Homework 13

13.1 Use the definition of the derivative to calculate the derivative of the following functions at the indicated point.
(a) $f(x)=x^{3}$ at $x=2$
(b) $g(x)=x+2$ at $x=2$
(c) $f(x)=x^{2} \cos x$ at $x=0$
13.2 Prove that $|\cos x-\cos y| \leq|x-y|$ fo all $x, y \in R$.
13.3 Suppose that f is differentiable on R and that $f(0)=0$ and $f(2)=1$. Show that $f^{\prime}(x)=\frac{1}{2}$ for some $x \in(0,2)$.
13.4 Lat f and g be two differentiable functions on an open interval I.

Suppose $a, b \in I, a<b$ and that $f(a)=f(b)=0$. Show that $f^{\prime}(x)+f(x) g^{\prime}(x)=0$ for some $x \in(a, b)$.
(Hint: Consider $\left.h(x)=f(x) e^{g(x)}\right)$.
13.5 (a) Show that $x<\tan x$ for all $x \in\left(0, \frac{\pi}{2}\right)$.
(b) Show that $\frac{x}{\sin x}$ is strictly increasing function on ($0, \frac{\pi}{2}$).
(c) Show that $x \leq \frac{\pi}{2} \sin x$ for $x \in\left[0, \frac{\pi}{2}\right]$
13.6 Use theorem 5.17 to obtain the derivative of the inverse $g=\tan ^{-1}$ of f where $f(x)=\tan x$ for $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

