Homework 6

6.1 Prove the following:

(a)
$$\lim_{n \to \infty} \left[\frac{2n}{3n^3 + 1} \right] = 0$$
 (b) $\lim_{n \to \infty} \left[\frac{(-1)^{n+1}}{n^2} \right] = 0$

6.2 Determine the limits of the following sequences and then prove your claim: (a) $a_n = \frac{1}{n} \sin n$ (b) $a_n = \frac{(-1)^n}{2}$

- 6.3 Let (s_n) be a sequence of nonnegative real numbers and suppose that $\lim_{n \to \infty} s_n = 0$. Prove that $\lim_{n \to \infty} \sqrt{s_n} = 0$. This will complete the proof of example 3.7
- 6.4 (a)Consider three sequences (a_n), (b_n) and (s_n) such that a_n ≤ s_n ≤ b_n for all n and lim a_{n→∞} a_n = lim b_n = s. Prove that lim s_{n→∞} s_n = s.
 (b) Suppose that (s_n) and (t_n) are sequences such that |s_n| ≤ t_n for all n and lim t_{n→∞} t_n = 0. Prove that lim s_{n→∞} s_n = 0.
- 6.5 Let (t_n) be a bounded sequence and let (s_n) be a convergent sequence such that $\lim_{n \to \infty} s_n = 0$. Prove that $\lim_{n \to \infty} (t_n s_n) = 0$
- 6.6 Let (s_n) be a convergent sequence and suppose that $\lim_{n\to\infty} s_n > a$. Prove that there exists a number N such that n > N implies $s_n > a$.
- 6.7 (a) Let (s_n) be a convergent sequence of nonnegative real numbers. Prove that lim_{n→∞} s_n ≥ 0.
 (b) Use (a) to prove that if s_n ≤ t_n for all n, then lim_{n→∞} s_n ≤ lim_{n→∞} t_n
- 6.8 Show that if (s_n) and (t_n) are sequences such that (s_n) and (s_n+t_n) are convergent, then (t_n) is convergent.
- 6.9 Show that if (s_n) and (t_n) are sequences such that (s_n) converges to $s \neq 0$ and (s_n, t_n) converges, then (t_n) converges.

6.10 Show that the condition $s_n < t_n$ does not imply that $\lim_{n \to \infty} s_n < \lim_{n \to \infty} t_n$.

Homework 7

- 7.1 Let s₁ = 1 and for n≥1 let s_{n+1} = √s_n +1.
 (a) List the first four terms of (s_n).
 (b) It turns about that (s_n) converges. Assume this fact and prove that the limit is 1+√5/2.
- 7.2 Suppose that there exists N_0 such that $s_n \le t_n$ for all $n > N_0$ (a)Prove that if $\lim_{n \to \infty} s_n = +\infty$ then $\lim_{n \to \infty} t_n = +\infty$. (b) Prove that if $\lim_{n \to \infty} t_n = -\infty$ then $\lim_{n \to \infty} s_n = -\infty$. (c)Prove that if $\lim_{n \to \infty} s_n$ and $\lim_{n \to \infty} t_n$ exist, then $\lim_{n \to \infty} s_n \le \lim_{n \to \infty} t_n$.
- 7.3 (a) Show that if $\lim_{n \to \infty} s_n = +\infty$ and $\inf\{t_n : n \in N\} > -\infty$, then $\lim_{n \to \infty} (s_n + t_n) = +\infty$. (b) Show that if $\lim_{n \to \infty} s_n = +\infty$ and $\lim_{n \to \infty} t_n > -\infty$, then $\lim_{n \to \infty} (s_n + t_n) = +\infty$.

(c) Show that if $\lim_{n\to\infty} s_n = +\infty$ and if (t_n) is a bounded sequence, then $\lim_{n\to\infty} (s_n + t_n) = +\infty$

- 7.4 Show that if $\lim_{n \to \infty} s_n = +\infty$, then $\lim_{n \to \infty} (s_n)^2 = +\infty$.
- 7.5 Prove theorem 3.26(ii).

Homework 8

- 8.1 Prove theorem 3.25 for bounded nonincreasing sequences.
- 8.2 Let S be a bounded nonempty subset of R and suppose $\sup S \notin S$. Prove that there is a nondecreasing sequence (s_n) of points in S such that $\lim_{n \to \infty} s_n = \sup S$.

8.3 Let $s_1 = 1$ and $s_{n+1} = \frac{n}{n+1} s_n^2$ for $n \ge 1$.

- (a) find s_2 , s_3 and s_4 .
- (b) Use mathematical induction to show that $0 < s_{n+1} < s_n \le 1$ for all *n*
- (c) Show that $\lim_{n\to\infty} s_n$ exists and prove that $\lim_{n\to\infty} s_n = 0$.

8.4 Show directly from the definition that the sequence $\left(\frac{n+1}{n}\right)$ is a Cauchy sequence.

- 8.5 Show directly from the definition that if (x_n) and (y_n) are Cauchy sequences, then $(|x_n y_n|)$ and $(x_n | y_n)$ are Cauchy sequences.
- 8.6 Find an example of a sequence of real numbers satisfying each set of properties if any (if not explain why): (a)
 - (a) Cauchy but not monotone
 - (b) Monotone but not Cauchy
 - (c) Bounded but not Cauchy
 - (d) Cauchy with a divergent subsequence
 - (e) Unbounded with a Cauchy subsequence

8.7 Show that the sequence
$$\left(1 - (-1)^n + \frac{1}{n}\right)$$
 is divergent.