Homework 13

- 13.1 Use the definition of the derivative to calculate the derivative of the following functions at the indicated point.
 (a) f(x) = x³ at x = 2
 (b) g(x) = x + 2 at x = 2
 (c) f(x) = x² cos x at x = 0
- 13.2 Prove that $|\cos x \cos y| \le |x y|$ fo all $x, y \in R$.

13.3 Suppose that *f* is differentiable on *R* and that f(0) = 0 and f(2) = 1. Show that $f'(x) = \frac{1}{2}$ for some $x \in (0, 2)$.

13.4 Lat *f* and *g* be two differentiable functions on an open interval *I*. Suppose $a, b \in I$, a < b and that f(a) = f(b) = 0. Show that f'(x) + f(x)g'(x) = 0 for some $x \in (a,b)$.

(Hint: Consider
$$h(x) = f(x)e^{g(x)}$$
)

13.5 (a) Show that
$$x < \tan x$$
 for all $x \in (0, \frac{\pi}{2})$.
(b) Show that $\frac{x}{\sin x}$ is strictly increasing function on $(0, \frac{\pi}{2})$.
(c) Show that $x \le \frac{\pi}{2} \sin x$ for $x \in [0, \frac{\pi}{2}]$

13.6 Use theorem 5.17 to obtain the derivative of the inverse $g = tan^{-1}$ of *f* where f(x) = tan x for $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$.