Homework 9

9.1 Show that $\lim _{x \rightarrow c} \sqrt{x}=\sqrt{c}$ for $c>0$.
9.2 Use the $\varepsilon-\delta$ definition of limit and the sequential criterion for limits to establish that $\lim _{x \rightarrow c} x^{3}=c^{3}$.
9.3 For each of the following limits determine if the limit exist or not. Explain your answer:
$\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ for $x>0$
$\lim _{x \rightarrow 0} \cos \left(\frac{1}{\sqrt{x}}\right)$
$\lim _{x \rightarrow 0} x \cos \left(\frac{1}{\sqrt{x}}\right)$
9.4 Let $c \in R$ and let $f: R \rightarrow R$ be such that $\lim _{x \rightarrow c}(f(x))^{2}=L$.
(a) Show that if $L=0$, then $\lim _{x \rightarrow c} f(x)=L$.
(b) Show by example that if $L \neq 0$, then f may not have a limit at c.

Homework 10

10.1 Let $A \subseteq B \subseteq R$, let $f: B \rightarrow R$ and let g be the restriction of f to A (that is, $g(x)=f(x)$ for $x \in S)$.
(a) If f is continuous at $c \in A$, show that g is continuous at c.
(b) Show by example that if g is continuous at c, it need not follow that f is continuous at c.
10.2 Let $K>0$ and let $f: R \rightarrow R$ satiafy the condition $|f(x)-f(y)| \leq K|x-y|$ For all $x, y \in R$. Show that f is continuous at every point in R.
10.3 Give examples of functions f and g that are both discontinuous at a point $c \in R$ such that
(a) the sum $f+g$ is continuous at c, (b) the product $f g$ is continuous at c.
10.4 Give an example of a function $f:[0,1] \rightarrow R$ that is discontinuous at every point of $[0,1]$ but such that $|f|$ is continuous on $[0,1]$.
10.5 If f and g are continuous on R, let $S=\{x \in R: f(x) \geq g(x)\}$. If $\left(s_{n}\right) \subseteq S$ and $\lim _{n \rightarrow \infty} s_{n}=s$, show that $s \in S$.
10.6 Let f and g be real-valued functions.
(a) Show that $\min (f, g)=\frac{1}{2}(f+g)-\frac{1}{2}|f-g|$.
(b) Prove that if f and g are continuous at x_{o} in R, then $\min (f, g)$ is continuous at x_{0}.
10.7 Use the ε - δ definition to prove that the following functions are continuous at X_{0}
(a) $f(x)=\left\{\begin{array}{cc}x \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array} \quad x_{o}=0\right.$
10.8 Prove that the following functions are discontinuous at the indicated points. You may use the $\varepsilon-\delta$ definition or the discontinuity criterion.
(a) $f(x)=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x \leq 0\end{array} \quad x_{o}=0\right.$
(b) $g(x)=\left\{\begin{array}{cc}\sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array} \quad x_{o}=0\right.$
(c) $\operatorname{sgn}(x)=\left\{\begin{array}{cc}-1 & x<0 \\ 1 & x>0 \\ 0 & x=0\end{array} \quad x_{o}=0\right.$

Homework 11

11.1 If $f:[0,1] \rightarrow R$ is continuous and has only rational values, must f be constant? Prove your assertion.
11.2 Let f and g be continuous functions on $[a, b]$ such that let $f(a) \geq g(a)$ and $f(b) \leq g(b)$. Prove that $f\left(x_{o}\right)=g\left(x_{o}\right)$ for at least one x_{o} in $[a, b]$.
11.3 Prove that there is at least one $x \in R$ such that $e^{x}=\cos x+1$.
11.4 Suppose that f is a real-valued continuous function on R and that $f(a) f(b)<0$ for some $a, b \in R$. Prove that there exists x between a and b such that $f(x)=0$

Homework 12

12.1 Show that the function $f(x)=\frac{1}{x^{2}}$ is uniformly continuous on $A=[1, \infty]$, but that it is not uniformly continuous on $B=(0, \infty)$.
12.2 Show that if f and g are uniformly continuous on a subset A of R and if they are both bounded on A, then $f g$ is uniformly continuous on A.
12.3 If f is uniformly continuous on a subset A of R, and $|f(x)| \geq k>0$ for all $x \in A$, show that $\frac{1}{f}$ is uniformly continuous on A.
12.4 Prove that if f is uniformly continuous on a bounded subset A of R, then f is bounded on A.
12.5 Which of the following continuous functions are uniformly continuous on the indicated set? Justify your answer.
(a) $f(x)=x^{3} \quad$ on $[0,1]$
(b) $f(x)=x^{3} \quad$ on $(0,1)$
12.6 Use the $\varepsilon-\delta$ definition to prove that the following functions are uniformly continuous on the indicated set.
(a) $f(x)=3 x+11$ on R
(b) $f(x)=x^{2}$ on $[0,3]$

