


Prepared by Dr. Ebraheem Alzahrani, Department of Mathematics, Faculty of Sciences and Arts, Rabigh

Example: If $f(x) = 2x + \sin x + e^x$, then a) shift $f(x)$ 5 units upward. Solution:	Example: If $f(x) = 2x + \sin x + e^x$, then b) shift $f(x)$ 7 units downward. Solution:
Example: If $f(x) = 2x + \sin x + e^x$, then c) shift $f(x)$ 4 units to the left. Solution:	Example: If $f(x) = 2x + \sin x + e^x$, then d) shift $f(x)$ 6 units to the right. Solution:
Example: If $y = \cos x$, then	Example: If $y = \cos x$, then
 a) stretch the graph of y vertically by a factor of 2 units Solution: 	b) shrink the graph of y vertically by a factor of 2 units Solution:
Example: If $y = \cos x$, then	Example: If $y = \cos x$, then
c) stretch the graph of y horizontally by a factor of 2 units	d) shrink the graph of y horizontally by a factor of 2 units
Solution:	Solution:
Example: If $y = \cos x$, then	Example: If $y = \cos x$, then
e) reflect the graph of y about the x -axis	f) reflect the graph of y about the y -axis
Solution:	Solution:

Combinations of Functions

-		•	• • •	
114	ρt	ın	111	on
-	<u> </u>			

Given two function f & g, we define the following: (1) (f+g)(x) = f(x) + g(x)(2) (f-g)(x) = f(x) - g(x)(3) $(f.g)(x) = f(x) \cdot g(x)$ (4) $(f/g)(x) = \frac{f(x)}{g(x)}$, provided $g(x) \neq 0$

Remarks:

- $D_{f+g} = D_{f-g} = D_{fg} = D_f \cap D_g$ $D_{f/g} = D_f \cap D_g \setminus \{x: g(x) = 0\} = D_f \cap D_g \setminus \{x: g(x) = 0\}$
- **Example:** If $f(x) = \sqrt{x}$, $g(x) = \sqrt{2-x}$, then find the domain of f + g, f - g, fg, f/g and g/f. Solution: **Example:** If $f(x) = x^3 - 4x$, g(x) = x - 2, then find the domain of f/g and g/f. Solution:

Composite Functions

Given two function $f \And g$, the g	composite function <i>f</i>	$\circ oldsymbol{g}$ (also called the composition of $oldsymbol{f} \&oldsymbol{g}$) is defined b		
$(\boldsymbol{f} \circ \boldsymbol{g})(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{g}(\boldsymbol{x}))$				
Remarks:				
• $D_{f \circ g} = D_{f(g(x))} \cap D_{g(x)}$				
• $D_{g \circ f} = D_{g(f(x))} \cap D_{f(x)}$				
• $f \circ g \neq g \circ f$				
•				
Example: If $f(x) = x^2$ and $g(x)$ Solution:	x) = x - 3, find the contract find the contract field $x = x - 3$.	mposite functions $f \circ g$ and $g \circ f$.		
<u>solution.</u>				
Example: If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{x}$	$(x) = \sqrt{2 - x}$, find each			
function and its domain. (1) $f \circ g$	(2) $g \circ f$			
$\begin{array}{ccc} (1) & f \circ g \\ (3) & f \circ f \end{array}$	$(4) g \circ g$			
Solution:				

Solution:

Example: If $f(x) = x^2$ and $g(x) = \cos x$, find the composite functions $f \circ g$ and $g \circ f$. Solution:

Example: If $f(x) = x^2$ and $g(x) = \sqrt{1-x}$, find the domain of the composite functions $f \circ g$, $g \circ f$ and $f \circ f$. Solution:

Sections 1.3. Exercises Page 42-43 Homework: Page 42-43 **1.** Suppose the graph of f is given. Write equations for the graphs that are obtained from the graph of f as follows. (a) Shift 3 units upward. (b) Shift 3 units downward. (c) Shift 3 units to the right. (d) Shift 3 units to the left. (e) Reflect about the x-axis. (f) Reflect about the y-axis. (g) Stretch vertically by a factor of 3. (h) Shrink vertically by a factor of 3. Find (a) f + g, (b) f - g, (c) fg and (d) f/g and state their domains. **29.** $f(x) = x^3 + 2x^2$, $g(x) = 3x^2 - 1$ Find the functions (a) $f \circ g$, (b) $g \circ f$, (c) $f \circ f$ and (d) $g \circ g$ and state their domains. **31.** $f(x) = x^2 - 1$, g(x) = 2x + 1**32.** f(x) = x - 2, $g(x) = x^2 + 3x + 4$ **34.** $f(x) = \sqrt{x}$, $g(x) = \sqrt[3]{1-x}$ Find $f \circ g \circ h$. **38.** f(x) = |x - 4|, $g(x) = 2^x$, $h(x) = \sqrt{x}$

 Tutorials:
 Page 43

 Find (a) f + g, (b) f - g, (c) fg and (d) f/g and state their domains.

 30. $f(x) = \sqrt{3 - x}$, $g(x) = \sqrt{x^2 - 1}$

 Find the functions (a) $f \circ g$, (b) $g \circ f$, (c) $f \circ f$ and (d) $g \circ g$ and state their domains.

 33. f(x) = 1 - 3x, $g(x) = \cos x$
32. $f(x) = x + \frac{1}{x}$, $g(x) = \frac{x + 1}{x + 2}$

 Find $f \circ g \circ h$.

 37. f(x) = 3x - 2, $g(x) = \sin x$, $h(x) = x^2$