Homework 4

4.1 Write out the Induction argument in the proof of theorem 2.5
4.2 Give an example of a collection of closed sets whose union is neither open nor closed.
4.3 Determine whether the set $\mathrm{A}=\left\{1-\frac{1}{n}: n \in N\right\}$ is closed or open or neither
4.4 A point $x \in R$ is said to be a boundary point of A in case every neighborhood V of x contains points in A and points in its complement A^{c}. Show that the sets A and A^{c} have exactly the same boundary points.
4.5 Show that a set G is open if and only if it does not contain any of its boundary points.
4.6 Give an example of a set A such that $\stackrel{o}{A}=\varphi$ and $\bar{A}=R$.
4.7 Show that if G is an open nonempty set that is bounded above, then sup G does not belong to G.
4.8 Find an example of a set A for each of the following:
(i) $A \cap A^{\prime}=\varphi$
(ii) $A \subset A^{\prime}$
(iii) $A^{\prime} \subset A$
(iv) $A=A^{\prime}$

Homework 5

5.1 Exhibit an open cover of the interval $(1,2]$ that has no finite subcover.
5.2 Find an infinite collection $\left\{K_{n}: n \in N\right\}$ of compact sets in R such that the union $\bigcup_{n=1}^{\infty} K_{n}$ is not compact.
5.3 Prove that the intersection of an arbitrary collection of compact sets is compact

