Homework 1

1.1 Show that, $\sqrt{5}$ is not a rational number.

1.2 Show that $(5 - \sqrt{3})^{\frac{1}{3}}$ does not represent a rational number.

Homework 2

2.2 (a) Prove that $|a+b+c| \le |a|+|b|+|c|$ for all $a,b,c \in R$. Hint: Apply the triangular inequality twice.

(b) Use mathematical induction to prove

 $|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n|$

for *n* numbers a_1, a_2, \ldots, a_n .

2.2 Let $a, b \in R$. Show that if $a \le b_1$ for every $b_1 > b$, then $a \le b$.

2.3 If $a, b \in R$, show that |a + b| = |a| + |b| if and only if $ab \ge 0$.

2.4 Let $\varepsilon > 0$ and $\delta > 0$, and $a \in R$. Show that $V_{\varepsilon}(a) \cap V_{\delta}(a)$ and $V_{\varepsilon}(a) \bigcup V_{\delta}(a)$ are γ -neighborhoods of *a* for appropriate values of γ .

2.5 Show that if $a, b \in R$, then

$$\max\{a,b\} = \frac{1}{2}(a+b+|a-b|) \text{ and } \min\{a,b\} = \frac{1}{2}(a+b-|a-b|)$$

Homework 3

3.1 For each set below that is bounded above, list three upper bounds for the set. Otherwise write 'NOT BOUNDED ABOVE' or 'NBA'

(e)
$$\left\{ \frac{1}{n} : n \in N \right\}$$

(f) $\{0\}$
(g) $[0,1] \cup [2,3]$
(h) $\bigcup_{n=1}^{\infty} [2n,2n+1]$

(j) $\left\{ 1 - \frac{1}{3^n} : n \in N \right\}$ (n) $\left\{ r \in Q : r^2 < 2 \right\}$ (t) $\left\{ x \in R : x^3 < 8 \right\}$

3.2 Let *S* be a nonempty subset of *R* that is bounded above. Prove that if *sup S* belongs to *S*, then *sup S* = max S. Hint: Your proof should be very short.

3.3 Let *S* and *T* be nonempty bounded subsets of R.

(a) Prove that if $S \subseteq T$, then $\inf T \leq \inf S \leq \sup S \leq \sup T$.

(b) Prove that $\sup(S \cup T) = \max\{\sup S, \sup T\}$.

Note: In part (b) do not assume $S \subseteq T$

3.4 Let *S* and *T* be nonempty bounded subsets of R with the following property: $s \le t$ for all $s \in S$ and $t \in T$.

(a) Observe that *S* is bounded above and that *T* is bounded below.

(b) Prove that sup $S \leq \inf T$.

(c) Give an example of such sets *S* and *T* where $S \cap T$ is nonempty.

(d) Give an example of sets S and T where sup $S = \inf T$ and $S \cap T = \varphi$.

3.5 Let *A* and *B* be nonempty bounded subsets of *R* and let *S* be the set of all sums a + b where $a \in A$ and $b \in B$. Prove that inf S = inf A + inf B.

3.6 Let
$$S_4 = \{1 - \frac{(-1)^n}{n} : n \in N\}$$
. Find *inf* S_4 and *sup* S_4 .

3.7 If a set $S \subseteq R$ contains one of its upper bounds, show that this upper bound is the supremum of *S*.