In the preceding section, we considered the derivative of a function \boldsymbol{f} at a fixed number \boldsymbol{a} :

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Here we change our point of view and let the number \boldsymbol{a} vary. If we replace \boldsymbol{a} in the above Equation by a variable \boldsymbol{x}, we obtain

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Example: (1) Find the derivative of the given function

$$
f(x)=\sqrt{x}
$$

Solution:
(2) Find the derivative of the given function

$$
f(x)=\frac{1-x}{2+x}
$$

Solution:

Other Notations:

Notations:

If $y=f(x)$, then

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

Definition:

A function \boldsymbol{f} is differentiable at \boldsymbol{a} if $\boldsymbol{f}^{\prime}(\boldsymbol{a})$ exists. It is differentiable on an open interval (a,b) [or (\boldsymbol{a}, ∞) or $(-\infty, \boldsymbol{a})$ or $(-\infty, \infty)$] if it is differentiable at every number in the interval.

Theorem:

If \boldsymbol{f} is differentiable at \boldsymbol{a}, then \boldsymbol{f} is continuous at \boldsymbol{a}.

The converse is not true.

Example: Where is the function $f(x)=|x|$ differentiable?
Solution:
(antion:

How Can a Function Fail to Be Differentiable?

There are three ways for \boldsymbol{f} not to be differentiable at \boldsymbol{a}.

Higher Derivatives:

Notations:

If $\boldsymbol{y}^{\prime}=\boldsymbol{f}^{\prime}(\boldsymbol{x})$, then

$$
\begin{gathered}
f^{\prime \prime}(x)=y^{\prime \prime}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d f}{d x}\right)=\frac{d^{2}}{d x^{2}} f(x)=D^{2} f(x)=D_{x}^{2} f(x) \\
f^{\prime \prime \prime}(x)=y^{\prime \prime \prime}=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d^{3} y}{d x^{3}}=\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right)=\frac{d^{3}}{d x^{3}} f(x)=D^{3} f(x)=D_{x}^{3} f(x) \\
f^{(n)}(x)=y^{(n)}=\frac{d^{n} y}{d x^{n}}=\frac{d^{n}}{d x^{n}} f(x)=D^{n} f(x)=D_{x}^{n} f(x)
\end{gathered}
$$

At substituting $x=a$, we have

$$
\left.y^{\prime}(a)=f^{\prime}(a)=\left.\frac{d y}{d x}\right|_{x=a}=\frac{d y}{d x}\right]_{x=a}
$$

Example: If $f(x)=x^{3}-x$, find $f^{\prime \prime}(x)$.
Solution:

Example: If $f(x)=x^{3}-x$, find $f^{\prime \prime \prime}(x)$ and $f^{(4)}(x)$.
Solution:

