(I) For each of the following decide whether $($ i $) \Rightarrow$ (ii) or $($ ii $) \Rightarrow$ (i) or $($ ii $) \Leftrightarrow$ (i)
or none of the above:
(1) (i) S has an infimum
(ii) S has a minimum
(2) (i) A is a countable set
(ii) A is an open set
(3) (i) A is a closed and bounded set
(ii) A is a compact set
(4) (i) $\left(x_{n}\right)$ is a monotone sequence
(ii) $\left(x_{n}\right)$ is a convergent sequence
(5) (i) $\left(x_{n}\right)$ is a convergent sequence
(ii) $\left(x_{n}\right)$ has a convergent subsequence
(6) (i) f is a continuous function on the set A
(ii) f is a bounded function on the set A
(7) (i) f is continuous on the set A
(ii) f is uniformly continuous on the set A
(8) (i) f is continuous at a
(ii) f is differentiable at a
(II) Give the conditions that make each of the following statements hold:
(1) $|a+b|=|a|+|b|$
(2) The set S has a supremum.
(3) $\lim \inf x_{n}=\lim \sup x_{n}$
(4) The function f has an absolute maximum and an absolute minimum.
(5) The function f has a fixed point in $[0,1]$
(6) The function f is constant on (a, b).
(7) $\exists c \in(a, b)$ such that $f^{\prime}(c)=0$.
(8) $\exists c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
(III) Give an example for each of the following (if any). If there is no example explain why:
(1) A rational number that is not an algebraic number.
(2) A finite set with no supremum.
(3) A set G with $G \cap G^{\prime}=\varphi$.
(4) A set G with $\stackrel{o}{G}=\varphi$ and $\bar{G}=R$.
(5) A function f and two sets $B \subset S$ such that f is uniformly continuous on B but not uniformly continuous on S.
(6) A function that is uniformly continuous on R.
(7) A bounded continuous function f on a set A that has no absolute maximum.
(8) A function that is differentiable at a but not continuous at a.
(IV) Answer the following questions:
(1) Prove that between any two real numbers there is a rational number (assume that $0<x<y$)
(2)Prove that the intersection of an arbitrary collection of compact sets is compact.
(3) If (x_{n}) converges to x, where $x \neq 0$ and $\forall n x_{n} \neq 0$, prove that
$\lim _{n \rightarrow \infty}\left(\frac{1}{x_{n}}\right)=\frac{1}{x}$
(4) Let $f: A \rightarrow R$ be a uniformly continuous function on A. Prove that if $\left(x_{n}\right)$ is a Cauchy sequence in A then $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence in R.
(5) (a) State and prove the Intermediate Value Theorem.
(b) Use the Intermediate Value Theorem to prove that $f(x)=x^{3}+4 x+4$ has a root.
(6) Let $f(x)=\left\{\begin{array}{cc}x \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right\}$

What is $\lim _{x \rightarrow 0} f(x)$?
Is f continuous at $x=0$? Why?
Is f differentiable at $x=0$? Why?
(7) Show that $\sin x \leq x \quad \forall x \geq 0$
(8) Let f be defined on an open interval containing x_{0}. If f assumes its maximum at x_{0} and is differentiable at x_{0}, prove that $f^{\prime}\left(x_{o}\right)=0$.

