(I) For each of the following decide whether $(i) \Rightarrow (ii)$ or $(ii) \Rightarrow (i)$ or $(ii) \Leftrightarrow (i)$

or none of the above:

- (1) (i) S has an infimum(ii) S has a minimum
- (2) (i) A is a countable set(ii) A is an open set
- (3) (i) A is a closed and bounded set(ii) A is a compact set
- (4) (i) (x_n) is a monotone sequence (ii) (x_n) is a convergent sequence
- (5) (i) (x_n) is a convergent sequence
 (ii) (x_n) has a convergent subsequence
- (6) (i) *f* is a continuous function on the set *A*(ii) *f* is a bounded function on the set *A*
- (7) (i) *f* is continuous on the set *A*(ii) *f* is uniformly continuous on the set *A*
- (8) (i) f is continuous at a(ii) f is differentiable at a

(II) Give the conditions that make each of the following statements hold: (1)|a+b| = |a|+|b|

- (2) The set *S* has a supremum.
- (3) $\lim \inf x_n = \lim \sup x_n$
- (4) The function f has an absolute maximum and an absolute minimum.
- (5) The function f has a fixed point in [0, 1]
- (6) The function f is constant on (a, b).
- (7) $\exists c \in (a,b)$ such that f'(c) = 0.
- (8) $\exists c \in (a,b)$ such that $f'(c) = \frac{f(b) f(a)}{b a}$.

(III) Give an example for each of the following (if any). If there is no example explain why:

(1) A rational number that is not an algebraic number.

- (2) A finite set with no supremum.
- (3) A set G with $G \cap G' = \varphi$.
- (4) A set G with $\overset{\circ}{G} = \varphi$ and $\overline{G} = R$.
- (5) A function f and two sets $B \subset S$ such that f is uniformly continuous on B but not uniformly continuous on S.
- (6) A function that is uniformly continuous on R.
- (7) A bounded continuous function f on a set A that has no absolute maximum.
- (8) A function that is differentiable at *a* but not continuous at *a*.

(IV) Answer the following questions:

(1) Prove that between any two real numbers there is a rational number (assume that $0 \le x \le y$)

(2)Prove that the intersection of an arbitrary collection of compact sets is compact.

(3) If (x_n) converges to x, where $x \neq 0$ and $\forall n \ x_n \neq 0$, prove that

$$\lim_{n \to \infty} \left(\frac{1}{x_n} \right) = \frac{1}{x}$$

(4) Let $f : A \to R$ be a uniformly continuous function on *A*. Prove that if (x_n) is a Cauchy sequence in *A* then $(f(x_n))$ is a Cauchy sequence in *R*.

(5) (a) State and prove the Intermediate Value Theorem.

(b) Use the Intermediate Value Theorem to prove that $f(x) = x^3 + 4x + 4$ has a root.

(6) Let
$$f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

What is $\lim_{x\to 0} f(x)$?

Is f continuous at x = 0? Why?

Is *f* differentiable at x = 0? Why?

(7) Show that $\sin x \le x \quad \forall x \ge 0$

(8) Let *f* be defined on an open interval containing x_0 . If *f* assumes its maximum at x_0 and is differentiable at x_0 , prove that $f'(x_0) = 0$.