

Experiment (1)

B) Determination of Absolute and Relative viscosities of ethanol

Viscosity

Viscosity is a measure of a fluid's resistance to flow.

\square The greater the viscosity \longrightarrow the more slowly the liquid flows.
\square Liquids that have strong intermolecular forces have higher viscosities than those that have weak intermolecular forces.
$\square F \alpha A v / d$
$\square F=\eta A v / d$, where η is coefficient of viscosity.
\square Unit of viscosity is poise.
\square Poise : The force (F) necessary to move a layer of liquid of area (A) $1 \mathrm{~cm}^{2}$ with a velocity (v) of $1 \mathrm{~cm} / \mathrm{sec}$ past another layer at distance (d) of 1 cm .
$\square \eta_{1}=\pi r^{4} p_{1} t_{1} / 8 v L$ (ethanol)
$\square n_{2}=\pi r^{4} p_{2} t_{2} / 8 v L$ (water)

$$
\eta_{1} \backslash \eta_{2}=p_{1} t_{1} / p_{2} t_{2}
$$

Relative viscosity:
 $\eta_{1} \backslash n_{2}=d_{1} t_{1} / d_{2} t_{2}$

Factors effect on viscosity

\square Temperature
\square Volume of molecules.
\square Intermolecular force.
\square Hydrogen bonds.
\square Pressure.

Results

J	d_{1}	d_{2}	n_{2}	t_{1}	t_{2}	$n_{1} \eta_{2}=d_{1} t_{1} /$ $d_{2} t_{2}$	$n_{1}=n_{2}^{*}\left(d_{1} t_{1} /\right.$ $\left.d_{2} t_{2}\right)$
25			0.8937				

| 30 | 0.8007 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$40 \quad 0.6540$

Temperature

