Transformations of Functions

Vertical and Horizontal Shifts:

Suppose $\boldsymbol{c}>\mathbf{0}$. To obtain the graph of
$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{c}$, shift the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ a distance c units upward
$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{c}$, shift the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ a distance c units downward
$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x}-\boldsymbol{c})$, shift the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ a distance c units to the right
$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x}+\boldsymbol{c})$, shift the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ a distance c units to the left

Vertical and Horizontal Stretching and Reflecting:
Suppose $c>1$. To obtain the graph of
$\boldsymbol{y}=\boldsymbol{c} \boldsymbol{f}(\boldsymbol{x})$, stretch the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ vertically by a factor of \mathbf{c}
$y=(1 / c) f(x)$, shrink the graph of $y=f(x)$ vertically by a factor of c
$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{c} \boldsymbol{x})$, shrink the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ horizontally by a factor of c
$y=f(x / c)$, stretch the graph of $y=f(x)$ horizontally by a factor of c
$y=-f(x)$, reflect the graph of $y=f(x)$ about the x-axis
$y=f(-x)$, reflect the graph of $y=f(x)$ about the y-axis

Example: If $f(x)=2 x+\sin x+e^{x}$, then
a) shift $f(x) \mathbf{5}$ units upward.

Solution:

Example: If $f(x)=2 x+\sin x+e^{x}$, then
c) shift $f(x) 4$ units to the left.

Solution:

Example: If $f(x)=2 x+\sin x+e^{x}$, then
b) shift $f(x) 7$ units downward. Solution:

Example: If $f(x)=2 x+\sin x+e^{x}$, then
d) shift $f(x) 6$ units to the right.

Solution:

Example: If $y=\cos x$, then a) stretch the graph of y vertically by a factor of $\mathbf{2}$ units Solution:	Example: If $y=\cos x$, then b) shrink the graph of y vertically by a factor of $\mathbf{2}$ units Solution:
Example: If $y=\cos x$, then c) stretch the graph of \boldsymbol{y} horizontally by a factor of $\mathbf{2}$ units Solution:	Example: If $y=\cos x$, then d) shrink the graph of \boldsymbol{y} horizontally by a factor of $\mathbf{2}$ units Solution:
Example: If $y=\cos x$, then e) reflect the graph of y about the \boldsymbol{x}-axis Solution:	Example: If $y=\cos x$, then f) reflect the graph of y about the \boldsymbol{y}-axis Solution:

Example 1: Given the graph of $y=\sqrt{x}$, use transformations to graph

$$
y=\sqrt{x}-2, y=\sqrt{x-2}, y=-\sqrt{x}, y=2 \sqrt{x} \text { and } y=\sqrt{-x} .
$$

Solution:

(a) $y=\sqrt{x}$

(b) $y=\sqrt{x}-2$

(c) $y=\sqrt{x-2}$

(d) $y=-\sqrt{x}$

(e) $y=2 \sqrt{x}$

(f) $y=\sqrt{-x}$

Combinations of Functions

Definition:

Given two function f \& g, we define the following:
(1) $(f+g)(x)=f(x)+g(x)$
(2) $(f-g)(x)=f(x)-g(x)$
(3) $(f \cdot g)(x)=f(x) \cdot g(x)$
(4) $(f / g)(x)=\frac{f(x)}{g(x)}$, provided $g(x) \neq 0$

Remarks:

- $D_{f+g}=D_{f-g}=D_{f g}=D_{f} \cap D_{g}$
- $D_{f / g}=D_{f} \cap D_{g} \backslash\{x: g(x)=0\}=D_{f} \cap D_{g} \backslash\{\{$ أصفار المقا $\}$

Example: If $f(x)=\sqrt{x}, g(x)=\sqrt{2-x}$, then find the domain of $\boldsymbol{f}+\boldsymbol{g}, \boldsymbol{f}-\boldsymbol{g}, \boldsymbol{f} \boldsymbol{g}, \boldsymbol{f} / \boldsymbol{g}$ and $\boldsymbol{g} / \boldsymbol{f}$.
Solution:

Composite Functions

Definition:

Given two function $f \& g$, the composite function $f \circ g$ (also called the composition of $f \& g$) is defined by

$$
(f \circ g)(x)=f(g(x))
$$

Remarks:

- $\boldsymbol{D}_{\mathrm{f} \circ \mathrm{g}}=\boldsymbol{D}_{f(g(x))} \cap \boldsymbol{D}_{g(x)}$
- $D_{g \circ f}=D_{g(f(x))} \cap D_{f(x)}$
- $\boldsymbol{f} \circ \boldsymbol{g} \neq \boldsymbol{g} \circ \boldsymbol{f}$

Example: If $f(x)=x^{2}$ and $g(x)=x-3$, find the composite functions $\boldsymbol{f} \circ \boldsymbol{g}$ and $\boldsymbol{g} \circ \boldsymbol{f}$. Solution:

Example: If $f(x)=\sqrt{x}$ and $g(x)=\sqrt{2-x}$, find each function and its domain.
(1) $f \circ g$
(2) $g \circ f$
(3) $f \circ f$
(4) $g \circ g$

Solution:

Example: Find $\boldsymbol{f} \circ \boldsymbol{g} \circ \boldsymbol{h}$ if $\boldsymbol{f}(\boldsymbol{x})=\frac{\boldsymbol{x}}{\boldsymbol{x}+1}$ and $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}^{\mathbf{1 0}}$, and $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{x}+3$.
Solution:

Example: If $f(x)=x^{2}$ and $g(x)=\cos x$, find the composite functions $\boldsymbol{f} \circ \boldsymbol{g}$ and $\boldsymbol{g} \circ \boldsymbol{f}$.
Solution:

Example: If $f(x)=x^{2}$ and $g(x)=\sqrt{1-x}$, find the domain of the composite functions $\boldsymbol{f} \circ \boldsymbol{g}, \boldsymbol{g} \circ \boldsymbol{f}$ and $\boldsymbol{f} \circ \boldsymbol{f}$. Solution:

Sections 1.3. Exercises

Page 42-43

Homework: Page 42-43

1. Suppose the graph of f is given. Write equations for the graphs that are obtained from the graph of f as follows.
(a) Shift 3 units upward.
(b) Shift 3 units downward.
(c) Shift 3 units to the right.
(d) Shift 3 units to the left.
(e) Reflect about the x-axis.
(f) Reflect about the y-axis.
(g) Stretch vertically by a factor of 3 .
(h) Shrink vertically by a factor of 3 .

Find (a) $f+g$, (b) $f-g$, (c) $f g$ and (d) f / g and state their domains.
29. $f(x)=x^{3}+2 x^{2}, \quad g(x)=3 x^{2}-1$

Find the functions $(\boldsymbol{a}) f \circ g$, (b) $g \circ f$, (c) $f \circ f$ and (d) $g \circ g$ and state their domains.
31. $f(x)=x^{2}-1, \quad g(x)=2 x+1$
32. $f(x)=x-2, \quad g(x)=x^{2}+3 x+4$
34. $f(x)=\sqrt{x}, \quad g(x)=\sqrt[3]{1-x}$

Find $f \circ g \circ h$.
38. $f(x)=|x-4|, \quad g(x)=2^{x}, \quad h(x)=\sqrt{x}$

Tutorials: Page 43

Find (a) $f+g$, (b) $f-g$, (c) $f g$ and (d) f / g and state their domains.
30. $f(x)=\sqrt{3-x}, \quad g(x)=\sqrt{x^{2}-1}$

Find the functions $(\boldsymbol{a}) f \circ g$, (b) $g \circ f$, (c) $f \circ f$ and (d) $g \circ g$ and state their domains.
33. $f(x)=1-3 x, \quad g(x)=\cos x$
32. $f(x)=x+\frac{1}{x}, \quad g(x)=\frac{x+1}{x+2}$

Find $f \circ g \circ h$.
37. $f(x)=3 x-2, \quad g(x)=\sin x, \quad h(x)=x^{2}$

