If an electron makes a transition from the $n=4$ to the $n=1$ Bohr orbital in a hydrogen atom, determine the wavelength of the light emitted and the recoil speed of the atom

$$
\frac{1}{n}=R\left(\frac{1}{n_{\eta}^{2}}-\frac{1}{n_{i}^{2}}\right)
$$

Winh $R=1.097 \times 10^{7}$ m $n_{i}=4$, and $n_{f}=1$, we find $\lambda=97.2 \mathrm{~nm}$ This photoc carries away momenrum given by

$$
\left.p=\frac{h}{\lambda}=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{97.2 \times 10^{-9} \mathrm{~mm}}=6.62 \times 10^{-37} \right\rvert\, \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}},
$$

which by momennum conservation mast be the recoil momentum of the atom. Using the mass of the hydrogen atom as $1.67 \mathrm{k} 10^{-27} \mathrm{~kg}$ we find it's speed must be

$$
v=\frac{p}{m}=\frac{6.62 \times 10^{-27} \mathrm{~kg}=\mathrm{m} / \mathrm{s}}{1.67 \times 10^{-27} \mathrm{~kg}}=4.1 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Thus, the wavelengh of the emitted photon is 97.2 nme. while the recoil speed of the hydropen atom is $4.1 \mathrm{~m} / \mathrm{s}$.

A photon incident on a hydrogen atom causes the electron to make a transition from the $n=1$ orbital to the $n=3$ orbital. What is the wavelength of the photon, and what are the possible

Solation:

We assume the photon gives पp all of its energy to the electron In making a tansition from $n=1$ to $n=3$, the electron pins men engy

$$
E=-13.6 \mathrm{eV}\left(\frac{1}{n_{j}^{2}}-\frac{1}{n_{i}^{2}}\right)=-13.6 \mathrm{eV}\left(\frac{1}{3^{2}}-\frac{1}{1^{2}}\right)=12.1 \mathrm{eV}
$$

which by energy conservation must be equal to the energy of the incident photon. The associnted wovength is then foud wing

$$
1=\frac{h c}{E}=\frac{1243 \mathrm{eV} \cdot \mathrm{~nm}}{12.1 \mathrm{eV}}=102.8 \mathrm{~nm} .
$$

9.39 What percentage of incident X-ray radiation passes through 5.0 mm of material whose linear absorption coefficient is $0.07 \mathrm{~mm}^{-1}$?

Ans.

$$
\frac{l}{l_{0}}=e^{-1 \mu x}=e^{-(-0.07 \mathrm{~mm}-1)(5.0 .0 \mathrm{~mm})}=0.705=70.5 \%
$$

11.1. Determine, in angstroms, the shortest and longest wavelengths of the Lyman series of hydrogen.

Ans. Wavelengths in the Lyman series are given by $n_{l}=1$:

$$
\frac{1}{\lambda}=\left(1.097 \times 10^{-3} \mathrm{~A}^{-1}\right)\left(\frac{1}{1^{2}}-\frac{1}{n_{u}^{2}}\right) \quad n_{u}=2.3 .4 \ldots
$$

The longest wavelength corresponds to $n_{u}=2$:

$$
\frac{1}{i_{\text {max }}}=\left(1.097 \times 10^{-3} \mathrm{~A}^{-1}\right)\left(1-\frac{1}{2^{2}}\right) \quad \text { or } \quad i_{\text {max }}=1215 \mathrm{~A}
$$

The shortest wavelength corresponds to $n_{u}=\infty$:

$$
\frac{1}{\lambda_{\text {min }}}=1.097 \times 10^{-3} \mathrm{~A}^{-1}\left(1-\frac{1}{\infty^{2}}\right) \quad \text { or } \quad i_{\text {min }}=912 \mathrm{~A}
$$

11.6. Find the wavelength of the photon that is emitted when a hydrogen atom undergoes a transition from $n_{u}=5$ to $n_{l}=2$.
Ans. From the Bohr model, the energy levels are $E_{n}=(-13.6 \mathrm{eV}) / n^{2}$. Hence,

$$
E_{2}=-\frac{13.6 \mathrm{eV}}{2^{2}}=-3.40 \mathrm{eV} \quad E_{5}=-\frac{13.6 \mathrm{eV}}{5^{2}}=-0.544 \mathrm{eV}
$$

From the Bohr postulates the energy of the emitted photon is

$$
E_{i=}=-0.544 \mathrm{cV}-(-3.40 \mathrm{eV})=2.86 \mathrm{eV}
$$

The wavelength of this photon is given by

$$
i=\frac{h c}{E_{i}}=\frac{12.4 \times 10^{3} \mathrm{eV} \cdot \mathrm{~A}}{2.86 \mathrm{cV}}=4340 \mathrm{~A}
$$

