(1) Prove that every nonempty subset of R that has a lower bound also has an infimum. (3 marks)
(2) Let $a, b \in R$. Prove that $||a|-|b|| \leq|a-b|$. (2 marks)
(3) Prove that a subset of \mathbf{R} is closed if and only if its complement is open. (3 marks)
(4) Let S and T be nonempty bounded subsets of R with the following property: $s \leq t$ for all $s \in S$ and $t \in T$. Prove that $\sup S \leq \inf T$. (2 marks)
(5) Prove that if F is a closed subset of a compact set K, the F is compact. (1 mark).
(6) For each of the following sets find min, max, inf and sup if they exist. Then decide whether the set is countable or not and whether it is open or closed or neither: (3 marks)

	\min	\max	inf	sup	countable	open	closed	neither
1. $\{n \in Z: n<0\}$								
2. $\bigcap_{n=1}^{\infty}\left(1-\frac{1}{n}, 1+\frac{1}{n}\right)$								

(7) State whether each of the f0llowing is true or false and justify your answer: (3 marks)
(a) $\{r \in Q: 0 \leq r \leq 2\}=[0,2]$
(b)If the set S has a supremum then it must have a maximum
(c) Every infinite set is uncountable
(d) If the set A is not closed then it must be open
(e) A set is open if it contains all of its interior points
(f) $\mathrm{A} \operatorname{set} A$ is compact if every open cover has a subcover
(8)Explain why: (3 marks)
(a) Every rational number is an algebraic number
(b) Z is not an open set
(c) The set $\left\{\frac{1}{n}: n \in N\right\}$ is not compact
(d) The set $\left\{n^{(-1)^{n}}: n \in N\right\}$ is unbounded
(e) Every finite set is closed
(f) Q is neither open nor closed

