Name:

Computer number:

(I) Answer the following questions:

(1) Let (x_n) be a sequence of nonnegative real numbers and suppose that $\lim_{n \to \infty} x_n = x > 0$. Prove that $\lim_{n \to \infty} \sqrt{x_n} = \sqrt{x}$. (2.5 marks)

(2) Prove that the sequence $\frac{(-1)^n}{4}$ is divergent. (2 marks)

(3) Prove that if (x_n) converges to x and (y_n) converges to y, then $(x_n y_n)$ converges to

x y. That is, $\lim_{n\to\infty} (x_n y_n) = \lim_{n\to\infty} x_n \lim_{n\to\infty} y_n = xy$. (3 marks)

(4) Prove that if (x_n) is an unbounded nonincreasing sequence, then $\lim_{n \to \infty} x_n = -\infty$.

(2.5 marks)

(5) Let $A \subseteq R$ and let $f : A \to R$, $x_o \in R$. Prove that (ii) \Rightarrow (i) where,

(i) $\lim_{x \to x_o} f(x) = L$

(ii) For every sequence (x_n) in A that converges to x_0 such that $x_n \neq x_o \forall n \in N$, the

sequence $f(x_n)$ converges to L. (i.e., $(x_n) \rightarrow x_o \Rightarrow (f(x_n)) \rightarrow L$). (3 marks)

(6) Let (t_n) be a bounded sequence and let (s_n) be a sequence such that $\lim_{n \to \infty} s_n = 0$. Prove that $\lim_{n \to \infty} (s_n t_n) = 0$. (2 marks)

(II) State whether each of the following is true or false and justify your answer:

(2.5 marks)

- (1) Monotone sequences are convergent.
- (2) Convergent sequences are Cauchy.
- (3) If $\lim_{n\to\infty} x_n = +\infty$ and $\lim_{n\to\infty} y_n = -\infty$, then $\lim_{n\to\infty} (x_n + y_n) = 0$.
- (4) If (x_n) has a convergent subsequence, then (x_n) must converge.

(5) Every unbounded monotone sequence is not Cauchy.

(III) Complete the following sentences: (2.5 marks)

(1) If $\lim_{x \to x_o} f(x) = L_1$ and $\lim_{x \to x_o} f(x) = L_2$, then
(2) Convergent sequences are
(3) A monotone sequence must have a
(4) If $\lim \inf x_n = \lim \sup x_n$, then
(5) Every bounded sequence has a