

Type of sorption:

* Adsorption

* Absorption

Adsorption:

\square The phenomenon of attracting and retaining the molecules of a substance on the surface of a liquid or a solid resulting into a higher concentration of the molecules on the surface is called adsorption.
\square The substance thus adsorbed on the surface is called the adsorbate . (oxalic acid)
\square the substance on which it is absorbed is known as adsorbent. (charcoal)
purification of sugar or water by charcoal

The variation of the amount adsorbed with concentration

$$
x / m=K C^{n}
$$

$\log \mathrm{x} / \mathrm{m}=\mathbf{n} \log \mathbf{C}+\log K$

$x=$ the amount of solute adsorbed per gm adsorbent.
$\mathrm{C}=$ the concentration of solute in solution after adsorption.
K, n are constants.

Type of Adsorption

1. Physical adsorption (physisorption).
2. Chemical adsorption (chemisorption).

Chemisorption is distinguished qualitatively from physisorption in following ways.

physisorption

Chemisorption

1. The forces referred to as van derwaals forces

2- $\Delta \mathrm{H}=10-20 \mathrm{KJ} / \mathrm{mol}$

3- formation of multilayers

4- non-specific, rapidly, reversible

5- the extent of physisorption is smaller at higher temperatures

It involves the formation of chemical bonds
$\Delta \mathrm{H}=40$ - $200 \mathrm{KJ} / \mathrm{mol}$

monolayer

More specific, rapidly or slowly , irreversible

May not occure at an appreciable rate at low temperatures because it has an activation energy.

The amount of substance adsorbed depend on:

The specific nature.
The temperature.
The concentration.

Prepare:

1. 0.5 N Oxalic acid $\longrightarrow 500 \mathrm{ml}$
2. 0.1 N NaOH

500 ml

No. of bottle	1	2	3	4
Oxalic acid	100	75	50	25
$\mathrm{H}_{2} \mathrm{O}$	-	25	50	75

Procedure:

2. Add to remaining of mixture 1 gm of charcoal.
3. Shaking the solution in bottle about $1 / 2$ hour.
4. Filter the mixture(rejecting the first 5 ml of filtrate).
5. Take 10 ml (filtration mix.) then titration by
$0.1 \mathrm{~N} \mathrm{NaOH}(\longrightarrow \mathrm{V} 2)$

Calculation:

> $\mathrm{V}_{1} \mathrm{ml}$ of $0.1 \mathrm{NaOH} \equiv 10 \mathrm{ml}$ oxalic acid before adsorption.
> $\mathrm{V}_{2} \mathrm{ml}$ of $0.1 \mathrm{NaOH} \equiv 10 \mathrm{ml}$ oxalic acid after adsorption.

- Volume of $0.1 \mathrm{NaOH} \equiv$ oxalic acid adsorbed = $V_{1}-V_{2}$
- $\mathrm{X}=\mathrm{wt}$ of oxalic acid (adsorbed) $/ 1 \mathrm{gm}$ charcoal $=\left((N \times V)_{\mathrm{NaOH}} \times\right.$ eq.wt $\left.\times 10\right) / 1000$

$$
\left(V_{1}-V_{2}\right)
$$

$\mathrm{C}=\mathrm{wt}$ of oxalic acid after adsorption $/ 1 \mathrm{gm}$ charcoal $=\left(\left(\mathrm{N} \times \mathrm{V}_{2}\right)_{\mathrm{NaOH}} \times\right.$ eq.wt $\left.\times 10\right) / 1000$

No. of bottle	V_{1}	V_{2}	$V=V_{1}-V_{2}$			$\log \mathrm{X} / \mathrm{m}$	$\log C$	m
1								1
2								1
3								1
4								1

