Exponential Functions

The function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}^{\boldsymbol{x}}, \boldsymbol{a}>\mathbf{0}, \boldsymbol{a} \neq \mathbf{1}$ is called an exponential function because the variable, \boldsymbol{x}, is the exponent.

$$
\text { If } a \neq 1, \text { then } \quad D_{f}=\mathbb{R}=(-\infty, \infty), \quad R_{f}=(0, \infty)
$$

Remarks:

1. $f(x)=\left(\frac{1}{a}\right)^{x}=\frac{1}{a^{x}}=a^{-x}$
2. The graphs of all exponential functions pass through the point $(0,1)$.

The Number e :

$$
\boldsymbol{D}_{f}=\mathbb{R}=(-\infty, \infty), \quad \boldsymbol{R}_{f}=(\mathbf{0}, \infty)
$$

To find the domain and range of translated exponential functions:
(1) If $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}^{ \pm x} \pm \boldsymbol{k} \quad \Rightarrow$
$\boldsymbol{D}_{\boldsymbol{f}}=\mathbb{R}=(-\infty, \infty), \quad \boldsymbol{R}_{\boldsymbol{f}}=(\pm \boldsymbol{k}, \infty)$
(2) If $\boldsymbol{f}(\boldsymbol{x})=-\boldsymbol{a}^{ \pm x} \pm \boldsymbol{k} \quad \Rightarrow \quad \boldsymbol{D}_{\boldsymbol{f}}=\mathbb{R}=(-\infty, \infty), \quad \boldsymbol{R}_{\boldsymbol{f}}=(-\infty, \pm \boldsymbol{k})$
(3) If $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{e}^{ \pm x} \pm \boldsymbol{k} \quad \Longrightarrow \quad \boldsymbol{D}_{\boldsymbol{f}}=\mathbb{R}=(-\infty, \infty), \quad \boldsymbol{R}_{\boldsymbol{f}}=(\pm \boldsymbol{k}, \infty)$
(4) If $\boldsymbol{f}(\boldsymbol{x})=-\boldsymbol{e}^{ \pm x} \pm \boldsymbol{k} \quad \Rightarrow \quad \boldsymbol{D}_{\boldsymbol{f}}=\mathbb{R}=(-\infty, \infty), \quad \boldsymbol{R}_{\boldsymbol{f}}=(-\infty, \pm \boldsymbol{k})$

Section 1.5: Exponential Functions
Example: Sketch the graph of the function $\boldsymbol{y}=\mathbf{3 - \mathbf { 2 } ^ { \boldsymbol { x } }}$ and determine its domain and range.
Solution:

(a) $y=2^{x}$

(b) $y=-2^{x}$

(c) $y=3-2^{x}$

$$
D_{f}=\quad R_{f}=
$$

Example: State the domain and range of the following functions

| (1) $y=4^{x}-3$ | (2) $y=5-3^{x}$ | (3) $y=6-3 e^{x}$ |
| :--- | :--- | :--- | :--- |
| (4) $y=2^{-x}+1$ | (5) $y=-3^{x}-7$ | (6) $y=\frac{1}{2} e^{-x}-1$ |
| $(7) y=2\left(1+e^{x}\right)$ | (8) $y=-5 e^{-x}$ | (9) $y=e^{x}+1$ |

Example: Find the domain of the following functions
(1) $f(x)=\frac{1}{1+e^{x}}$
(2) $f(x)=\frac{1}{1-e^{x}}$
(3) $f(x)=\sqrt{1+2^{x}}$
(4) $f(x)=\frac{1}{2-e^{x}}$
(5)

$$
f(x)=\sqrt{e^{x}+3}
$$

Laws of Exponents:

If a and b are positive numbers and x and x are any real numbers, then
(1) $a^{x+y}=a^{x} . a^{y}$
(6) $e^{x+y}=e^{x} \cdot e^{y}$
(2) $a^{x-y}=\frac{a^{x}}{a^{y}}$
(7) $e^{x-y}=\frac{e^{x}}{e^{y}}$
(3) $\left(\boldsymbol{a}^{x}\right)^{y}=\boldsymbol{a}^{x y}$
(8) $\left(e^{x}\right)^{y}=e^{x y}$
(4) $(a b)^{x}=a^{x} \cdot b^{x}$
(9) $(a e)^{x}=a^{x} \cdot e^{x}$
(5) $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$
(10) $\left(\frac{a}{e}\right)^{x}=\frac{a^{x}}{e^{x}}$

Remark:
If the bases in an equation are equal, then the exponents are equal. That is, if

$$
x^{a}=x^{b} \quad \Leftrightarrow \quad a=b
$$

Example: Find \boldsymbol{x} if $\mathbf{2}^{\boldsymbol{x + 1}}=\mathbf{1 6}$.
Solution:

$$
2^{x+1}=16
$$

Example: Solve the equation if $\mathbf{9}^{\mathbf{2 x - 1}}=\mathbf{8 1}$. Solution:

$$
9^{2 x-1}=81
$$

Section 1.5: Exponential Functions

Example: Solve $25^{x+2}=125$. Solution: $25^{x+2}=125$	Example: Find x if $6^{2(x+1)}=36$. Solution: $6^{2(x+1)}=36$

Example: Find the exponential function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{C} \boldsymbol{a}^{\boldsymbol{x}}$ whose graph is given:

Sections 1.5. Exercises

Page 57

Homework: Page 57
17. Starting with the graph of $\boldsymbol{y}=\boldsymbol{e}^{\boldsymbol{x}}$, write the equation of the graph that results from
(a) shifting 2 units downward
(b) shifting 2 units to the right
(c) reflecting about the \boldsymbol{x}-axis
(d) reflecting about the \boldsymbol{y}-axis
(e) reflecting about the \boldsymbol{x}-axis and then about the \boldsymbol{y}-axis

Find the domain of each function.
19. (a) $f(x)=\frac{1-e^{x^{2}}}{1-e^{1-x^{2}}}$
20.
(b) $g(t)=\sqrt{1-2^{t}}$
23. If $f(x)=5^{x}$, show that

$$
\frac{f(x+h)-f(x)}{h}=5^{x}\left(\frac{5^{h}-1}{h}\right)
$$

Tutorials: Page 57

18. Starting with the graph of $\boldsymbol{y}=\boldsymbol{e}^{\boldsymbol{x}}$, find the equation of the of the graph that results from
(a) reflecting about the line $\boldsymbol{y}=\mathbf{4}$
(b) reflecting about the line $\boldsymbol{x}=\mathbf{2}$

Find the domain of each function.
19. (b) $f(x)=\frac{1+x}{e^{\cos x}}$
20. (a) $g(t)=\sin \left(e^{-t}\right)$

