In the preceding section, we considered the derivative of a function f at a fixed number a : $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$		
Here we change our point of view and let the number a vary. If we replace a in the above Equation by a variable x , we obtain		
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
Example: (1) Find the derivative of the given function	(2) Find the derivative of the given function	
$f(x) = \sqrt{x}$	$f(x) = \frac{1-x}{2+x}$	
Solution.	2 + x Solution:	

Other Notations:

Notations:

If y = f(x), then

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x)$$

Definition:

A function f is differentiable at a if f'(a) exists. It is differentiable on an open interval (a, b) [or (a, ∞) or $(-\infty, a)$ or $(-\infty, \infty)$] if it is differentiable at every number in the interval.

Theorem:

If f is differentiable at a, then f is continuous at a.

The converse is not true.

How Can a Function Fail to Be Differentiable?

There are **three ways** for *f* not to be differentiable at *a*.

Higher Derivatives:

Notations:	
$\overline{\mathbf{f} \mathbf{y}' = \mathbf{f}'(\mathbf{x})}, \text{ then}$	
$f''(x) = y'' = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{df}{dx}\right) = \frac{d^2}{dx^2}f(x) = D^2f(x) = D_x^2f(x)$	
$f'''(x) = y''' = \frac{d}{dx} \left(\frac{d^2 y}{dx^2} \right) = \frac{d^3 y}{dx^3} = \frac{d}{dx} \left(\frac{d^2 f}{dx^2} \right) = \frac{d^3}{dx^3} f(x) = D^3 f(x) = D^3_x f(x)$	
$f^{(n)}(x) = y^{(n)} = \frac{d^n y}{dx^n} = \frac{d^n}{dx^n} f(x) = D^n f(x) = D^n_x f(x)$ At substituting $x = a$, we have	
$y'(a) = f'(a) = \frac{dy}{dx}\Big _{x=a} = \frac{dy}{dx}\Big _{x=a}$	
Example: If $f(x) = x^3 - x$, find $f''(x)$. Solution:	Example: If $f(x) = x^3 - x$, find $f'''(x)$ and $f^{(4)}(x)$. Solution: