

Physical Properties of Solutions Chapter 12

A **solution** is a homogenous mixture of 2 or more substances

The **solute** is(are) the substance(s) present in the smaller amount(s)

The *solvent* is the substance present in the larger

amount

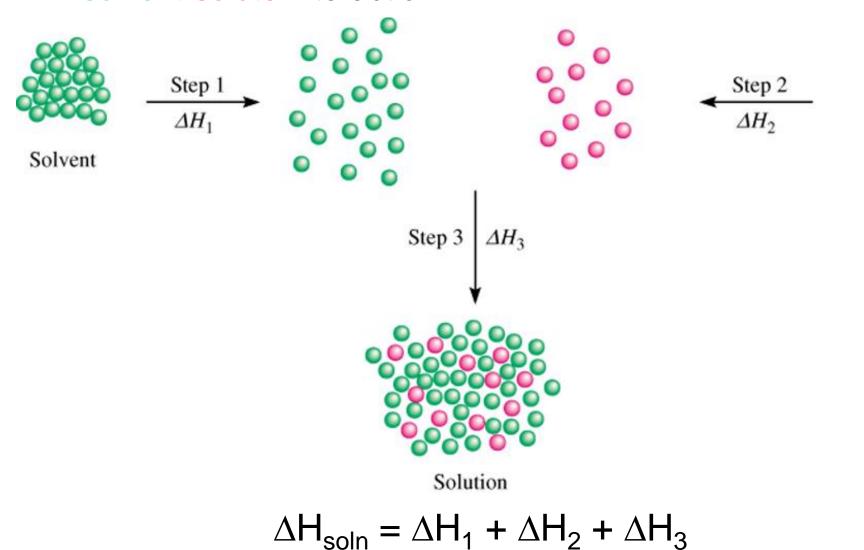
7	Types of Solutions			
TABLE	Component 1	Component 2	State of Resulting Solution	Examples
-	Gas	Gas	Gas	Air
	Gas	Liquid	Liquid	Soda water (CO ₂ in water)
	Gas	Solid	Solid	H ₂ gas in palladium
	Liquid	Liquid	Liquid	Ethanol in water
	Solid	Liquid	Liquid	NaCl in water
	Solid	Solid	Solid	Brass (Cu/Zn), solder (Sn/Pb)

A **saturated solution** contains the maximum amount of a solute that will dissolve in a given solvent at a specific temperature.

An *unsaturated solution* contains less solute than the solvent has the capacity to dissolve at a specific temperature.

A *supersaturated solution* contains more solute than is present in a saturated solution at a specific temperature.

Sodium acetate crystals rapidly form when a seed crystal is added to a supersaturated solution of sodium acetate.



Three types of interactions in the solution process:

- solvent-solvent interaction
- solute-solute interaction
- solvent-solute interaction

Solute

"like dissolves like"

Two substances with similar *intermolecular* forces are likely to be soluble in each other.

- non-polar molecules are soluble in non-polar solvents
 CCI₄ in C₆H₆
- polar molecules are soluble in polar solvents

ionic compounds are more soluble in polar solvents

Concentration Units

The *concentration* of a solution is the amount of solute present in a given quantity of solvent or solution.

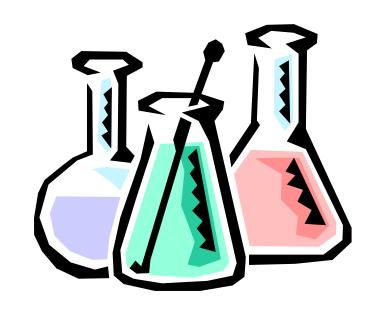
Percent by Mass

% by mass =
$$\frac{\text{mass of solute}}{\text{mass of solute + mass of solvent}} \times 100\%$$

= $\frac{\text{mass of solute}}{\text{mass of solution}} \times 100\%$

Mole Fraction (X)

$$X_A = \frac{\text{moles of A}}{\text{sum of moles of all components}}$$


Concentration Units Continued

Molarity (M)

$$M = \frac{\text{moles of solute}}{\text{liters of solution}}$$

Molality (m)

$$m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}}$$

EX.

100g of an aqueous solution containing 5g of NaCl; what is the mass percentage of NaCl in the solution?

Ans.

Mass % of NaCl = $(5/100) \times 100$

= 5 %

Ex. 3.1

Gases solution contain 2.0 g of the He and 4g of O_2 . What are the mole fractions of He and O_2 in the solution?

Ans. 3.1

$$X_{He} = n_{He} / n_{He} + n_{O2} X_{O2} = n_{O2} / n_{He} + n_{O2}$$

First we find the number of mole of each component present in solution, n_{He} and n_{02}

$$n_{He} = mass\ He\ /\ Mw\ , n_{He} = 2.0g\ /4.0g\ mol^{-1} = 0.5\ mole\ He$$

 $n_{O2} = mass\ of\ O_2\ /\ Mw\ , n_{O2} = 4.0g\ /32.g\ mol^{-1} = 0.125\ mole\ O_2$

$$X_{He} = 0.5 / 0.5 + 0.125$$
 $X_{O2} = 0.125 / 0.5 + 0.125 = 0.2$ = 0.8

Note:
$$X_{He} + X_{O2} = 0.8 + 0.2 = 1$$

What is the molality of CuSO₄ solution when 20 g of CuSO₄ dissolved in 100 g of water?

$$Cu = 63.5$$
, $S = 32$, $O = 16$

Answer

```
m = n \text{ solute / Kg of solvent} n \text{ of } CuSO_4 = mass / MW = 20 \text{ g / 159.5 g mol}^{-1} = 0.125 \text{ mol} m = n \text{ CuSO}_4 / \text{ Mass of H}_2\text{O (Kg)}
```

m = 0.125 / 0.1 = 1.25 m

What are the mole fractions of solute and solvent in 1.00 m aqueous solution ?

Answer: m = n solute / Kg of solvent

1 m = 1 mol / 1 Kg, So mass of water = 1000 g

The MW of $H_2O = 18 g / mol$

No. of mole of $H_2O = 1000 \text{ g} / 18 \text{ g/mol} = 55.6 \text{ mol } H_2O$.

 n_{solute} (no. of mole of solute) = 1 mol

 $n_{H2O} = 55.6 \text{ mol}$

 $X_{\text{solute}} = 1 / (1+55.6) = 0.018$

 $X_{H2O} = 55.6 / (1 + 55.6) = 0.982$.

What is the molality of a 5.86 M ethanol (C_2H_5OH) solution whose density is 0.927 g/mL?

mass of solute mass of solute mass of solute mass of solution: M = number of moles / Volume (L)

$$5.86 \text{ M} = \text{number of moles} / 1 \text{ L}$$

number of moles of ethanol = 5.86 moles

Mass of ethanol = 5.86 x 46 = 270 g ethanol

Mass of solution = 1000 ml x 0.927 g/ml= 927 g

mass of solvent = mass of solution - mass of solute

$$= 927 \text{ g} - 270 \text{ g} = 657 \text{ g} = 0.657 \text{ kg}$$

moles of solute

$$= 927 \text{ g} - 270 \text{ g} = 657 \text{ g} = 0.657 \text{ kg}$$

moles of solute

$$= 927 \text{ g} - 270 \text{ g} = 657 \text{ g} = 0.657 \text{ kg}$$

moles of solute

$$= 927 \text{ g} - 270 \text{ g} = 657 \text{ g} = 0.657 \text{ kg}$$

moles of solute

$$= 927 \text{ g} - 270 \text{ g} = 657 \text{ g} = 0.657 \text{ kg}$$

moles of solute

$$= 927 \text{ g} - 270 \text{ g} = 657 \text{ g} = 0.657 \text{ kg}$$

moles of solute

$$= 927 \text{ g} - 270 \text{ g} = 657 \text{ g} = 0.657 \text{ kg}$$

moles of solute

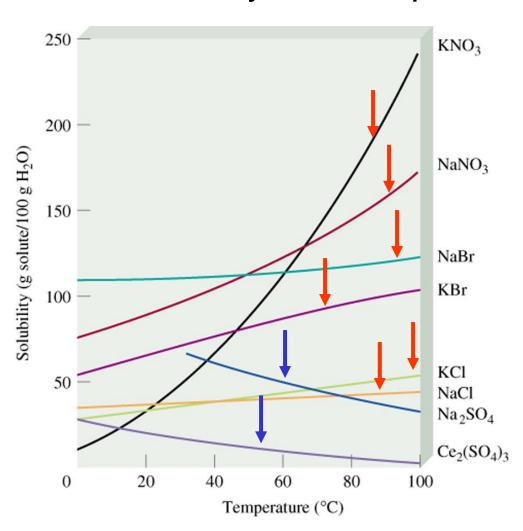
$$= 927 \text{ g} - 270 \text{ g} = 657 \text{ g} = 0.657 \text{ kg}$$

moles of solute

$$= 927 \text{ g} - 270 \text{ g} = 657 \text{ g} = 0.657 \text{ kg}$$

moles of solute

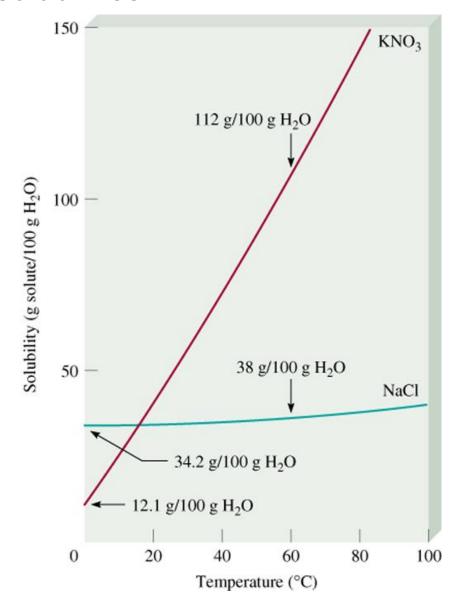
$$= 927 \text{ g} - 270 \text{ g} = 657 \text{ g} = 0.657 \text{ kg}$$


moles of solute

$$= 927 \text{ g} - 270 \text{ g} = 657 \text{ g} = 0.657 \text{ kg}$$

mass of solvent (kg) 0.657 kg solvent

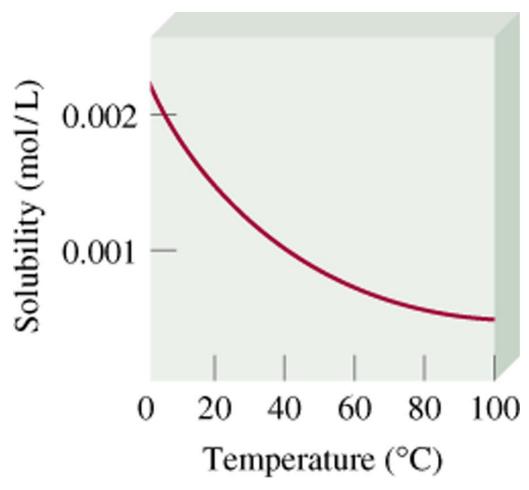
Temperature and Solubility


Solid solubility and temperature

solubility of solids decreases with increasin temperature

solubility increases with increasing temperature

Fractional crystallization is the separation of a mixture of substances into pure components on the basis of their differing solubilities.


Suppose you have 90 g KNO₃ contaminated with 10 g NaCl.

Fractional crystallization:

- 1. Dissolve sample in 100 mL of water at 60°C
- 2. Cool solution to 0°C
- 3. All NaCl will stay in solution (s = 34.2g/100g)
- 78 g of PURE KNO₃ will precipitate (s = 12 g/100g).
 90 g 12 g = 78 g

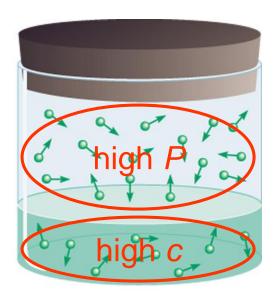
Temperature and Solubility

Gas solubility and temperature

solubility usually decreases with increasing temperature

Pressure and Solubility of Gases


The solubility of a gas in a liquid is proportional to the pressure of the gas over the solution (*Henry's law*).


$$c = kP$$

c is the concentration (M) of the dissolved gas

P is the pressure of the gas over the solution

k is a constant (mol/L•atm) that depends only on temperature

Example 12.6

The solubility of nitrogen gas at 25 °C and 1 atm is 6.8x10⁻⁴ mol/L. What is the concentration(M) of nitrogen dissolved in water Under atmospheric conditions? The partial pressure of nitrogen gas in the atmosphere is 0.78 atm.

Solution 12.6

```
c = k p

6.8x10^{-4} = k x (1atm)

K = 6.8x10^{-4} \text{ mol/L.atm}

c = k x p

= 6.8x10^{-4} x 0.78 \text{ atm} = 5.3 x 10^{-4} \text{ mol/L}
```

Chemistry In Action: The Killer Lake

8/21/86 CO₂ Cloud Released 1700 Casualties

Trigger?

- earthquake
- landslide
- strong Winds

Lake Nyos, West Africa

Colligative Properties of Nonelectrolyte Solutions

Colligative properties are properties that depend only on the number of solute particles in solution and not on the nature of the solute particles.

Vapor-Pressure Lowering

$$P_1 = X_1 P_1^0$$

 P_1^0 = vapor pressure of **pure** solvent

Raoult's law

 X_1 = mole fraction of the solvent

If the solution contains only one solute:

$$X_1 = 1 - X_2$$

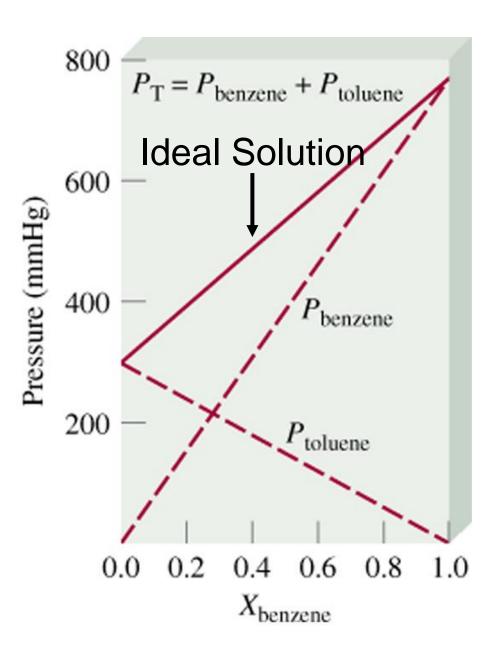
$$P_1 = (1 - X_2) P_1^0$$

$$P_1 = P_1^{\circ} - P_1^{\circ} X2$$

$$P_1^{\circ} X_2 = P_1^{\circ} - P_1 = \Delta P$$

 X_2 = mole fraction of the solute

 ΔP = Lowering of vapor pressure

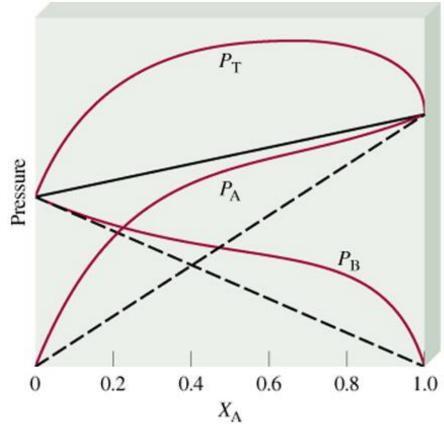

Rault,s Law:

For ideal gases, the vapor pressure of solution (P_T) in two component system A and B is:

$$P_{T} = P_{A} + P_{B} \dots (1)$$

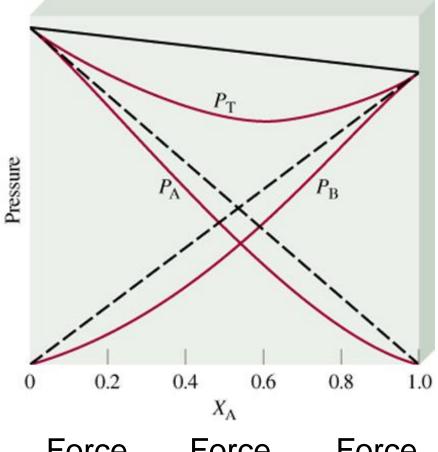
$$P_B = X_B P_B^{\circ}$$
(3)

$$P_T = X_A P_A^{\circ} + X_B P_B^{\circ} \dots (4)$$

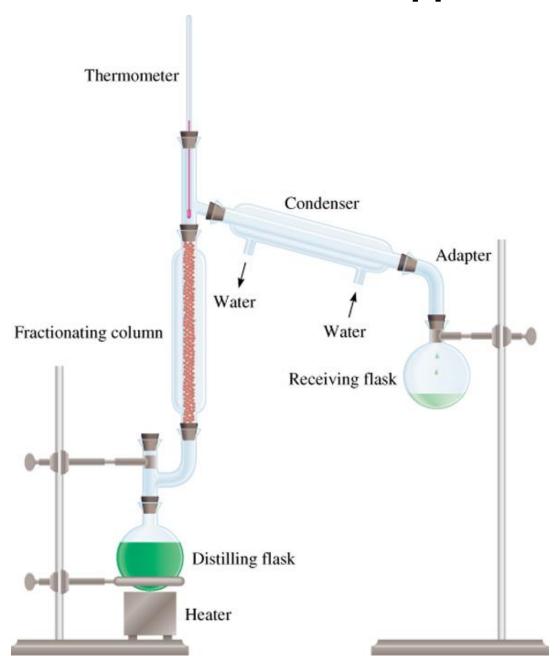

$$P_{A} = X_{A} P_{A}^{0}$$

$$P_{B} = X_{B} P_{B}^{0}$$

$$P_{T} = P_{A} + P_{B}$$


$$P_{T} = X_{A} P_{A}^{0} + X_{B} P_{B}^{0}$$

 P_{T} is greater than predicted by Raoults's law



Force A-B Force B-B

 P_{T} is less than predicted by Raoults's law

Fractional Distillation Apparatus

EX. 1

Heptane (C_7H_{16}) and octane (C_8H_{18}) form ideal solution .What is the vapor pressure at 40°C of a solution that contains 3.0 mol of heptane and 5 mol of octane ?

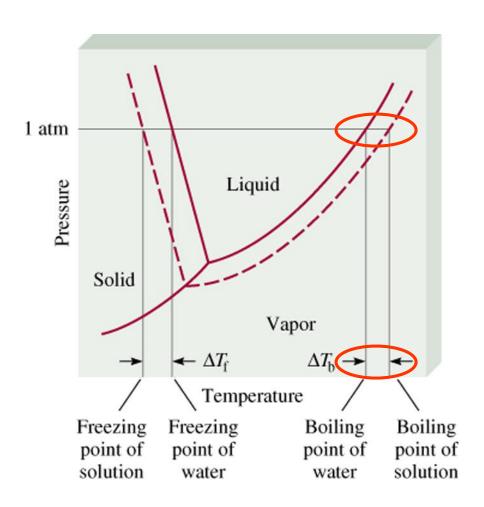
At 40° C $p^{\circ}_{heptan} = 0.121$ atm and $p^{\circ}_{octane} = 0.041$ atm .

Ans.

$$n_h + n_o = 3 + 5 = 8$$

$$X_h = 3 / 8 = 0.375$$

$$X_0 = 5/8 = 0.625$$


$$P_t = X_h p_h^{\circ} + X_o P_o^{\circ}$$

$$= 0.375 \times 0.121 + 0.625 \times 0.041$$

$$= 0.045 + 0.026$$

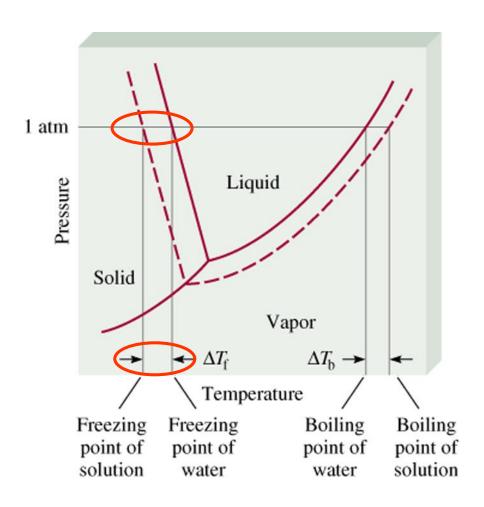
$$= 0.071 atm$$

Boiling-Point Elevation

$$\Delta T_{\rm b} = T_{\rm b} - T_{\rm b}^{0}$$

T_b⁰ is the boiling point of the pure solvent

T_b is the boiling point of the solution


$$T_{\rm b} > T_{\rm b}^{0} \qquad \Delta T_{\rm b} > 0$$

$$\Delta T_{\rm b} = K_{\rm b} m$$

m is the molality of the solution

 K_b is the molal boiling-point elevation constant (${}^{0}C/m$)

Freezing-Point Depression

$$\Delta T_{\rm f} = T_{\rm f}^{\rm O} - T_{\rm f}$$

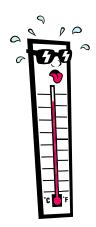
T ⁰ is the freezing point of the pure solvent

T_f is the freezing point of the solution

$$T_{\rm f}^0 > T_{\rm f}$$
 $\Delta T_{\rm f} > 0$

$$\Delta T_{\rm f} = K_{\rm f} m$$

m is the molality of the solution


 K_f is the molal freezing-point depression constant (${}^{0}C/m$)

12.2

Molal Boiling-Point Elevation and Freezing-Point Depression Constants of Several Common Liquids

Solvent	Normal Freezing Point (°C)*	Κ _f (°C/ <i>m</i>)	Normal Boiling Point (°C)*	<i>К</i> ь (°С/ <i>m</i>)
Water	0	1.86	100	0.52
Benzene	5.5	5.12	80.1	2.53
Ethanol	-117.3	1.99	78.4	1.22
Acetic acid	16.6	3.90	117.9	2.93
Cyclohexane	6.6	20.0	80.7	2.79

^{*} Measured at 1 atm.

Ex

What are the boiling point and freezing point of a solution prepared by dissolving 2.4 g of biphenyl ($C_{12}H_{10}$) in 75 g of benzene? If k_b and k_f for benzene are 2.53°C/m and 5.12 °C/m, respectively. The b.p and f.p of benzene are 80.1 and 5.5 °C, respectively.

Ans

$$n = 2.4 / 154 = 0.015 \text{ mol}$$

m = 0.015 mol / 0.075 Kg

$$= 0.208 \text{ m}$$

$$\Delta T_{h} = 2.53 \times 0.208$$

$$= 0.526^{\circ}C$$

b.p. of solution = b.p of pure solvent + ΔT_b

$$= 80.1 + 0.526 = 80.626$$
C°

$$\Delta T_f = 5.12 \times 0.208 = 1.06 \text{C}^{\circ}$$

f.p. of solution = f.p. of pure solvent - ΔT_f

$$= 5.5 - 1.06 = 4.4$$
C°

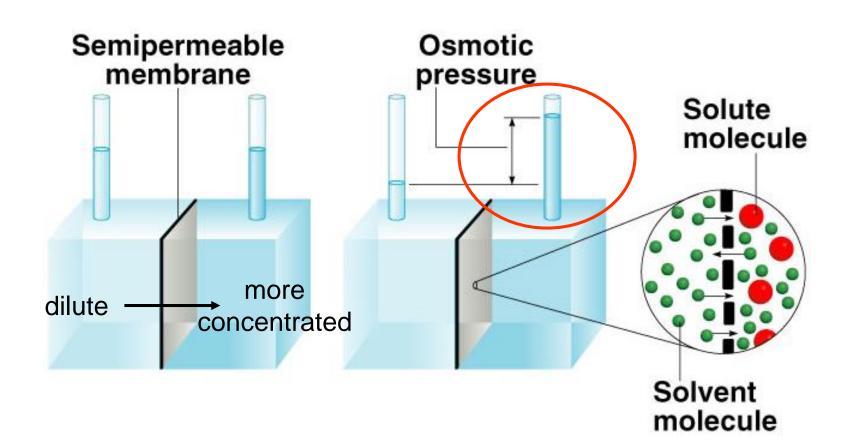
What is the freezing point of a solution containing 478 g of ethylene glycol (antifreeze) in 3202 g of water? The molar mass of ethylene glycol is 62.01 g.

$$\Delta T_f = K_f m$$
 $K_f \text{ water} = 1.86 \, {}^{\circ}\text{C}/m$

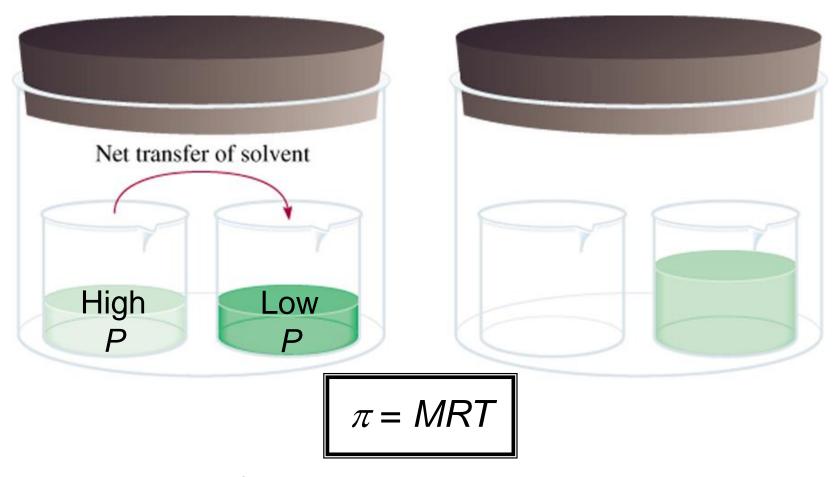
$$m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}} = \frac{478 \text{ g x } \frac{1 \text{ mol}}{62.01 \text{ g}}}{3.202 \text{ kg solvent}} = 2.41 \text{ m}$$

$$\Delta T_f = K_f m = 1.86 \, {}^{\circ}\text{C}/m \times 2.41 \, m = 4.48 \, {}^{\circ}\text{C}$$

$$\Delta T_f = T_f^0 - T_f$$


$$T_f = T_f^0 - \Delta T_f = 0.00 \, {}^{\circ}\text{C} - 4.48 \, {}^{\circ}\text{C} = -4.48 \, {}^{\circ}\text{C}$$

Osmotic Pressure (π)


Osmosis is the selective passage of solvent molecules through a porous membrane from a dilute solution to a more concentrated one.

A **semipermeable membrane** allows the passage of solvent molecules but blocks the passage of solute molecules.

Osmotic pressure (π) is the pressure required to stop osmosis.

Osmotic Pressure (π)

M is the molarity of the solution

R is the gas constant

T is the temperature (in K)

Colligative Properties of Nonelectrolyte Solutions

Colligative properties are properties that depend only on the **number** of solute particles in solution and not on the **nature** of the solute particles.

Vapor-Pressure Lowering

$$P_1 = X_1 P_1^0$$

 $\Delta P = X_2 P_1^0$

Boiling-Point Elevation

$$\Delta T = K_2 T_1$$

 $\Delta T_b = K_b m$

Freezing-Point Depression

$$\Delta T_{\rm f} = K_{\rm f} m$$

Osmotic Pressure (π)

$$\pi = MRT$$

Colligative Properties of Electrolyte Solutions

0.1 m NaCl solution \longrightarrow 0.1 m Na⁺ ions & 0.1 m Cl⁻ ions

Colligative properties are properties that depend only on the **number** of solute particles in solution and not on the **nature** of the solute particles.

0.1 m NaCl solution \longrightarrow 0.2 m ions in solution

	<u>i should be</u>	
nonelectrolytes	1	
NaCl	2	
CaCl ₂	3	,

Colligative Properties of Electrolyte Solutions

Boiling-Point Elevation

$$\Delta T_{\rm b} = i K_{\rm b} m$$

Freezing-Point Depression $\Delta T_f = i K_f m$

$$\Delta T_{\rm f} = i K_{\rm f} m$$

Osmotic Pressure (π)

$$\pi = iMRT$$

The van't Hoff Factor of 0.0500 M Electrolyte Solutions at 25°C

Electrolyte	i (Measured)	i (Calculated)	
Sucrose*	1.0	1.0	
HCl	1.9	2.0	
NaCl	1.9	2.0	
MgSO ₄	1.3	2.0	
MgCl ₂	2.7	3.0	
FeCl ₃	3.4	4.0	
.			12.7

Example: A solution containing 0.833 g of a polymer of unknown structure in 170 ml of an organic solvent was found to have an osmotic pressure of 5.2 mmHg at 25 °C. Determine the molar mass of the polymer

Solution:

$$\pi = MRT$$

$$\pi = 5.2 / 760 = 0.0075$$
 atm $M = \pi / R T = 0.0075 / 0.082 1x 298 = 2.8x 10-4 molar$

Multiplying the molarity by the volume of solution (in L) gives moles of solute (polymer)

```
? mol of polymer = (2.80 \times 10^{-4} \text{ mol/L})(0.170 \text{ L}) = 4.76 \times 10^{-5} \text{ mol polymer}

Molar mass = Mass (g) / number of moles of polymer

= 0.833 \text{ (g)} / 4.76 \times 10^{-5} \text{ mol polymer}

= 1.75 \times 10^4 \text{ g/mol}
```

Example: A 7.85 g sample of a compound with the empirical Formula C₅H₄ is dissolved in 301 g of benzene. The freezing Point of the solution is 1.05 °C below that of the pure benzene. What are the molar mass and molecular formula of this compound?

```
Solution: molality = \Delta T_f / K_f = 1.05 \text{ °C} / 5.12 \text{ °C/m}
= 0.205 m
```

Number of moles of solute = molality x Kg of solvent = $0.205 \text{ m} \times 0.301 \text{ Kg} = 0.0617 \text{ mol}.$

Molar mass = Mass (g)/ number of moles = 7.85 g / 0.0617 mol = 127 g/mol

Molecular formula = C_5H_4 x (molar mass/mass of empirical formula) = C_5H_4 x(127 g/mol/ 64 g/mol) = $C_{10}H_8$