Course information: Math 202/ Calculus II.
Second semester 1437/1438 (2016/2017)

## The total of $\mathbf{1 0 0}$ marks are distributed as follows:

Exam 1= 20\% (Includes 3.11, 4.4, 4.9, 5.1 and 5.2)
Exam 2=20\% (5.3, 5.4, 5.5, 7.1, 7.2)
Exam $3=20 \% \quad(7.3,7.4,7.5$ and 7.8$)$
Assignments= 10\%
Final Exam= 30\% (The whole course contents are included)

## Important dates:

| Exam 1 | Sunday 20/06/1438, 19/03/2017, 2-3:30pm |
| :--- | :--- |
| Exam 2 | Tuesday 21/07/1438, 18/04/2017, 2-3:30pm |
| Exam 3 | Sunday 18/08/1438, 14/05/2017, 2-3:30pm |
| Final Exam | TBA |

No makeup tests will be given. If a student misses a test with instructor's approval, the score on the final exam will be used to replace the missing test score. In the event that a student misses a test without instructor's approval, a zero will be assigned for that test score. Approval must be obtained in advance if at all possible, otherwise, the absence reason must be provided within, at most, one week following the exam.

Expectations from students: I aim to treat all students with respect and fairness. Since I expect the same consideration, please observe the following courtesies:

## Attendance at each scheduled class meeting is expected. A DN will be given if the student misses $25 \%$ of the classes

Arrive for class on time. Late class arrivals are disruptive and inconsiderate; moreover, they may be regarded as absences.

Silence cell phones. Use of cell phones in the classroom will not be permitted; you should not bring one into the classroom unless the ringer is turned OFF. Students in violation of this policy may be asked to leave class.

King Abdulaziz University.
Second Semester 1437/1438 (2016/2017)

Department of Mathematics.
Math 202 Syllabus.

Textbook : Calculus Early Transcendental, seventh Edition, Author: James Stewart.


| Chapter | Section | Definitions \& Theorems | Examples | HW على الطلبات |
| :---: | :---: | :---: | :---: | :---: |
| Chapter 3 | 3.11 Hyperbolic Function | Definition of the Hyperbolic functions, hyperbolic identities, derivatives, inverse hyperbolic functions, their derivatives. Tables 1-6. Figures 1-3,8-10 | 1-5 | 1-21 (odd),31-45(odd),38,42 |
|  | 4.4 <br> Indeterminate forms and L'Hospital's Rule | All Forms | 1-9 | 7-65 (odd),8,54 |
| Chapter 4 | 4.9 Antiderivatives | Definition, theorem 1, table 2 | 1-4,6-7 | 1-47 (odd), 59, 61 |


| Chapter 5 | 5.1 Areas and Distances | The area problem: Figures 1-6,8-13. Definition 2 | 1 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 5.2 <br> The Definite Integral | Definition 2. Note 1-3,5. Figures 1-4. Theorem 3,4. Equations 8-11. Properties 1-8. | 1,4,6-8 | $\begin{gathered} 17-20,35,39,41,42,47-50,53 \\ 59-63 \text { (odd) } \end{gathered}$ |
|  | $5.3$ <br> The Fundamental Theorem of Calculus | Equation 1,5.FTC1,FTC2 <br> (No proofs) | 2,4-9 | 7-43 (odd),55-59 (odd) |
|  | 5.4 <br> Indefinite Integrals and the Net Change Theorem | Indefinite integral, table 1.Applications, equations 2,3 | 1-6 | 5-17 (odd),21-45 (odd) |
|  | 5.5 <br> The substitution Rule | Equations 1-7. The substitution rule. The substitution rule for definite integral. Symmetry | 1-11 | 7-47 (odd),53-73(odd),24,40,44,48 |
| Chapter 7 <br> Techniques of integration | 7.1 <br> Integration by Parts | Equations 1,2,6 | 1-5 | 3-41 (odd),14 |
|  | 7.2 <br> Trigonometric Integrals | All strategy | 1-9 | 1-49 (odd),44 |


|  | 7.3 <br> Trigonometric Substitution | All | 1-7 | 5-29 (odd),24 |
| :---: | :---: | :---: | :---: | :---: |
|  | 7.4 Integration of Rational function by Partial Fractions | All | 1-6,8,9 | 7-33 (odd), 39-51 |
|  | 7.5 Strategy for Integration | All with "Can we integrate all continuous functions?" | 1-5 | 1-81 (odd) |
|  | 7.8 Improper Integrals | Type 1 and 2. Comparison Theorem. | 1-10 | 5-39 (odd),41,49-55 |
| Chapter 6 Applications of integrals | 6.1 <br> Areas Between Curves | Rules 2,3 | 1-2,5-6 | 1-17 (odd),21-29(odd) |
|  | $\begin{gathered} 6.2 \\ \text { Volumes } \end{gathered}$ | Definition of volume. Disk and washer | 2-6 | 1-17 |
| Chapter 8 Further Applications of Integrations | $\begin{array}{c\|} \hline 8.1 \\ \text { Arc Length } \\ \hline \end{array}$ | Formulas 2-6 | 1,2,4 | 7-15,17,19-20,33,35 |
|  | 8.2 <br> Area of a Surface of Revolution | Formulas 4-8 | 1-3 | 5-16 |

