(I) Answer the following questions:
(1) Let $\left(x_{n}\right)$ be a sequence of nonnegative real numbers and suppose that $\lim _{n \rightarrow \infty} x_{n}=x>0$. Prove that $\lim _{n \rightarrow \infty} \sqrt{x_{n}}=\sqrt{x}$. (2.5 marks)
(2) Prove that the sequence $\frac{(-1)^{n}}{4}$ is divergent. (2 marks)
(3) Prove that if $\left(x_{n}\right)$ converges to x and $\left(y_{n}\right)$ converges to y, then $\left(x_{n} y_{n}\right)$ converges to $x y$. That is, $\lim _{n \rightarrow \infty}\left(x_{n} y_{n}\right)=\lim _{n \rightarrow \infty} x_{n} \lim _{n \rightarrow \infty} y_{n}=x y .(3$ marks $)$
(4) Prove that if $\left(x_{n}\right)$ is an unbounded nonincreasing sequence, then $\lim _{n \rightarrow \infty} x_{n}=-\infty$.
(2.5 marks)
(5) Let $A \subseteq R$ and let $f: A \rightarrow R, x_{o} \in R$. Prove that (ii) \Rightarrow (i) where,
(i) $\lim _{x \rightarrow x_{0}} f(x)=L$
(ii) For every sequence $\left(x_{n}\right)$ in A that converges to x_{0} such that $x_{n} \neq x_{o} \forall n \in N$, the sequence $f\left(x_{n}\right)$ converges to L. (i.e., $\left(x_{n}\right) \rightarrow x_{o} \Rightarrow\left(f\left(x_{n}\right)\right) \rightarrow L$). (3 marks)
(6) Let $\left(t_{n}\right)$ be a bounded sequence and let $\left(s_{n}\right)$ be a sequence such that $\lim _{n \rightarrow \infty} s_{n}=0$. Prove that $\lim _{n \rightarrow \infty}\left(s_{n} t_{n}\right)=0 .(2$ marks $)$
(II) State whether each of the following is true or false and justify your answer:
(2.5 marks)
(1) Monotone sequences are convergent.
(2) Convergent sequences are Cauchy.
(3) If $\lim _{n \rightarrow \infty} x_{n}=+\infty$ and $\lim _{n \rightarrow \infty} y_{n}=-\infty$, then $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=0$.
(4) If $\left(x_{n}\right)$ has a convergent subsequence, then $\left(x_{n}\right)$ must converge.
(5) Every unbounded monotone sequence is not Cauchy.
(III) Complete the following sentences: (2.5 marks)
(1) If $\lim _{x \rightarrow x_{0}} f(x)=L_{1}$ and $\lim _{x \rightarrow x_{0}} f=L_{2}$, then
(2) Convergent sequences are
(3) A monotone sequence must have a
(4) If $\lim \inf x_{n}=\lim \sup x_{n}$, then-
(5) Every bounded sequence has a

