Definition:

The tangent line to the curve $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ at the point $\boldsymbol{P}(\boldsymbol{a}, \boldsymbol{f}(\boldsymbol{a}))$ is the line through \boldsymbol{P} with slope

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided that this limit exists.

Derivatives:

Definition:

The derivative of a function \boldsymbol{f} at a number \boldsymbol{a}, denoted by $\boldsymbol{f}^{\prime}(\boldsymbol{a})$, is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

if this limit exists.

Definition:

The tangent line to $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ at $(\boldsymbol{a}, \boldsymbol{f}(\boldsymbol{a}))$ is the line through $(\boldsymbol{a}, \boldsymbol{f}(\boldsymbol{a}))$ whose slope is equal to $\boldsymbol{f}^{\prime}(\boldsymbol{a})$, the derivative of \boldsymbol{f} at \boldsymbol{a}.

Example:

(1) Find the derivative of the given function at the number a.

$$
f(x)=x^{2}-8 x+9
$$

Solution:

(2) Find an equation of the tangent line to the parabola $y=x^{2}-8 x+9$ at the point $(3,-6)$. Solution:

