Homework 1

1.1 Show that, $\sqrt{5}$ is not a rational number.
1.2 Show that $(5-\sqrt{3})^{1 / 3}$ does not represent a rational number.

Homework 2

2.2 (a) Prove that $|a+b+c| \leq|a|+|b|+|c|$ for all $a, b, c \in R$. Hint: Apply the triangular inequality twice.
(b) Use mathematical induction to prove

$$
\left|a_{1}+a_{2}+\ldots \ldots . a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots \ldots \ldots+\left|a_{n}\right|
$$

for n numbers $a_{1}, a_{2}, \ldots \ldots . . a_{n}$.
2.2 Let $a, b \in R$. Show that if $a \leq b_{1}$ for every $b_{1}>b$, then $a \leq b$.
2.3 If $a, b \in R$, show that $|a+b|=|a|+|b|$ if and only if $a b \geq 0$.
2.4 Let $\varepsilon>0$ and $\delta>0$, and $a \in R$. Show that $V_{\varepsilon}(a) \cap V_{\delta}(a)$ and $V_{\varepsilon}(a) \cup V_{\delta}(a)$ are γ-neighborhoods of a for appropriate values of γ.
2.5 Show that if $a, b \in R$, then
$\max \{a, b\}=\frac{1}{2}(a+b+|a-b|)$ and $\min \{a, b\}=\frac{1}{2}(a+b-|a-b|)$

Homework 3

3.1 For each set below that is bounded above, list three upper bounds for the set.

Otherwise write 'NOT BOUNDED ABOVE' or 'NBA'
(e) $\left\{\frac{1}{n}: n \in N\right\}$
(f) $\{0\}$
(g) $[0,1] \cup[2,3]$
(h) $\bigcup_{n=1}^{\infty}[2 n, 2 n+1]$
(j) $\left\{1-\frac{1}{3^{n}}: n \in N\right\}$
(n) $\left\{r \in Q: r^{2}<2\right\}$
(t) $\left\{x \in R: x^{3}<8\right\}$
3.2 Let S be a nonempty subset of R that is bounded above. Prove that if sup S belongs to S, then sup $S=\max S$. Hint: Your proof should be very short.
3.3 Let S and T be nonempty bounded subsets of R.
(a) Prove that if $S \subseteq T$, then $\inf T \leq \inf S \leq \sup S \leq \sup T$.
(b) Prove that $\sup (S \cup T)=\max \{\sup S, \sup T\}$.

Note: In part (b) do not assume $S \subseteq T$
3.4 Let S and T be nonempty bounded subsets of R with the following property: $s \leq t$ for all $s \in S$ and $t \in T$.
(a) Observe that S is bounded above and that T is bounded below.
(b) Prove that $\sup S \leq \inf T$.
(c) Give an example of such sets S and T where $S \cap T$ is nonempty.
(d) Give an example of sets S and T where $\sup S=\inf T$ and $S \cap T=\varphi$.
3.5 Let A and B be nonempty bounded subsets of R and let S be the set of all sums $a+b$ where $a \in A$ and $b \in B$. Prove that $\inf S=\inf A+\inf B$.
3.6 Let $S_{4}=\left\{1-\frac{(-1)^{n}}{n}: n \in N\right\}$. Find $\inf S_{4}$ and $\sup S_{4}$.
3.7 If a set $S \subseteq R$ contains one of its upper bounds, show that this upper bound is the supremum of S.

