Homework 9

- 9.1 Show that $\lim_{x\to c} \sqrt{x} = \sqrt{c}$ for c > 0.
- 9.2 Use the ε - δ definition of limit and the sequential criterion for limits to establish that $\lim_{x\to c} x^3 = c^3$.
- 9.3 For each of the following limits determine if the limit exist or not. Explain your answer:

$$\lim_{x \to 0} \frac{1}{x^2} \quad \text{for } x > 0$$

$$\lim_{x \to 0} \cos\left(\frac{1}{\sqrt{x}}\right)$$

$$\lim_{x \to 0} x \cos\left(\frac{1}{\sqrt{x}}\right)$$

- 9.4 Let $c \in R$ and let $f: R \to R$ be such that $\lim_{x \to c} (f(x))^2 = L$.
 - (a) Show that if L = 0, then $\lim_{x \to 0} f(x) = L$.
 - (b) Show by example that if $L \neq 0$, then f may not have a limit at c.

Homework 10

- 10.1 Let $A \subseteq B \subseteq R$, let $f : B \to R$ and let g be the restriction of f to A (that is, g(x) = f(x) for $x \in S$).
 - (a) If f is continuous at $c \in A$, show that g is continuous at c.
 - (b) Show by example that if g is continuous at c, it need not follow that f is continuous at c.
- 10.2 Let K > 0 and let $f : R \to R$ satiafy the condition $|f(x) f(y)| \le K|x y|$ For all $x, y \in R$. Show that *f* is continuous at every point in *R*.
- 10.3 Give examples of functions f and g that are both discontinuous at a point c ∈ R such that
 (a) the sum f + g is continuous at c, (b) the product f g is continuous at c.

- 10.4 Give an example of a function $f:[0,1] \rightarrow R$ that is discontinuous at every point of [0,1] but such that |f| is continuous on [0,1].
- 10.5 If f and g are continuous on R, let $S = \{x \in R : f(x) \ge g(x)\}$. If $(s_n) \subseteq S$ and $\lim_{n \to \infty} s_n = s$, show that $s \in S$.
- 10.6 Let f and g be real-valued functions. (a) Show that $\min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|$.
 - (b) Prove that if f and g are continuous at x_o in R, then min (f, g) is continuous at x_o .
- 10.7 Use the ε - δ definition to prove that the following functions are continuous at x_o

(a)
$$f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 $x_o = 0$

10.8 Prove that the following functions are discontinuous at the indicated points. You may use the ε - δ definition or the discontinuity criterion.

(a)
$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x \le 0 \end{cases}$$

(b) $g(x) = \begin{cases} \sin \frac{1}{x} & x \ne 0 \\ 0 & x = 0 \end{cases}$
(c) $\operatorname{sgn}(x) = \begin{cases} -1 & x < 0 \\ 1 & x > 0 \\ 0 & x = 0 \end{cases}$
 $x_o = 0$

Homework 11

- 11.1 If $f:[0,1] \rightarrow R$ is continuous and has only rational values, must *f* be constant? Prove your assertion.
- 11.2 Let f and g be continuous functions on [a,b] such that let $f(a) \ge g(a)$ and $f(b) \le g(b)$. Prove that $f(x_o) = g(x_o)$ for at least one x_o in [a,b].

- 11.3 Prove that there is at least one $x \in R$ such that $e^x = \cos x + 1$.
- 11.4 Suppose that *f* is a real-valued continuous function on *R* and that f(a)f(b) < 0 for some $a, b \in R$. Prove that there exists *x* between *a* and *b* such that f(x) = 0

Homework 12

- 12.1 Show that the function $f(x) = \frac{1}{x^2}$ is uniformly continuous on $A = [1, \infty]$, but that it is not uniformly continuous on $B = (0, \infty)$.
- 12.2 Show that if f and g are uniformly continuous on a subset A of R and if they are both bounded on A, then fg is uniformly continuous on A.
- 12.3 If *f* is uniformly continuous on a subset *A* of *R*, and $|f(x)| \ge k > 0$ for all $x \in A$, show that $\frac{1}{f}$ is uniformly continuous on *A*.
- 12.4 Prove that if f is uniformly continuous on a bounded subset A of R, then f is bounded on A.
- 12.5 Which of the following continuous functions are uniformly continuous on the indicated set? Justify your answer.

(a) $f(x) = x^3$ on [0,1] (b) $f(x) = x^3$ on (0,1)

- 12.6 Use the ε-δ definition to prove that the following functions are uniformly continuous on the indicated set.
 (a) f(x) = 3x + 11 on R
 (b) f(x) = x² or [0, 2]
 - (b) $f(x) = x^2$ on [0,3]