∑n

i=1 K(Xi) is sufficient for θ .

Proof The joint pdf (pmf) of X1, X2, . . . , Xn is

exp

[
p(θ)

n∑
i=1

K(xi) +
n∑

i=1

S(xi) + nq(θ)

]

=
{

exp

[
p(θ)

n∑
i=1

K(xi) + nq(θ)

]}{
exp

[
n∑

i=1

S(xi)

]}
.

In accordance with the factorization theorem, the statistic
∑n

i=1 K(Xi) is sufficient
for θ . �

In many cases, Theorem 6.7-1 permits the student to find a sufficient statistic for
a parameter with very little effort, as shown in the next example.

Example
6.7-4

Let X1, X2, . . . , Xn be a random sample from an exponential distribution with pdf

f (x; θ) = 1
θ

e−x/θ = exp
[

x
(

−1
θ

)
− ln θ

]
, 0 < x < ∞,

provided that 0 < θ < ∞. Here, K(x) = x. Thus,
∑n

i=1 Xi is sufficient for θ ; of course,
X = ∑n

i=1 Xi/n is also sufficient.

Note that if there is a sufficient statistic for the parameter under considera-
tion and if the maximum likelihood estimator of this parameter is unique, then the
maximum likelihood estimator is a function of the sufficient statistic. To see this
heuristically, consider the following: If a sufficient statistic exists, then the likelihood
function is

L(θ) = f (x1, x2, . . . , xn; θ) = φ[u(x1, x2, . . . , xn); θ ] h(x1, x2, . . . , xn).

Since h(x1, x2, . . . , xn) does not depend on θ , we maximize L(θ) by maximizing
φ[u(x1, x2, . . . , xn); θ ]. But φ is a function of x1, x2, . . . , xn only through the statistic
u(x1, x2, . . . , xn). Thus, if there is a unique value of θ that maximizes φ, then it must
be a function of u(x1, x2, . . . , xn). That is, θ̂ is a function of the sufficient statistic
u(X1, X2, . . . , Xn). This fact was alluded to in Example 6.7-1, but it could be checked
with the use of other examples and exercises.

In many cases, we have two (or more) parameters—say, θ1 and θ2. All of the pre-
ceding concepts can be extended to these situations. For example, Definition 6.7-1
(the factorization theorem) becomes the following in the case of two parameters: If

f (x1, . . . , xn; θ1, θ2) = φ[u1(x1, . . . , xn), u2(x1, . . . , xn); θ1, θ2]h(x1, . . . , xn),

where φ depends on x1, x2, . . . , xn only through u1(x1, . . . , xn), u2(x1, . . . , xn), and
h(x1, x2, . . . , xn) does not depend upon θ1 or θ2, then Y1 = u1(X1, X2, . . . , Xn) and
Y2 = u2(X1, X2, . . . , Xn) are jointly sufficient statistics for θ1 and θ2.
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Example
6.7-5

Let X1, X2, . . . , Xn denote a random sample from a normal distribution N(θ1 =
μ, θ2 = σ 2). Then

n∏
i=1

f (xi; θ1, θ2) =
(

1√
2πθ2

)n

exp

[
−

n∑
i=1

(xi − θ1)2

/
2θ2

]

= exp

[(
− 1

2θ2

) n∑
i=1

x2
i +

(
θ1

θ2

) n∑
i=1

xi − nθ2
1

2θ2
− n ln

√
2πθ2

]
· (1).

Thus,

Y1 =
n∑

i=1

X2
i and Y2 =

n∑
i=1

Xi

are joint sufficient statistics for θ1 and θ2. Of course, the single-valued functions of
Y1 and Y2, namely,

X = Y2

n
and S2 = Y1 − Y2

2/n

n − 1
,

are also joint sufficient statistics for θ1 and θ2.

Actually, we can see from Definition 6.7-1 and Example 6.7-5 that if we can
write the pdf in the exponential form, it is easy to find joint sufficient statistics. In
that example,

f (x; θ1, θ2) = exp

(
−1
2θ2

x2 + θ1

θ2
x − θ2

1

2θ2
− ln

√
2πθ2

)
;

so

Y1 =
n∑

i=1

X2
i and Y2 =

n∑
i=1

Xi

are joint sufficient statistics for θ1 and θ2. A much more complicated illustration is
given if we take a random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) from a bivariate
normal distribution with parameters θ1 = μX , θ2 = μY , θ3 = σ 2

X , θ4 = σ 2
Y , and

θ5 = ρ. In Exercise 6.7-3, we write the bivariate normal pdf f (x, y; θ1, θ2, θ3, θ4, θ5)
in exponential form and see that Z1 = ∑n

i=1 X2
i , Z2 = ∑n

i=1 Y2
i , Z3 = ∑n

i=1 XiYi,
Z4 = ∑n

i=1 Xi, and Z5 = ∑n
i=1 Yi are joint sufficient statistics for θ1, θ2, θ3, θ4, and

θ5. Of course, the single-valued functions

X = Z4

n
, Y = Z5

n
, S2

X = Z1 − Z2
4/n

n − 1
,

S2
Y = Z2 − Z2

5/n

n − 1
, R = (Z3 − Z4Z5/n)/(n − 1)

SXSY

are also joint sufficient statistics for those parameters.
The important point to stress for cases in which sufficient statistics exist is that

once the sufficient statistics are given, there is no additional information about
the parameters left in the remaining (conditional) distribution. That is, all statis-
tical inferences should be based upon the sufficient statistics. To help convince the
reader of this in point estimation, we state and prove the well-known Rao–Blackwell
theorem.
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Theorem
6.7-2

Let X1, X2, . . . , Xn be a random sample from a distribution with pdf or pmf
f (x; θ), θ ∈ �. Let Y1 = u1(X1, X2, . . . , Xn) be a sufficient statistic for θ , and let
Y2 = u2(X1, X2, . . . , Xn) be an unbiased estimator of θ , where Y2 is not a function
of Y1 alone. Then E(Y2 | y1) = u(y1) defines a statistic u(Y1), a function of the suf-
ficient statistic Y1, which is an unbiased estimator of θ , and its variance is less than
that of Y2.

Proof Let g(y1, y2; θ) be the joint pdf or pmf of Y1 and Y2. Let g1(y1; θ) be the
marginal of Y1; thus,

g(y1, y2; θ)
g1(y1; θ)

= h(y2 | y1)

is the conditional pdf or pmf of Y2, given that Y1 = y1. This equation does not
depend upon θ , since Y1 is a sufficient statistic for θ . Of course, in the continuous
case,

u(y1) =
∫

S2

y2h(y2 | y1) dy2 =
∫

S2

y2
g(y1, y2; θ)
g1(y1; θ)

dy2

and

E[u(Y1)] =
∫

S1

(∫
S2

y2
g(y1, y2; θ)
g1(y1; θ)

dy2

)
g1(y1; θ) dy1

=
∫

S1

∫
S2

y2 g(y1, y2; θ) dy2 dy1 = θ ,

because Y2 is an unbiased estimator of θ . Thus, u(Y1) is also an unbiased estimator
of θ .

Now, consider

Var(Y2) = E[(Y2 − θ)2] = E[{Y2 − u(Y1) + u(Y1) − θ}2]

= E[{Y2 − u(Y1)}2] + E[{u(Y1) − θ}2] + 2E[{Y2 − u(Y1)}{u(Y1) − θ}].
But the latter expression (i.e., the third term) is equal to

2
∫

S1

[u(y1) − θ]
{∫

S2

[y2 − u(y1)] h(y2 | y1) dy2

}
g(y1; θ) dy1 = 0,

because u(y1) is the mean E(Y2 | y1) of Y2 in the conditional distribution given by
h(y2 | y1). Thus,

Var(Y2) = E[{Y2 − u(Y1)}2] + Var[u(Y1)].

However, E[{(Y2 −u(Y1)}2 ≥ 0, as it is the expected value of a positive expression.
Therefore,

Var(Y2) ≥ Var[u(Y1)]. �

The importance of this theorem is that it shows that for every other unbiased
estimator of θ , we can always find an unbiased estimator based on the sufficient
statistic that has a variance at least as small as the first unbiased estimator. Hence,
in that sense, the one based upon the sufficient statistic is at least as good as the first
one. More importantly, we might as well begin our search for an unbiased estimator
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with the smallest variance by considering only those unbiased estimators based upon
the sufficient statistics. Moreover, in an advanced course we show that if the under-
lying distribution is described by a pdf or pmf of the exponential form, then, if an
unbiased estimator exists, there is only one function of the sufficient statistic that is
unbiased. That is, that unbiased estimator is unique. (See Hogg, McKean, and Craig,
2013.)

There is one other useful result involving a sufficient statistic Y for a parameter
θ , particularly with a pdf of the exponential form. It is that if another statistic Z has
a distribution that is free of θ , then Y and Z are independent. This is the reason
Z = (n − 1)S2 is independent of Y = X when the sample arises from a distribution
that is N(θ , σ 2). The sample mean is a sufficient statistic for θ , and

Z = (n − 1)S2 =
n∑

i=1

(Xi − X)2

has a distribution that is free of θ . To see this, we note that the mgf of Z, namely,
E(etZ), is∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

[
t

n∑
i=1

(xi − x)2

](
1√

2πσ

)n

exp

[
−
∑

(xi − θ)2

2σ 2

]
dx1dx2 . . . dxn.

Changing variables by letting xi − θ = wi, i = 1, 2, . . . , n, the preceding expression
becomes∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

[
t

n∑
i=1

(wi − w)2

](
1√

2πσ

)n

exp

[
−
∑

w2
i

2σ 2

]
dw1dw2 . . . dwn,

which is free of θ .
An outline of the proof of this result is given by noting that∫

y
[h(z | y) − g2(z)] g1(y; θ) dy = g2(z) − g2(z) = 0

for all θ ∈ �. However, h(z | y) is free of θ due to the hypothesis of sufficiency; so
h(z | y) − g2(z) is free of θ , since Z has a distribution that is free of θ . Since N(θ , σ 2)
is of the exponential form, Y = X has a pdf g1(y | θ) that requires h(z | y) − g2(z) to
be equal to zero. That is,

h(z | y) = g2(z),

which means that Z and Y are independent. This proves the independence of X and
S2, which was stated in Theorem 5.5-2.

Example
6.7-6

Let X1, X2, . . . , Xn be a random sample from a gamma distribution with α (given)
and θ > 0, which is of exponential form. Now, Y = ∑n

i=1 Xi is a sufficient statistic
for θ , since the gamma pdf is of the exponential form. Clearly, then,

Z =
∑n

i=1 aiXi∑n
i=1 Xi

,

where not all constants a1, a2, . . . , an are equal, has a distribution that is free of the
spread parameter θ because the mgf of Z, namely,

E(etZ) =
∫ ∞

0

∫ ∞

0
· · ·

∫ ∞

0

et	aiXi/	Xi

[�(α)]nθnα
(x1x2 · · · xn)α−1e−	xi/θ dx1dx2 . . . dxn,
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and does not depend upon θ , as is seen by the transformation wi = xi/θ , i =
1, 2, . . . , n. So Y and Z are independent statistics.

This special case of the independence of Y and Z concerning one sufficient
statistic Y and one parameter θ was first observed by Hogg (1953) and then gen-
eralized to several sufficient statistics for more than one parameter by Basu (1955)
and is usually called Basu’s theorem.

Due to these results, sufficient statistics are extremely important and estimation
problems are based upon them when they exist.

Exercises

6.7-1. Let X1, X2, . . . , Xn be a random sample from
N(0, σ 2).

(a) Find a sufficient statistic Y for σ 2.

(b) Show that the maximum likelihood estimator for σ 2 is
a function of Y.

(c) Is the maximum likelihood estimator for σ 2 unbiased?

6.7-2. Let X1, X2, . . . , Xn be a random sample from a
Poisson distribution with mean λ > 0. Find the condi-
tional probability P(X1 = x1, . . . , Xn = xn| Y = y),
where Y = X1 + · · · + Xn and the nonnegative integers
x1, x2, . . . , xn sum to y. Note that this probability does not
depend on λ.

6.7-3. Write the bivariate normal pdf f (x, y; θ1, θ2, θ3, θ4, θ5)
in exponential form and show that Z1 = ∑n

i=1 X2
i ,

Z2 = ∑n
i=1 Y2

i , Z3 = ∑n
i=1 XiYi, Z4 = ∑n

i=1 Xi, and
Z5 = ∑n

i=1 Yi are joint sufficient statistics for θ1, θ2, θ3,
θ4, and θ5.

6.7-4. Let X1, X2, . . . , Xn be a random sample from a dis-
tribution with pdf f (x; θ) = θxθ−1, 0 < x < 1, where
0 < θ .

(a) Find a sufficient statistic Y for θ .

(b) Show that the maximum likelihood estimator θ̂ is a
function of Y.

(c) Argue that θ̂ is also sufficient for θ .

6.7-5. Let X1, X2, . . . , Xn be a random sample from a
gamma distribution with α = 1 and 1/θ > 0. Show that
Y = ∑n

i=1 Xi is a sufficient statistic, Y has a gamma dis-
tribution with parameters n and 1/θ , and (n − 1)/Y is an
unbiased estimator of θ .

6.7-6. Let X1, X2, . . . , Xn be a random sample from
a gamma distribution with known parameter α and
unknown parameter θ > 0.

(a) Show that Y = ∑n
i=1 Xi is a sufficient statistic for θ .

(b) Show that the maximum likelihood estimator of θ is a
function of Y and is an unbiased estimator of θ .

6.7-7. Let X1, X2, . . . , Xn be a random sample from the
distribution with pmf f (x; p) = p(1−p)x−1, x = 1, 2, 3, . . .,
where 0 < p ≤ 1.

(a) Show that Y = ∑n
i=1 Xi is a sufficient statistic for p.

(b) Find a function of Y that is an unbiased estimator of
θ = 1/p.

6.7-8. Let X1, X2, . . . , Xn be a random sample from
N(0, θ), where σ 2 = θ > 0 is unknown. Argue that
the sufficient statistic Y = ∑n

i=1 X2
i for θ and Z =∑n

i=1 aiXi/
∑n

i=1 Xi are independent. Hint: Let xi =
θwi, i = 1, 2, . . . , n, in the multivariate integral represent-
ing E[etZ].

6.7-9. Let X1, X2, . . . , Xn be a random sample from
N(θ1, θ2). Show that the sufficient statistics Y1 = X and
Y2 = S2 are independent of the statistic

Z =
n−1∑
i=1

(Xi+1 − Xi)2

S2

because Z has a distribution that is free of θ1 and θ2.
Hint: Let wi = (xi − θ1)/

√
θ2, i = 1, 2, . . . , n, in the

multivariate integral representing E[etZ].

6.7-10. Find a sufficient statistic for θ , given a ran-
dom sample, X1, X2, . . . , Xn, from a distribution with pdf
f (x; θ) = {�(2θ)/[�(θ)]2}xθ−1(1 − x)θ−1, 0 < x < 1.

6.7-11. Let X1, X2, . . . , Xn be a random sample from a
distribution with pdf f (x; θ) = (1/2)θ3x2e−θx, 0 < x < ∞.
Show that Y = ∑n

i=1 Xi and Z = (X1 + X2)/Y are
independent.

6.7-12. Let X1, X2, . . . , Xn be a random sample from
N(0, σ 2), where n is odd. Let Y and Z be the mean and
median of the sample. Argue that Y and Z − Y are inde-
pendent so that the variance of Z is Var(Y)+Var(Z −Y).
We know that Var(Y) = σ 2/n, so that we could estimate
the Var(Z − Y) by Monte Carlo. This might be more effi-
cient than estimating Var(Z) directly since Var(Z − Y) ≤
Var(Z). This scheme is often called the Monte Carlo
Swindle.
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6.8 BAYESIAN ESTIMATION
We now describe another approach to estimation that is used by a group of statis-
ticians who call themselves Bayesians. To understand their approach fully would
require more text than we can allocate to this topic, but let us begin this brief intro-
duction by considering a simple application of the theorem of the Reverend Thomas
Bayes. (See Section 1.5.)

Example
6.8-1

Suppose we know that we are going to select an observation from a Poisson distri-
bution with mean λ equal to 2 or 4. Moreover, prior to performing the experiment,
we believe that λ = 2 has about four times as much chance of being the parameter
as does λ = 4; that is, the prior probabilities are P(λ = 2) = 0.8 and P(λ = 4) = 0.2.
The experiment is now performed and we observe that x = 6. At this point, our
intuition tells us that λ = 2 seems less likely than before, as the observation x = 6 is
much more probable with λ = 4 than with λ = 2, because, in an obvious notation,

P(X = 6 | λ = 2) = 0.995 − 0.983 = 0.012

and

P(X = 6 | λ = 4) = 0.889 − 0.785 = 0.104,

from Table III in Appendix B. Our intuition can be supported by computing the
conditional probability of λ = 2, given that X = 6:

P(λ = 2 | X = 6) = P(λ = 2, X = 6)
P(X = 6)

= P(λ = 2)P(X = 6 | λ = 2)
P(λ = 2)P(X = 6 | λ = 2) + P(λ = 4)P(X = 6 | λ = 4)

= (0.8)(0.012)
(0.8)(0.012) + (0.2)(0.104)

= 0.316.

This conditional probability is called the posterior probability of λ = 2, given the
single data point (here, x = 6). In a similar fashion, the posterior probability of λ = 4
is found to be 0.684. Thus, we see that the probability of λ = 2 has decreased from
0.8 (the prior probability) to 0.316 (the posterior probability) with the observation
of x = 6.

In a more practical application, the parameter, say, θ can take many more than
two values as in Example 6.8-1. Somehow Bayesians must assign prior probabilities
to this total parameter space through a prior pdf h(θ). They have developed proce-
dures for assessing these prior probabilities, and we simply cannot do justice to these
methods here. Somehow h(θ) reflects the prior weights that the Bayesian wants to
assign to the various possible values of θ . In some instances, if h(θ) is a constant and
thus θ has the uniform prior distribution, we say that the Bayesian has a noninfor-
mative prior. If, in fact, some knowledge of θ exists in advance of experimentation,
noninformative priors should be avoided if at all possible.

Also, in more practical examples, we usually take several observations, not just
one. That is, we take a random sample, and there is frequently a good statistic, say,
Y, for the parameter θ . Suppose we are considering a continuous case and the pdf of
Y, say, g(y; θ), can be thought of as the conditional pdf of Y, given θ . [Henceforth in
this section, we write g(y; θ) = g(y | θ).] Thus, we can treat

g(y | θ)h(θ) = k(y, θ)
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as the joint pdf of the statistic Y and the parameter. Of course, the marginal pdf of
Y is

k1(y) =
∫ ∞

−∞
h(θ)g(y | θ) dθ .

Consequently,

k(y, θ)
k1(y)

= g(y | θ)h(θ)
k1(y)

= k(θ | y)

would serve as the conditional pdf of the parameter, given that Y = y. This formula
is essentially Bayes’ theorem, and k(θ | y) is called the posterior pdf of θ , given that
Y = y.

Bayesians believe that everything which needs to be known about the parameter
is summarized in this posterior pdf k(θ | y). Suppose, for example, that they were
pressed into making a point estimate of the parameter θ . They would note that they
would be guessing the value of a random variable, here θ , given its pdf k(θ | y). There
are many ways that this could be done: The mean, the median, or the mode of that
distribution would be reasonable guesses. However, in the final analysis, the best
guess would clearly depend upon the penalties for various errors created by incorrect
guesses. For instance, if we were penalized by taking the square of the error between
the guess, say, w(y), and the real value of the parameter θ , clearly we would use the
conditional mean

w(y) =
∫ ∞

−∞
θk(θ | y) dθ

as our Bayes estimate of θ . The reason is that, in general, if Z is a random variable,
then the function of b, E[(Z − b)2], is minimized by b = E(Z). (See Example 2.2-4.)
Likewise, if the penalty (loss) function is the absolute value of the error, |θ − w(y)|,
then we use the median of the distribution, because with any random variable Z,
E[ |Z − b| ] is minimized when b equals the median of the distribution of Z. (See
Exercise 2.2-8.)

Example
6.8-2

Suppose that Y has a binomial distribution with parameters n and p = θ . Then the
pmf of Y, given θ , is

g(y | θ) =
(

n
y

)
θy(1 − θ)n−y, y = 0, 1, 2, . . . , n.

Let us take the prior pdf of the parameter to be the beta pdf:

h(θ) = �(α + β)
�(α)�(β)

θα−1(1 − θ)β−1, 0 < θ < 1.

Such a prior pdf provides a Bayesian a great deal of flexibility through the selection
of the parameters α and β. Thus, the joint probabilities can be described by a product
of a binomial pmf with parameters n and θ and this beta pdf, namely,

k(y, θ) =
(

n
y

)
�(α + β)
�(α)�(β)

θy+α−1(1 − θ)n−y+β−1,
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on the support given by y = 0, 1, 2, . . . , n and 0 < θ < 1. We find

k1(y) =
∫ 1

0
k(y, θ) dθ

=
(

n
y

)
�(α + β)
�(α)�(β)

�(α + y)�(n + β − y)
�(n + α + β)

on the support y = 0, 1, 2, . . . , n by comparing the integral with one involving a beta
pdf with parameters y + α and n − y + β. Therefore,

k(θ | y) = k(y, θ)
k1(y)

= �(n + α + β)
�(α + y)�(n + β − y)

θy+α−1(1 − θ)n−y+β−1, 0 < θ < 1,

which is a beta pdf with parameters y + α and n − y + β. With the squared error loss
function we must minimize, with respect to w(y), the integral∫ 1

0
[θ − w(y)]2 k(θ | y) dθ ,

to obtain the Bayes estimator. But, as noted earlier, if Z is a random variable with
a second moment, then E[(Z − b)2] is minimized by b = E(Z). In the preceding
integration, θ is like the Z with pdf k(θ | y), and w(y) is like the b, so the minimization
is accomplished by taking

w(y) = E(θ | y) = α + y
α + β + n

,

which is the mean of the beta distribution with parameters y + α and n − y + β. (See
Exercise 5.2-8.) It is instructive to note that this Bayes estimator can be written as

w(y) =
(

n
α + β + n

)(y
n

)
+
(

α + β

α + β + n

)(
α

α + β

)
,

which is a weighted average of the maximum likelihood estimate y/n of θ and the
mean α/(α + β) of the prior pdf of the parameter. Moreover, the respective weights
are n/(α + β + n) and (α + β)/(α + β + n). Thus, we see that α and β should be
selected so that not only is α/(α + β) the desired prior mean, but also the sum α + β

plays a role corresponding to a sample size. That is, if we want our prior opinion to
have as much weight as a sample size of 20, we would take α+β = 20. So if our prior
mean is 3/4, we select α = 15 and β = 5. That is, the prior pdf of θ is beta(15, 5). If we
observe n = 40 and y = 28, then the posterior pdf is beta(28+15 = 43, 12+5 = 17).
The prior and posterior pdfs are shown in Figure 6.8-1.

In Example 6.8-2, it is quite convenient to note that it is not really necessary to
determine k1(y) to find k(θ | y). If we divide k(y, θ) by k1(y), we get the product of a
factor that depends on y but does not depend on θ—say, c(y)—and we have

θy+α−1(1 − θ)n−y+β−1.

That is,

k(θ | y) = c(y) θy+α−1(1 − θ)n−y+β−1, 0 < θ < 1.
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beta(15, 5)

beta(43, 17)

θ

1

2

3

4

5

6

7

0.2 0.4 0.6 0.8 1

Figure 6.8-1 Beta prior and posterior pdfs

However, c(y) must be that “constant” needed to make k(θ | y) a pdf, namely,

c(y) = �(n + α + β)
�(y + α)�(n − y + β)

.

Accordingly, Bayesians frequently write that k(θ | y) is proportional to k(y, θ) =
g(y | θ)h(θ); that is,

k(θ | y) ∝ g(y | θ) h(θ).

Then, to actually form the pdf k(θ | y), they simply find the “constant” (which is, of
course, actually some function of y) such that the expression integrates to 1.

Example
6.8-3

Suppose that Y = X is the mean of a random sample of size n that arises from
the normal distribution N(θ , σ 2), where σ 2 is known. Then g(y | θ) is N(θ , σ 2/n).
Suppose further that we are able to assign prior weights to θ through a prior pdf
h(θ) that is N(θ0, σ 2

0 ). Then we have

k(θ | y) ∝ 1√
2π (σ/

√
n)

1√
2πσ0

exp

[
− (y − θ)2

2(σ 2/n)
− (θ − θ0)2

2σ 2
0

]
.

If we eliminate all constant factors (including factors involving y only), then

k(θ | y) ∝ exp

[
− (σ 2

0 + σ 2/n)θ2 − 2(yσ 2
0 + θ0σ

2/n)θ

2(σ 2/n)σ 2
0

]
.

This expression can be simplified by completing the square, to read (after eliminating
factors not involving θ)

k(θ | y) ∝ exp

{
− [θ − (yσ 2

0 + θ0σ
2/n)/(σ 2

0 + σ 2/n)]2

[2(σ 2/n)σ 2
0 ]/[σ 2

0 + (σ 2/n)]

}
.

That is, the posterior pdf of the parameter is obviously normal with mean

yσ 2
0 + θ0σ

2/n

σ 2
0 + σ 2/n

=
(

σ 2
0

σ 2
0 + σ 2/n

)
y +

(
σ 2/n

σ 2
0 + σ 2/n

)
θ0
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and variance (σ 2/n)σ 2
0 /(σ 2

0 + σ 2/n). If the squared error loss function is used, then
this posterior mean is the Bayes estimator. Again, note that it is a weighted aver-
age of the maximum likelihood estimate y = x and the prior mean θ0. The Bayes
estimator w(y) will always be a value between the prior judgment and the usual esti-
mate. Note also, here and in Example 6.8-2, that the Bayes estimator gets closer
to the maximum likelihood estimate as n increases. Thus, the Bayesian procedures
permit the decision maker to enter his or her prior opinions into the solution in a
very formal way so that the influence of those prior notions will be less and less as n
increases.

In Bayesian statistics, all the information is contained in the posterior pdf
k(θ | y). In Examples 6.8-2 and 6.8-3, we found Bayesian point estimates with the
use of the squared error loss function. Note that if the loss function is the absolute
value of the error, |w(y) − θ |, then the Bayes estimator would be the median of the
posterior distribution of the parameter, which is given by k(θ | y). Hence, the Bayes
estimator changes—as it should—with different loss functions.

Finally, if an interval estimate of θ is desired, we would find two functions of
y—say, u(y) and v(y)—such that∫ v(y)

u(y)
k(θ | y) dθ = 1 − α,

where α is small—say, α = 0.05. Then the observed interval from u(y) to v(y) would
serve as an interval estimate for the parameter in the sense that the posterior prob-
ability of the parameter’s being in that interval is 1 − α. In Example 6.8-3, where the
posterior pdf of the parameter was normal, the interval

yσ 2
0 + θ0σ

2/n

σ 2
0 + σ 2/n

± 1.96

√√√√ (σ 2/n)σ 2
0

σ 2
0 + σ 2/n

serves as an interval estimate for θ with posterior probability of 0.95.
In closing this short section on Bayesian estimation, note that we could have

begun with the sample observations X1, X2, . . . , Xn, rather than some statistic Y.
Then, in our discussion, we would replace g(y | θ) by the likelihood function

L(θ) = f (x1 | θ)f (x2 | θ) · · · f (xn | θ),

which is the joint pdf of X1, X2, . . . , Xn, given θ . Thus, we find that

k(θ | x1, x2, . . . , xn) ∝ h(θ)f (x1 | θ)f (x2 | θ) · · · f (xn | θ) = h(θ)L(θ).

Now, k(θ | x1, x2, . . . , xn) contains all the information about θ , given the data. Thus,
depending on the loss function, we would choose our Bayes estimate of θ as some
characteristic of this posterior distribution, such as the mean or the median. It is
interesting to observe that if the loss function is zero for some small neighbor-
hood about the true parameter θ and is some large positive constant otherwise, then
the Bayes estimate, w(x1, x2, . . . , xn), is essentially the mode of this conditional pdf,
k(θ | x1, x2, . . . , xn). The reason for this is that we want to take the estimate so that
it has as much posterior probability as possible in a small neighborhood around it.
Finally, note that if h(θ) is a constant (a noninformative prior), then this Bayes esti-
mate using the mode is exactly the same as the maximum likelihood estimate. More
generally, if h(θ) is not a constant, then the Bayes estimate using the mode can be
thought of as a weighted maximum likelihood estimate in which the weights reflect
prior opinion about θ . That is, that value of θ which maximizes h(θ)L(θ) is the mode
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of the posterior distribution of the parameter given the data and can be used as the
Bayes estimate associated with the appropriate loss function.

Example
6.8-4

Let us consider again Example 6.8-2, but now say that X1, X2, . . ., Xn is a random
sample from the Bernoulli distribution with pmf

f (x | θ) = θx(1 − θ)1−x, x = 0, 1.

With the same prior pdf of θ , the joint distribution of X1, X2, . . . , Xn and θ is given by

�(α + β)
�(α)�(β)

θα−1(1 − θ)β−1θ
∑n

i=1 xi(1 − θ)n−∑n
i=1 xi , 0 < θ < 1, xi = 0, 1.

Of course, the posterior pdf of θ , given that X1 = x1, X2 = x2, . . . , Xn = xn, is such
that

k(θ | x1, x2, . . . , xn) ∝ θ
∑n

i=1 xi+α−1(1 − θ)n−∑n
i=1 xi+β−1, 0 < θ < 1,

which is beta with α∗ = ∑
xi + α, β∗ = n −∑

xi + β. The conditional mean of θ is∑n
i=1 xi + α

n + α + β
=
(

n
n + α + β

)(∑n
i=1 xi

n

)
+
(

α + β

n + α + β

)(
α

α + β

)
,

which, with y = ∑
xi, is exactly the same result as that of Example 6.8-2.

Exercises

6.8-1. Let Y be the sum of the observations of a random
sample from a Poisson distribution with mean θ . Let the
prior pdf of θ be gamma with parameters α and β.

(a) Find the posterior pdf of θ , given that Y = y.

(b) If the loss function is [w(y) − θ ]2, find the Bayesian
point estimate w(y).

(c) Show that w(y) found in (b) is a weighted average of
the maximum likelihood estimate y/n and the prior
mean αβ, with respective weights of n/(n + 1/β) and
(1/β)/(n + 1/β).

6.8-2. Let X1, X2, . . . , Xn be a random sample from a
gamma distribution with known α and with θ = 1/τ . Say
τ has a prior pdf that is gamma with parameters α0 and
θ0, so that the prior mean is α0θ0.

(a) Find the posterior pdf of τ , given that X1 = x1, X2 =
x2, . . . , Xn = xn.

(b) Find the mean of the posterior distribution found in
part (a), and write it as a function of the sample mean
X and α0θ0.

(c) Explain how you would find a 95% interval estimate
of τ if n = 10, α = 3, α0 = 10, and θ0 = 2.

6.8-3. In Example 6.8-2, take n = 30, α = 15, and β = 5.

(a) Using the squared error loss, compute the expected
loss (risk function) associated with the Bayes estima-
tor w(Y).

(b) The risk function associated with the usual estimator
Y/n is, of course, θ(1 − θ)/30. Find those values of
θ for which the risk function in part (a) is less than
θ(1−θ)/30. In particular, if the prior mean α/(α+β) =
3/4 is a reasonable guess, then the risk function in
part (a) is the better of the two (i.e., is smaller in a
neighborhood of θ = 3/4) for what values of θ?

6.8-4. Consider a random sample X1, X2, . . . , Xn from a
distribution with pdf

f (x | θ) = 3θx2e−θx3
, 0 < x < ∞.

Let θ have a prior pdf that is gamma with α = 4 and the
usual θ = 1/4. Find the conditional mean of θ , given that
X1 = x1, X2 = x2, . . . , Xn = xn.

6.8-5. In Example 6.8-3, suppose the loss function
|θ − w(Y)| is used. What is the Bayes estimator w(Y)?

6.8-6. Let Y be the largest order statistic of a random
sample of size n from a distribution with pdf f (x | θ) =
1/θ , 0 < x < θ . Say θ has the prior pdf

h(θ) = βαβ/θβ+1, α < θ < ∞,

where α > 0, β > 0.

(a) If w(Y) is the Bayes estimator of θ and [θ − w(Y)]2 is
the loss function, find w(Y).

(b) If n = 4, α = 1, and β = 2, find the Bayesian estimator
w(Y) if the loss function is |θ − w(Y)|.
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6.8-7. Refer to Example 6.8-3. Suppose we select σ 2
0 =

dσ 2, where σ 2 is known in that example. What value do
we assign to d so that the variance of the posterior pdf
of the parameter is two thirds of the variance of Y = X,
namely, σ 2/n?

6.8-8. Consider the likelihood function L(α, β, σ 2) of
Section 6.5. Let α and β be independent with priors
N(α1, σ 2

1 ) and N(β0, σ 2
0 ). Determine the posterior mean

of α + β(x − x).

6.9* MORE BAYESIAN CONCEPTS
Let X1, X2, . . . , Xn be a random sample from a distribution with pdf (pmf) f (x | θ),
and let h(θ) be the prior pdf. Then the distribution associated with the marginal pdf
of X1, X2, . . . , Xn, namely,

k1(x1, x2, . . . , xn) =
∫ ∞

−∞
f (x1 | θ) f (x2 | θ) · · · f (xn | θ) h(θ) dθ ,

is called the predictive distribution because it provides the best description of the
probabilities on X1, X2, . . . , Xn. Often this creates some interesting distributions. For
example, suppose there is only one X with the normal pdf

f (x | θ) =
√

θ√
2π

e−(θx2)/2, −∞ < x < ∞.

Here, θ = 1/σ 2, the inverse of the variance, is called the precision of X. Say this
precision has the gamma pdf

h(θ) = 1
�(α)βα

θα−1e−θ/β , 0 < θ < ∞.

Then the predictive pdf is

k1(x) =
∫ ∞

0

θα+ 1
2 −1e

−
(

x2

2 + 1
β

)
θ

�(α)βα
√

2π
dθ

= �(α + 1/2)

�(α)βα
√

2π

1
(1/β + x2/2)α+1/2

, −∞ < x < ∞.

Note that if α = r/2 and β = 2/r, where r is a positive integer, then

k1(x) ∝ 1

(1 + x2/r)(r+1)/2
, −∞ < x < ∞,

which is a t pdf with r degrees of freedom. So if the inverse of the variance—or
precision θ—of a normal distribution varies as a gamma random variable, a gener-
alization of a t distribution has been created that has heavier tails than the normal
distribution. This mixture of normals (different from a mixed distribution) is attained
by weighing with the gamma distribution in a process often called compounding.

Another illustration of compounding is given in the next example.

Example
6.9-1

Suppose X has a gamma distribution with the two parameters k and θ−1. (That is, the
usual α is replaced by k and θ by its reciprocal.) Say h(θ) is gamma with parameters
α and β, so that
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k1(x) =
∫ ∞

0

θkxk−1e−θx

�(k)
1

�(α)βα
θα−1e−θ/β dθ

=
∫ ∞

0

xk−1θk+α−1e−θ(x+1/β)

�(k)�(α)βα
dθ

= �(k + α)xk−1

�(k)�(α)βα

1
(x + 1/β)k+α

= �(k + x)βkxk−1

�(k)�(α)(1 + βx)k+α
, 0 < x < ∞.

Of course, this is a generalization of the F distribution, which we obtain by letting
α = r2/2, k = r1/2, and β = r1/r2.

Note how well the prior h(θ) “fits” with f (x | θ) or f (x1 | θ)f (x2 | θ) · · · f (xn | θ) in
all of our examples, and the posterior distribution is of exactly the same form as the
prior. In Example 6.8-2, both the prior and the posterior were beta. In Example 6.8-
3, both the prior and posterior were normal. In Example 6.9-1, both the prior and
the posterior (if we had found it) were gamma. When this type of pairing occurs, we
say that that class of prior pdfs (pmfs) is a conjugate family of priors. Obviously, this
makes the mathematics easier, and usually the parameters in the prior distribution
give us enough flexibility to obtain good fits.

Example
6.9-2

(Berry, 1996) This example deals with predictive probabilities, and it concerns the
breakage of glass panels in high-rise buildings. One such case involved 39 panels,
and of the 39 panels that broke, it was known that 3 broke due to nickel sulfide
(NiS) stones found in them. Loss of evidence prevented the causes of breakage of
the other 36 panels from being known. So the court wanted to know whether the
manufacturer of the panels or the builder was at fault for the breakage of these 36
panels.

From expert testimony, it was thought that usually about 5% breakage is caused
by NiS stones. That is, if this value of p is selected from a beta distribution, we have

α

α + β
= 0.05. (6.9-1)

Moreover, the expert thought that if two panels from the same lot break and one
breakage was caused by NiS stones, then, due to the pervasive nature of the man-
ufacturing process, the probability of the second panel breaking due to NiS stones
increases to about 95%. Thus, the posterior estimate of p (see Example 6.8-2) with
one “success” after one trial is

α + 1
α + β + 1

= 0.95. (6.9-2)

Solving Equations 6.9-1 and 6.9-2 for α and β, we obtain

α = 1
360

and β = 19
360

.

Now updating the posterior probability with 3 “successes” out of 3 trials, we obtain
the posterior estimate of p:

α + 3
α + β + 3

= 1/360 + 3
20/360 + 3

= 1081
1100

= 0.983.
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Of course, the court that heard the case wanted to know the expert’s opinion
about the probability that all of the remaining 36 panels broke because of NiS stones.
Using updated probabilities after the third break, then the fourth, and so on, we
obtain the product(

1/360 + 3
20/360 + 3

)(
1/360 + 4

20/360 + 4

)(
1/360 + 5

20/360 + 5

)
· · ·

(
1/360 + 38

20/360 + 38

)
= 0.8664.

That is, the expert held that the probability that all 36 breakages were caused by NiS
stones was about 87%, which is the needed value in the court’s decision.

We now look at a situation in which we have two unknown parameters; we
will use, for convenience, what is called a noninformative prior, which usually
puts uniform distributions on the parameters. Let us begin with a random sample
X1, X2, . . . , Xn from the normal distribution N(θ1, θ2), and suppose we have little
prior knowledge about θ1 and θ2. We then use the noninformative prior that θ1 and
ln θ2 are uniform and independent; that is,

h1(θ1)h2(θ2) ∝ 1
θ2

, −∞ < θ1 < ∞, 0 < θ2 < ∞.

Of course, we immediately note that we cannot find a constant c such that c/θ2 is a
joint pdf on that support. That is, this noninformative prior pdf is not a pdf at all;
hence, it is called an improper prior. However, we use it anyway, because it will be
satisfactory when multiplied by the joint pdf of X1, X2, . . . , Xn. We have the product(

1
θ2

)(
1√

2πθ2

)n

exp

[
−

n∑
i=1

(xi − θ1)2

2θ2

]
.

Thus,

k12(θ1, θ2 | x1, x2, . . . , xn) ∝
(

1
θ2

)n
2 + 1

exp
[
−1

2

{
(n − 1)s2 + n(x − θ1)2

}
/θ2

]
since

∑n
i=1(xi − θ1)2 = (n − 1)s2 + n(x − θ1)2 = D. It then follows that

k1(θ1 | x1, x2, . . . , xn) ∝
∫ ∞

0
k12(θ1, θ2 | x1, x2, . . . , xn) dθ2.

Changing variables by letting z = 1/θ2, we obtain

k1(θ1 | x1, x2, . . . , xn) ∝
∫ ∞

0

zn/2+1

z2
e− 1

2 Dzdz

∝ D−n/2 =
[
(n − 1)s2 + n(x − θ1)2

]−n/2
.

To get this pdf in a more familiar form, let t = (θ1 − x)/(s/
√

n ), with Jacobian s/
√

n,
to yield

k(t | x1, x2, . . . , xn) ∝ 1

[1 + t2/(n − 1)][(n−1)+1]/2
, −∞ < t < ∞.

That is, the conditional pdf of t, given x1, x2, . . . , xn, is Student’s t with n − 1 degrees
of freedom. Thus, a (1 − α) probability interval for θ1 is given by

−tα/2 <
θ1 − x
s/

√
n

< tα/2,
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or

x − tα/2 s/
√

n < θ1 < x + tα/2 s/
√

n.

The reason we get the same answer in this case is that we use a noninformative
prior. Bayesians do not like to use a noninformative prior if they really know some-
thing about the parameters. For example, say they believe that the precision 1/θ2 has
a gamma distribution with parameters α and β instead of the noninformative prior.
Then finding the conditional pdf of θ1 becomes a much more difficult integration.
However, it can be done, but we leave it to a more advanced course. (See Hogg,
McKean, and Craig, 2013.)

Example
6.9-3

(Johnson and Albert, 1999) The data in this example, a sample of n = 13
measurements of the National Oceanographic and Atmospheric Administration
(NOAA)/Environmental Protection Agency (EPA) ultraviolet (UV) index taken in
Los Angeles, were collected from archival data of every Sunday in October during
the years 1995–1997 in a database maintained by NOAA. The 13 UV readings are

7, 6, 5, 5, 3, 6, 5, 5, 3, 5, 5, 4, 4,

and, although they are integer values, we assume that they are taken from a N(μ, σ 2)
distribution.

The Bayesian analysis, using a noninformative prior in the preceding discussion,
implies that, with μ = θ1,

μ − 4.846
0.317

, where x = 4.846 and
s√
n

= 0.317,

has a posterior t distribution with n − 1 = 12 degrees of freedom. For example, a
posterior 95% probability interval for μ is

(4.846 − [t0.025(12)][0.317], 4.846 + [t0.025(12)][0.317]) = (4.155, 5.537).

Example
6.9-4

Tsutakawa et. al. (1985) discuss mortality rates from stomach cancer over the period
1972–1981 in males aged 45–64 in 84 cities in Missouri. Ten-year observed mortality
rates in 20 of these cities are listed in Table 6.9-1, where yi represents the number
of deaths due to stomach cancer among this subpopulation in city i from 1972–1981,
and ni is the estimated size of this subpopulation in city i at the beginning of 1977
(estimated by linear interpolation from the 1970 and 1980 U.S. Census figures). Let
pi, i = 1, 2, . . . , 20, represent the corresponding probabilities of death due to stom-
ach cancer, and assume that p1, p2, . . . , p20 are taken independently from a beta
distribution with parameters α and β. Then the posterior mean of pi is

p̂i

(
ni

ni + α + β

)
+
(

α

α + β

)(
α + β

ni + α + β

)
, i = 1, 2, . . . , 20,

where p̂i = yi/ni. Of course, the parameters α and β are unknown, but we have
assumed that p1, p2, . . . , p20 arose from a similar distribution for these cities in
Missouri; that is, we assume that our prior knowledge concerning the proportions
is exchangeable. So it would be reasonable to estimate α/(α + β), the prior mean of
a proportion, with the formula

y = y1 + y2 + · · · + y20

n1 + n2 + · · · + n20
= 71

71,478
= 0.000993,
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Table 6.9-1 Cancer mortality rates

yi ni p̂i Posterior Estimate yi ni p̂i Posterior Estimate

0 1083 0 0.00073 0 855 0 0.00077

2 3461 0.00058 0.00077 0 657 0 0.00081

1 1208 0.00083 0.00095 1 1025 0.00098 0.00099

0 527 0 0.00084 2 1668 0.00120 0.00107

1 583 0.00172 0.00111 3 582 0.00515 0.00167

0 917 0 0.00076 1 857 0.00117 0.00103

1 680 0.00147 0.00108 1 917 0.00109 0.00102

54 53637 0.00101 0.00101 0 874 0 0.00077

0 395 0 0.00088 1 581 0.00172 0.00111

3 588 0.00510 0.00167 0 383 0 0.00088

for the data given in Table 6.9-1. Thus, the posterior estimate of pi is found by shrink-
ing p̂i toward the pooled estimate of the mean α/(α + β)—namely, y. That is, the
posterior estimate is

p̂i

(
ni

ni + α + β

)
+ y

(
α + β

ni + α + β

)
.

The only question remaining is how much weight should be given to the prior, repre-
sented by α +β, relative to n1, n2, . . . , n20. Considering the sizes of the samples from
the various cities, we selected α + β = 3000 (which means that the prior is worth
about a sample of size 3000), which resulted in the posterior probabilities given in
Table 6.9-1. Note how this type of shrinkage tends to pull the posterior estimates
much closer to the average, particularly those associated with small sample sizes.
Baseball fans might try this type of shrinkage in predicting some of the final batting
averages of the better batters about a quarter of the way through the season.

It is clear that difficult integration caused Bayesians great problems until very
recent times, in which advances in computer methods “solved” many of these prob-
lems. As a simple illustration, suppose the pdf of a statistic Y is f (y | θ) and the prior
pdf h(θ) is such that

k(θ | y) = f (y | θ) h(θ)∫∞
−∞ f (y | τ ) h(τ ) dτ

is not a nice pdf with which to deal. In particular, say that we have a squared error
loss and we wish to determine E(θ | y), namely,

δ(y) =
∫∞
−∞ θ f (y | θ) h(θ) dθ∫∞
−∞ f (y | θ) h(θ) dθ

,

but cannot do it easily. Let f (y | θ) = w(θ). Then we wish to evaluate the ratio

E[θ w(θ)]
E[w(θ)]

,
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where y is given and the expected values are taken with respect to θ . To do so, we
simply generate a number of θ values, say, θ1, θ2, . . . , θm (where m is large), from the
distribution given by h(θ). Then we estimate the numerator and denominator of the
desired ratio by

m∑
i=1

θi w(θi)
m

and
m∑

i=1

w(θi)
m

,

respectively, to obtain

τ =
∑m

i=1 θi w(θi)/m∑m
i=1 w(θi)/m

.

In addition to this simple Monte Carlo procedure, there are additional ones that
are extremely useful in Bayesian inferences. Two of these are the Gibbs sampler and
the Markov chain Monte Carlo (MCMC). The latter is used in hierarchical Bayes
models in which the prior has another parameter that has its own prior (called the
hyperprior). That is, we have

f (y | θ), h(θ | τ ), and g(τ ).

Hence,

k(θ , τ | y) = f (y | θ) h(θ | τ ) g(τ )∫∞
−∞

∫∞
−∞ f (y | η) h(η | v) g(v) dη dv

and

k1(θ | y) =
∫ ∞

−∞
k(θ , τ | y) dτ .

Thus, a Bayes estimator, for a squared error loss, is∫ ∞

−∞
θ k1(θ | y) dθ .

Using the Gibbs sampler, we can generate a stream of values (θ1, τ1), (θ2, τ2), . . .
that allows us to estimate k(θ , τ | y) and

∫∞
−∞ θ k1(θ | y) dθ . These procedures are the

MCMC procedures. (For additional references, see Hogg, McKean, and Craig, 2013.)

Exercises

6.9-1. Let X have a Poisson distribution with parameter
θ . Let θ be �(α, β). Show that the marginal pmf of X (the
compound distribution) is

k1(x) = �(α + x) βx

�(α) x! (1 + β)α+x , x = 0, 1, 2, 3, . . . ,

which is a generalization of the negative binomial distri-
bution.

6.9-2. Suppose X is b(n, θ) and θ is beta(α, β). Show that
the marginal pdf of X (the compound distribution) is

k1(x) = n!�(α + β) �(x + α) �(n − x + β)
x! (n − x)!�(α) �(β) �(n + α + β)

,

for x = 0, 1, 2, . . . , n.

6.9-3. Let X have the geometric pmf θ(1 − θ)x−1, x =
1, 2, 3, . . . , where θ is beta with parameters α and β. Show
that the compound pmf is

�(α + β) �(α + 1) �(β + x − 1)
�(α) �(β) �(α + β + x)

, x = 1, 2, 3, . . . .

With α = 1, this is one form of Zipf’s law,

β

(β + x)(β + x − 1)
, x = 1, 2, 3, . . . .

6.9-4. Let X have the pdf

f (x | θ) = θτxτ−1e−θxτ
, 0 < x < ∞,
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where the distribution of θ is �(α, β). Find the com-
pound distribution of X, which is called the Burr
distribution.

6.9-5. Let X1, X2, . . . , Xn be a random sample from a
gamma distribution with α = 1, θ . Let h(θ) ∝ 1/θ , 0 <

θ < ∞, be an improper noninformative prior.

(a) Find the posterior pdf of θ .

(b) Change variables by letting z = 1/θ , and show that
the posterior distribution of Z is �(n, 1/y), where y =∑n

i=1 xi.

(c) Use 2yz to obtain a (1 − α) probability interval for z
and, of course, for θ .

6.9-6. Let X1, X2 be a random sample from the Cauchy
distribution with pdf

f (x | θ1, θ2) = 1
π

θ2

θ2
2 + (x − θ1)2

,

− ∞ < x < ∞, − ∞ < θ1 < ∞, 0 < θ2 < ∞.

Consider the noninformative prior h(θ1, θ2) ∝ 1 on that
support. Obtain the posterior pdf (except for constants)
of θ1, θ2 if x1 = 3 and x2 = 7. For estimates, find θ1, θ2 that
maximizes this posterior pdf; that is, find the mode of that
posterior. (This might require some reasonable “trial and
error” or an advanced method of maximizing a function
of two variables.)

HISTORICAL COMMENTS When a statistician thinks of estimation, he or she
recalls R. A. Fisher’s contributions to many aspects of the subject: maximum likeli-
hood, estimation, efficiency, and sufficiency. Of course, many more statisticians have
contributed to that discipline since the 1920s. It would be an interesting exercise
for the reader to go through the tables of contents of the Journal of the American
Statistical Association, the Annals of Statistics, and related journals to observe how
many articles are about estimation. Often our friends ask, “What is there left to
do in mathematics?” University libraries are full of expanding journals of new
mathematics, including statistics.

We must observe that most maximum likelihood estimators have approximate
normal distributions for large sample sizes, and we give a heuristic proof of it in
this chapter. These estimators are of what is called the regular cases—in particular,
those cases in which the parameters are not in the endpoints of the support of X.
Abraham de Moivre proved this theorem for p̂ of the binomial distribution, and
Laplace and Gauss did so for X in a number of other distributions. This is the real
reason the normal distribution is so important: Most estimators of parameters have
approximate normal distributions, allowing us to construct confidence intervals (see
Chapter 7) and perform tests (see Chapter 8) with such estimates.

The Neo-Bayesian movement in America really started with J. Savage in the
1950s. Initially, Bayesians were limited in their work because it was extremely diffi-
cult to compute certain distributions, such as the conditional one, k(θ | x1, x2, . . ., xn).
However, toward the end of the 1970s, computers were becoming more useful and
thus computing was much easier. In particular, the Bayesians developed Gibbs sam-
pling and Markov chain Monte Carlo (MCMC). It is our opinion that the Bayesians
will continue to expand and Bayes methods will be a major approach to statisti-
cal inferences, possibly even dominating professional applications. This is difficult
for three fairly classical (non-Bayesian) statisticians (as we are) to admit, but, in all
fairness, we cannot ignore the strong trend toward Bayesian methods.


