Increasing / Decreasing Test:

(a) If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
(b) If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval.

The First Derivative Test:

Suppose that c is a critical number of a continuous function f.
(a) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
(b) If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
(c) If f^{\prime} does not change sign at c (for example, if f^{\prime} is positive on both sides of c or negative on both sides), then has no local maximum or minimum at c.

Definition:

If the graph of f lies above all of its tangents on an interval I, then it is called concave upward on I. If the graph of f lies below all of its tangents on I, it is called concave downward on I.

Concavity Test:
(a) If $f^{\prime \prime}(x)>0$ for all x in I, then the graph of f is concave upward on I.
(b) If $f^{\prime \prime}(x)<0$ for all x in I, then the graph of f is concave downward on I.

Definition: (Inflection Point)

A point P on a curve $y=f(x)$ is called an inflection point if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.

The Second Derivative Test:

Suppose $f^{\prime \prime}$ is continuous near c.
(a) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
(b) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.

Example: Find the intervals of increasing and decreasing, local extreme values, intervals of concavity and inflection point of

$$
f(x)=x^{3}-6 x^{2}-36 x
$$

Solution:

Example: Find the intervals of increasing and decreasing, local extreme values, intervals of concavity and inflection point of

$$
f(x)=-x^{3}-6 x^{2}-9 x+1
$$

Solution:

Example: Find the intervals of increasing and decreasing, local extreme values, intervals of concavity and inflection point of

$$
f(x)=x^{4}-4 x^{3}
$$

Solution:

