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Abstract E-learning platforms facilitate the interaction
between students and instructors while mitigating temporal
or spatial constraints. Nevertheless, such platforms require
measuring the degree of students’ engagementwith the deliv-
ered course content and teaching style. Such information is
highly valuable for evaluating the quality of the teaching and
altering the teaching delivery style in massively crowded
online learning platforms. When the number of learners is
high, it is essential to attain overall engagement and feed-
back, yet doing so is highly challenging due to the high levels
of uncertainties related to students and the learning context.
To handle these uncertainties more robustly, we present a
method based on type-2 fuzzy logic utilizing visual RGB-D
features, including head pose direction and facial expressions
captured fromKinect v2, a low-cost but robust 3D camera, to
measure the engagement degree of students in both remote
and on-site education. This system augments another self-
learning type-2 fuzzy logic system that helps teachers with
recommendations of how to adaptively vary their teaching
methods to suit the level of students and enhance their instruc-
tion delivery. This proposed dynamic e-learning environment
integrates both on-site and distance students as well as teach-
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erswho instruct both groups of students. The rules are learned
from the students’ and teachers’ learning/teaching behaviors,
and the system is continuously updated to give the teacher
the ability to adapt the delivery approach to varied learners’
engagement levels. The efficiency of the proposed system
has been tested through various real-world experiments in
the University of Essex iClassroom among a group of thirty
students and six teachers. These experiments demonstrate the
capabilities—compared to type-1 fuzzy systems and non-
adaptive systems—of the proposed interval type-2 fuzzy
logic-based system to handle the uncertainties and improve
average learners’ motivations to engage during learning.

Keywords Type-2 fuzzy logic systems · E-learning ·
Student engagement · 3D vision

1 Introduction

Recently, the teacher’s role has moved from one where they
know everything to one where teachers must be continu-
ously learning and reflective on their skills (Mergler and
Spooner-Lane 2012). The teacher’s role in the learning envi-
ronment has been found to be the most influential aspect
in improving student satisfaction, outcomes, and engage-
ments (Hattie 2003; Lovat 2007). Thus, most teachers aim
to improve their teaching skills, which have been acquired
through their pre-service teaching qualification, training, and
career expertise (Mergler and Spooner-Lane 2012). How-
ever, our understanding of what constitutes quality teaching
has changed over time, and the definition has become more
challenging (Lovat 2007). Thus, it is difficult to get definite
feedback about the best instructional approaches that teach-
ers can follow to promote different learners’ engagement,
outcomes, and satisfaction due to several issues associated
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with teachers, learners, and technology-mediated learning
and their interactions in the teaching-learning process. First
is the issue of teacher expertise in evaluating various learners’
engagements as well as the best instructional approaches and
teaching actions to maintain the various learners’ engage-
ment in a balanced and improved way. Even if teachers
profess to have high learner engagement, they will, under
normal circumstances, receive no feedback about the engage-
ment of remote learners. Moreover, the total size of remote
and on-site students makes it difficult for teachers to diag-
nose students’ interests and discover the best instructional
actions to motivate them regarding the learning objectives.

Similarly, beginning teachers step into an unknownworld,
working under the obligation to teach learners with different
needs and levels of engagement, and this variable can cause
them apprehension (Smith and Sela 2005). This is because
there is no smooth initiation into teaching and many teachers
struggle to progress from pre-service training to professional
practice (Smith and Sela 2005). Importantly, new teachers
are usually required to teach like experienced teachers, and
thus face themultiple tasks of being students, instructors, and
scientists (Öztürk and Yildirim 2013). Although novices do
not have the qualities of experienced teachers, they are still
required to meet similar requirements as soon as they enter
the field. Furthermore, the most difficult or irksome teaching
assignments are often dumped on newly qualified teachers
and junior staff members (Öztürk and Yildirim 2013). The
immense stress resulting from these factors results in the sit-
uation whereby new teachers leave the teaching job at higher
rates than new workers in other fields (Wonacott 2002).

High teacher stress and turnover affects student learning
in terms of achievement, engagement, and, ultimately, the
outcomes comprise the end result of the education system.
Recently, with advances in educational technology, adap-
tive educational systems have emerged, and, despite being
intended for use by individual students in asynchronous
learning contexts, such systems can be used to tailor instruc-
tional content to the needs of each student, thus promoting
improved learning performance (Shute and Zapata-Rivera
2012; Intelligent Adaptive Learning 2012). Drawing on the
ideas underpinning these adaptive systems that learn what
works best for students, we extend a synchronous system to
adaptive teaching and training that enables teachers to learn
the behaviors of expert teachers in tackling different students’
engagement in accordance with variables of the course con-
tent. This process will open opportunities for professional
growth for teachers and enhance instruction, which will lead
to better student achievement and promote student engage-
ment.

A higher level of engagement with the course content
and teaching instructions enables students to acquire more
knowledge, therefore improving their learning performance
(Clark andMayer 2011).As such,maintaining and increasing

the learning engagement of different students requires ongo-
ing learning in the context of the instructions established by
experienced teachers. Given these considerations, the pur-
pose of this study is to identify the instructional approaches
that experienced teachers, in light of general course charac-
teristics and different student engagement levels, deem to be
the most effective. Subsequently, this learned behavior can
be applied in the training of new teachers to improve their
teaching approaches and thus promote better learning.

The effectiveness of any adaptive and intelligent teach-
ing framework depends on the approach used to accurately
accumulate data about the best instructional approaches, and
also the ability of learning how and when this information is
processed to prepare an effective instruction context (Shute
and Zapata-Rivera 2012). The important question arises,
then, of how one can ensure precision in evaluating and
choosing the appropriate teaching approach thatwill best pro-
mote and improve learner engagement. This question is quite
critical because of uncertainties about how accurately teacher
decisions about instructional approaches are actually catego-
rized by the learning system—as well as the corresponding
uncertainties associated with how the resulting instruction
is actually decided and administered according to the varied
levels of learner engagement.

In synchronized teaching environments, there are high lev-
els of linguistic uncertainties whereby teachers can interpret
and act on the same terms, words, or methods (e.g., per-
taining to lesson difficulty, appropriate teaching style, and
approach) in various ways, according to their pupils’ varied
levels of engagement, knowledge, and expertise in their sub-
ject. The integration of flexible Artificial Intelligence (AI)
techniques within adaptive e-learning contexts could help to
handle the uncertainties that may negatively affect the devel-
opment of an environment which encourage learning and
teaching (Ahmad et al. 2004).

To the best of our knowledge, no previous studies have
been proposed to learn the teaching behavior process accord-
ing to the varied on-site and distance learners’ levels of
engagement in their respective learning environments. Fuzzy
logic systems are well known for their ability to generate
white box models that can handle high levels of uncertainty.
However, the vast majority of fuzzy logic systems employ
type-1 fuzzy logic systems, which handle the encountered
uncertainties via the precise type-1 fuzzy sets. In contrast,
Interval Type-2 Fuzzy Logic Systems (IT2FLSs) can handle
the uncertainties encountered through interval type-2 fuzzy
sets, which are characterized by a Footprint of Uncertainty
(FOU) that provides an extra degree of freedom in handling
high uncertainty levels.

This paper presents an IT2FLS capable of understand-
ing various teachers’ behaviors, involving their instructional
decisions in accordance with various varied learners’ aver-
age engagement levels and the difficulty level of the content
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in dynamic teaching environments. The type-2 fuzzy model
is first created from data collected from a number of teach-
ing sessions with different teaching approaches conducted
by different qualified teachers. The learned type-2 fuzzy-
based model is then used to improve instructional delivery
approaches that can be used as supplemental tools to aid
the teaching profession and enhance the learning process.
We will show how the proposed system enables the cus-
tomization of instructional delivery to improve and increase
different learners’ engagement. Furthermore, the proposed
system is flexible enough to allow constant updating in accor-
dance with the level of student engagement. A number of
experiments have been conducted within the iClassroom at
the University of Essex among a group of thirty students and
six teachers to assess the efficiency of the proposed system.
The results of the experiments indicate that, in comparison
to type-1 fuzzy systems and non-adaptive systems, the pro-
posed system based on interval type-2 fuzzy logic has greater
capacity for managing ambiguities and stimulating student
engagement and satisfaction.

Section 2 will present a brief overview on the need to con-
sider students’ engagement degree according to the teaching
approaches in E-learning environments. A brief overview of
interval type-2 fuzzy logic systems is presented in Sect. 3.
Section 4 explains the proposed type-2 fuzzy logic-based rec-
ommendation system for adaptive teaching across interactive
E-learning environments. Section 5 describes the experi-
ments and results while conclusions and future work are
presented in Sect. 6.

2 The need to consider students’ engagement
degree according to the teaching approaches
in e-learning environments

Awareness of student-related variables and how those vari-
ables can be improved is important when trying to determine
the optimal instructional approaches in different teaching
contexts. The personalisation variables of students that need
to be adjusted in the context of learning and the pedagogic
personalisation strategies used to handle those variables can
be found in Shute and Zapata-Rivera (2012) and Essalmi
et al. (2010).

Currently, e-learning is confronted by a significant limi-
tation, in that student engagement is not taken into account
by learner models, and do not map delivery needs in terms
of the appropriated instructional approach. However, it is
unreasonable to expect the teacher to track each individual
learner especially in the online-learning where the number
of students are high. Therefore, automatically gaining and
analyzing the objective feedback from the attendees is the
key step in the procedures of education so that adaptive and
personalized education is delivered. Several methods were

proposedwhere inMayberry et al. (2014) andYeet al. (2012),
wearable sensors embedded into the glasses facing towards
users’ eyeswere used to analyze the eye gaze and the interests
of the users. In Hardy et al. (2013), skin conductance sen-
sors were employed to recognize the connection between the
biological degree of skin conductance and emotional experi-
ences in a training session of training and learning systems.
Similarly, inMota and Picard (2003), a particular chair utiliz-
ing pressure sensors was developed to understand the regular
body actions to relate a child’s interest level in the procedure
of conducting an education session on a computer. This sys-
temwas also utilized inMello andGraesser (2009) to observe
the students’ body gestures for recognizing the students’
emotions in a learning session. InAmershi et al. (2006), a sys-
tem based on hybrid wearable sensors sensing the real-time
data of skin conductance, heart rate, and EMG was pro-
posed and this system used an unsupervised feature selection
algorithm to measure learner engagement. However, wear-
able electronic devices are intrusive and uncomfortable for
the users especially those electronic devices are required
to deploy near the sensitive parts of the human such as
eyes.

Aconventional non-contactmethod to estimate the engage-
ment degree is to analyze the eye-gaze features. In Corcoran
et al. (2012), eye-gaze direction was calculated based on 2D
video data using low-cost embedded hardware platform to
determine the engagement and reaction of the users in game-
play so that feedbacks can be provided into the gaming user
interface and gameplay logic. In Asteriadis et al. (2009), the
learner’s engagement level was estimated and classified for
the application scenarios of human-computer interaction by
a webcam using the features extracted from 2D user images
includingheadpose, eyegaze, eyebrowandheadmovements,
mouth opening statues, etc. In Hernandez et al. (2013), users’
engagement level was estimated by the 2D camera images
based on the extracted facial features and the output results
was labeled into four different levels of engagement. How-
ever, 2D image-based methods are inadequate for returning
robust features to complex vision applications such as eye
gaze recognition. Therefore, higher level systems using mul-
tiple hybrid sensors are studied.

In Ishii et al. (2014), an engagement estimation system
based on a particular eye-gaze tracking device was proposed.
This system is able to robustly measure the user’s engage-
ment based on the orientation of the eye gaze captured by a
particular non-contact device. However, the main disadvan-
tage is due to its high expense (around $2000 USD per piece)
of this type of sensor which can be only used for single user
within a relatively short distance (60 centimetres). A similar
method was reported in Mello et al. (2012) where engage-
ment analysis system based on eye tracker was proposed and
this system is able to label the student as not engaged if the
student looked away from the screen.
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Besides the engagement analysis methods using various
sensors, there are literatures reporting the systems based on
sensor-freemethods for estimating the students’ engagement.
In Baker (2012), an engagement and emotion analysis sys-
tem based on machine learning was developed to detect the
user’s emotional state such as bored, engaged, not engaged,
confused, and frustrated. The system employs data mining
techniques analyzing the logs data which covers the infor-
mation of the student activities such as the time length the
student spends on finishing the question, the difficulty level
of the question, and the correctness of the answer given by
the student. However, these methods are not substantially
better especially when subject to stringent cross-validation
processes (Baker 2012). A similar engagement detection
method was presented in Badge et al. (2012) based on acad-
emic activities and log information of learners performed in
a social network.

To address the problems discussed above, in this paper,
we introduce an engagement estimate system using non-
contact, low-cost, and multi-user-support 3D sensor Kinect
v2 which is capable to capture reliable features including
head pose direction and hybrid features of face expression
enabling the convenient and robust estimation of engage-
ment based on IT2FLS in large-scale online and on-site
learning in an unconstrained and naturalistic environment
where users are allowed to act freely and move without
restrictions.

3 A brief overview of type-2 fuzzy logic systems

The Interval Type-2 Fuzzy Logic System (IT2FLS) depicted
in Fig. 1a uses interval type-2 fuzzy sets (such as the type-2
fuzzy set shown in Fig. 1b) to represent the inputs and/or
outputs of the FLS. In the interval type-2 fuzzy sets all the
three dimension values are equal to one. The use of interval

type-2 FLS helps to simplify the computation (as opposed to
the general type-2 FLS) (Mendel 2001).

The interval type-2 FLS works as follows: the crisp inputs
are first fuzzified into input type-2 fuzzy sets; singleton fuzzi-
fication is usually used in interval type-2 FLS applications
due to its simplicity and suitability for embedded proces-
sors and real-time applications. The input type-2 fuzzy sets
then activate the inference engine and the rule base to pro-
duce output type-2 fuzzy sets. The type-2 FLS rule base
remains the same as for the type-1 FLS, but its Membership
Functions (MFs) are represented by interval type-2 fuzzy
sets instead of type-1 fuzzy sets. The inference engine com-
bines the fired rules and gives a mapping from input type-2
fuzzy sets to output type-2 fuzzy sets. The type-2 fuzzy
output sets of the inference engine are then processed by
the type-reducer, which combines the output sets and per-
forms a centroid calculation which leads to type-1 fuzzy sets
called the type-reduced sets. There are different types of type-
reduction methods. In this paper we will be using the Center
of Sets type-reduction as it has a reasonable computational
complexity between the computationally expensive centroid
type-reduction and the simple height and modified height
type-reductions, which have problems when only one rule
fires (Mendel 2001). After the type-reduction process, the
type-reduced sets are defuzzified (by taking the average of
the type-reduced sets) to obtain crisp outputs. More informa-
tion about the interval type-2 FLS can be found in Mendel
(2001).

The shaded area in Fig. 1b is labeled as Footprint of
Uncertainty (FOU) which is bounded by lower membership
function µ

˜A
(x) and an upper membership function µ̄ Ã(x)

(Mendel 2001). Thus an interval type-2 fuzzy set is written
as follows:

Ã =
∫

x∈X

[

∫

u∈
[

µ
Ã
(x),µ̄ Ã(x)

]
1/u

]

/(x). (1)

(a) (b)

Upper Membership
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Type-Reducer 
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Rule Base
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Fig. 1 a Structure of the type-2 FLS (Mendel 2001). b An interval type-2 fuzzy set
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Fig. 2 An overview on the proposed type-2 fuzzy logic based recommendation approach for adaptive teaching across interactive e-learning
environments

4 The interval type-2 fuzzy logic based
recommendation system for adaptive teaching
across interactive e-learning environments

Throughout the proposed e-learning framework, knowledge
acquisitions would be transformed based on the teacher’s
instructional approaches and tutorial actions aimed at ful-
filling and prompting the current feedback regarding the
varied levels of engagement of the remote and on-site learn-
ers. Figure 2 shows the conceptual model of the proposed
environment whereby the data about the appropriate instruc-
tional approach are recorded by the tutor according to the
distance and on-site learners’ varied engagement levels and
the lesson’s difficulty level (for the three teaching sessions
in the case of the carried out experiments) in the observer
component. In this component, the data from the e-learning
framework are monitored and captured at whatever point
the teacher alter his or her instructional approach. Accord-
ingly, these gathered data will be used in the fuzzy learning
component. This component will initially enable the system

to generate the type-2 fuzzy sets as per the methodology
described in Liu et al. (2007), Almohammadi et al. (2014)
and Almohammadi and Hagras (2013b).

This method centers on producing type-2 fuzzy sets via
the gathering of type-1 fuzzy sets from various instructors.
These type-1 fuzzy sets are combined, resulting in the FOU,
which appropriately induces a type-2 fuzzy set, which is seen
to signify a word. Furthermore, this component implements
an unsupervised one-pass approach, as inspired by Wang
(2003), Hagras et al. (2007) and Almohammadi and Hagras
(2013a), and obtains the rules from the acquired data; this is
the main goal of this component. In the IT2FLS adaptation
rules component, these learned rules trigger the best instruc-
tional methodologies based on the current state of inputs.
This adaptation model component also considers the new
teacher-learned actions that are subject to the existing input
parameters from the e-learning environment that are already
monitored in the observer component, and subsequently cre-
ates an output in consideration of the current state of inputs.
This further enables the online adaptation and enhancement
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of rules and ultimately facilitates life-long learning owing to
the dynamic quality of teaching and learning process inter-
actions.

As demonstrated in Fig. 2. There would be three com-
ponents in the proposed system which are the observer
component, the fuzzy logic component, and the IT2FLS and
adaptation components. These three components will be dis-
cussed in detail in the following subsections.

4.1 The observer component

Primarily, the proposed system gathers and captures the data
through collecting the appropriate instructional approach as
recorded by the teacher, according to the distance learners’
varied average level of engagement and the difficulty level of
the current lesson taught within the online learning environ-
ment. It is noteworthy that the data (both current inputs and
outputs) would be actively recorded by the system if there
was any change in the appropriate instructional approach (as
indicated by the teachers) in accordance with the current
state of the e-learning environment. Thus, our system cre-
ates and learns a descriptive model of the best instructional
teachers’ methodologies used in tackling and promoting the
varied levels of engagement of distance learners in a balanced
way; this is achieved through the data gathered, generating
a set of multi-input and multi-output data pairs, which take
the following form Wang (2003), Hagras et al. (2007) and
Almohammadi and Hagras (2013a):

x (t); y(t) (t = 1, 2, . . . , N ), (2)

where N is referred to as the total of data instances, x (t) ∈ Rn ,
and y(t) ∈ Rk . Rules are basically mined by our system,
which explains how the k output, which is the best instruc-
tional approach variables y = (y1, . . . yk)T are affected by
the input variables x = (x1, . . . xn)T . A model mapping
inputs to outputs is achieved using the established fuzzy rules
without requiring a mathematical model. Therefore, individ-
ual rules can be adapted online, affecting only certain aspects
of the descriptive model created and learned by the proposed
system.

4.1.1 The proposed method for engagement degree
estimation

The first step is to calculate the head pose orientation and
the face emotion using the SDK of Kinect v2. After that, the
deviation degrees of the current head orientation away from
the expected direction (towards the whiteboard or screen)
are calculated to measure the extent of distraction. And then
we select the largest distraction extent degree to estimate
the engagement degree of the student. Finally, based on the

deviation and the face emotion, the engagement degree can
be computed.

4.1.1.1 Head pose estimation To robustly estimate the
head pose orientation and improve the accuracy of the results,
the method based on a regularized maximum likelihood
Deformable Model Fitting (DMF) reported in Cai et al.
(2010) which is robust against the impact of noise factors
in the depth channel. As this method has been developed in
the latest version v1409 of Kinect v2 Windows SDK, in our
experiments we utilize the module directly to obtain the 3D
head pose orientation of the student in E-learning environ-
ments. In our experiments, we use the latest model Kinect v2
as shown in Fig. 3a which is more robust than the previous
model (Almohammadi et al. 2014). The SDK of Kinect v2
provides and describes head pose relating to the Kinect cam-
era by three angles: pitch, roll, and yaw, as demonstrated in
Fig. 3b.

4.1.1.2 Engagement degree estimation Based on the visual
features including head pose together with the face emo-
tion returned by the 3D sensor, in our experiments, we will
consider the following assumptions describing the relation
between the input visual features and the output engagement
degree:

• Facing the whiteboard (or computer screen in case of
remote learning)—the student is engaged in the class.

• Facing down—the student is sleepy or probably playing
a tablet/smartphone.

• Facing to the left/right—the user is distracted from the
learning and interacting with another student nearby.

• Looking around/away—the student is thinking about
irrelevant problems and is not concentrated.

• Face emotion—one eye is not open or both of the two
eyes are closed (falling-asleep), and other face emotion
for example, mouth open and close (speaking), facial
expression is happy, face emotion is engaged, etc.

Based on the assumptions above, the engagement degree of
the student can be calculated and modeled by the face emo-
tion of the student and the deviation between the current
head orientation and the optimum engaged head pose (facing
towards the whiteboard) which are shown in the following
equations.

Engagement Degree = (1 − Deviation)

× Emotion Modifier, (3)

where Emotion Modifier is decided by the facial emotion
including falling-asleep, speaking, happy, engaged. In this
experiment we mainly consider the factor falling-asleep for
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Fig. 3 a The used Kinect v2. b Head pose angles

face expression analysis:

Emotion Modifier

=
⎧

⎨

⎩

1
OECModifier if
0

Two eyes are open
One eye is closed
Two eyes are closed

, (4)

where OEC Modifier is in the range of 0 and 1, and can be
determined by the actual application scenario.

Deviation = max{Dpitch, Droll, Dyaw} (5)

Dpitch = |Pitchc − Pitcho|
Pitchmax

(6)

Droll = |Rollc − Rollo|
Rollmax

(7)

Dyaw
|Yawc − Yawo|

Yawmax
, (8)

where Pitchc, Rollc, Yawc are the three angles (pitch, roll,
and yaw) of the current head pose obtained by the Kinect
v2. Pitcho, Rollo, Yawo are the angles describing the opti-
mum engaged head pose orientation which are recorded in
the training stage. Pitchmax, Rollmax, Yawmax are the maxi-
mum angles defined and returned by the Kinect v2 SDK.

4.2 Fuzzy logic component

4.2.1 Extracting the interval type-2 fuzzy sets

Classification of the acquired teaching–learning behavior
input/output data through the relevant fuzzy membership
functions is a vital step in this component layer. The raw
input and output values are ultimately quantified through
this process, which leads them into linguistic labels such as
low/moderate and high for the average level of engagement.
The type-2 fuzzy set extraction approach used is indicated
in Liu et al. (2007), Almohammadi et al. (2014) and Almo-
hammadi and Hagras (2013b), by which a type-2 fuzzy set is

developed and its FOU embeds the numerous type-1 fuzzy
sets, so that each teacher’s individual interpretation can be
specified regarding a particular linguistic label that justifies
the appropriate instructional approach and various varied
learners’ average engagement levels. Therefore, the teachers’
diverse views with regard to modeling these words would be
integrated by the FOU produced, and the uncertainties would
also be handled for the type-2 fuzzy sets. In this method, data
are gathered by questioning the teachers regarding their spe-
cific linguistic labels through which type-1 fuzzy sets would
be produced. Subsequent to this step, the type-2 fuzzy sets
are produced, while the type-1 fuzzy sets (demonstrating the
teachers’ individual views) are integrated, through which the
FOU of the type-2 fuzzy set is delivered to represent the
given word. Through the application of the Representation
Theorem (Mendel 2001; Liu et al. 2007), each of the interval
type-2 fuzzy sets Ãs can be calculated as follows:

Ãs =
⋃n

i=1
Ai . (9)

In this equation, ∪ is an aggregation operation and Ai is
referred to as the i th embedded type-1 fuzzy set (Liu et al.
2007). Reckoning the upper MF µ Ã(x) and the lower MF
µ

Ã
(x) of Ãs can deliver the process of Ã production. The

embedded type-1 fuzzy sets and the upcoming FOU model
for Ãs would collectively decide the occurrence of thismech-
anism. For the upper and lowerMF parameters, interior FOU
models, right and left shoulder MFs (shown in Fig. 4a–c) are
to be applied in our system.According to Fig. 4a, the parame-
ters: aMF, cMF, c̄MF, and bMF denoting a trapezoidal upper
MF and the parameters: aMF and bMF for a symmetric trian-
gular lower MF, with an intersection point (p, µp) are most
likely to describe the resulting interior interval type-2 fuzzy
set (Liu et al. 2007). We describe below the procedures for
calculating these parameters:

The type-1 MFs for each of the i teachers are described
according to the parameters [aiMF, b

i
MF]. For interior FOUs,
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(b) (c)

(a)

M

Fig. 4 a An interior type-2 MF embedding the different type-1 fuzzy sets, b left shoulder type-2 MF embedding the different type-1 fuzzy sets, c
right shoulder type-2 MF embedding the different type-1 fuzzy sets (Liu et al. 2007)

we provide below the procedure for assessing the FOUmodel
(Liu et al. 2007): We should follow the given steps for the
upper MF µ Ã(x),

(1) For µ(x) = 0, determine aMF to be equal to the mini-
mum amin

MF of all left-end points aiMF and bMF to be equal
to the maximum bmax

MF of all right-end points biMF (Liu
et al. 2007).

(2) Forµ(x) = 1, calculate cMF, cMF which correlate to the
minimum and the maximum of the centers of the type-1
MFs.

(3) Approach the upper MFµ Ã(x) by joining the following
points with straight lines: (aMF, 0), (cMF, 1), (cMF, 1),
and (bMF, 0) Fig. 4a illustrates the result, which is a
trapezoidal upper MF.

Following are the steps to estimate the lower MF µ
Ã
(x):

(1) For µ(x) = 0, determine aMF to be equal to the max-
imum amax

MF of all left-end points aiMF and bMF to be
equal to the minimum bmin

MF of all right-end points biMF
(Liu et al. 2007).

(2) By using the following equations, compute the intersec-
tion point (p, µp) (Liu et al. 2007):

p = bMF (c̄MF − āMF) + āMF
(

bMF − cMF

)

(c̄MF − āMF) + (

bMF − cMF

) (10)

µp = (bMF − p)

(bMF − cMF)
. (11)

(3) Approximating the lowerMFµ
Ãs
(x) by joining the fol-

lowing points with straight lines : (aMF, 0), (aMF, 0),
(p, µp), (bMF, 0), and (bMF, 0). The result according
to Fig. 4a is a triangle lower MF.

The method adopted for computing the FOU for the right
and left shoulder is similar to that described in Liu et al.
(2007). To compute the upperMFµ Ã(x) for the left shoulder
(as shown in Fig. 4b), points (0, 1), (aMF, 1) and (bMF,0)

should be joined with straight lines. To compute the lower
MF µ

Ã
(x), points (0, 1), (aMF, 1), (bMF, 0), and (bMF, 0)

should be connected with straight lines. Similarly, as shown
in Fig. 4c), to estimate MF µ Ã(x) for the right shoulder,
points (aMF, 0), (bMF, 1), and (M, 1) should be joined with
straight lines. To approximate the lower MF µ

˜A
(x), points
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(aMF, 0), (aMF, 0), (bMF, 1), and (M, 1) should be joined
with straight lines (Liu et al. 2007).

4.2.2 Extracting the fuzzy rule from the collected data

The data collected from the e-learning environment
(input/output) are combined with the extracted type-2 fuzzy
sets so that the rules describing the actions of teachers can be
extracted. An enhanced form of theWang–Mendel technique
is used to drive the rule extraction method employed in this
paper (Wang 2003; Hagras et al. 2007). This is a one-pass
technique for extracting fuzzy rules from the accumulated
data. The fuzzy sets for the antecedents and consequents of
the rules divide the input and output space into fuzzy regions.
Severalmulti-input/multi-output rules are extracted using the
type-2 fuzzy system, through which the association between
x = (x1, . . . , xn)T and y = (y1, . . . , yk)T can be explained:

IF x1 is Ã
l
1 . . . and xn is Ã

l
n THEN y1 is B̃

l
1 (12)

l = 1, 2, . . . ,M, where l is the index of the rules and M is
the total number of rules.

Specifically, for each input xs where s = 1, 2, . . . , n,
there are Vi interval type-2 fuzzy sets Ãq

s , q = 1, . . . , Vi .
Moreover, for each output yc, there are Vo interval type-2
fuzzy sets B̃h

c , h = 1, . . . , Vo, where c = 1, 2, . . . , k.
To clarify and summarize the following representation, an

approach comprising a single output is illustrated because of
the simplicity of the method for upgrading the rules involv-
ing multiple outputs. We mention below the several stages
included in this rule extraction.

Phase 1 The upper and lower membership values are
calculated µ̄ Ãq

s
(x (t)s ) and µ Ãq

s
(x (t)s ) for each of the fuzzy

sets Ãq
s , q = 1, . . . , Vi , and for each input variable s(s =

1, . . . , n) regarding a fixed input–output pair, (x (t); y(t)) in
the dataset (t = 1, 2, . . . N ). Find q∗ ∈ {1, . . . , Vi } such that
(Wang 2003; Hagras et al. 2007; Almohammadi and Hagras
2013a):

µ
cg

Ãq∗
s
(x (t)s ) ≥ µ

cg

Ãq
s
(x (t)s ) (13)

for all q = 1, . . . , Vi , whereµ
cg

Ãq
s
(x (t)s ) is the center of gravity

of the interval membership of Ãq
s at x

(t)
s , which can be calcu-

lated below (Wang 2003; Hagras et al. 2007; Almohammadi
and Hagras 2013a):

µ
cg

Ãq
s

(

x (t)s

)

= 1

2

[

µ̄ Ãq
s

(

x (t)s

)

+ µ Ãq
s

(

x (t)s

)]

. (14)

The rule given below is the rule generated by (x (t); y(t))
(Wang 2003; Hagras et al. 2007; Almohammadi and Hagras
2013a):

IF x1 is Ã
q∗(t)
1 . . . and xn is Ã

q∗(t)
n THEN y is centered at y(t).

(15)

For all of the input variables xs , there are Vi type-2 fuzzy
sets Ãq

s , which makes the greater amount of possible rules
equal to V n

i . However, when considering the dataset, there
will be the generation of those rules amongst the V n

i possi-
bilities that show a dominant region comprising a minimum
of one data point.

In thefirst phase, there is the generationof one rule for each
particular input/output data pair, with the fuzzy set selected
being that which is seen to obtain the greatest value of mem-
bership at the data point, and particularly selected as the one
in the rule’s IF element. However, this is not the final ver-
sion of the rule, which will be computed in the following
step. The calculation of the rule weight is accomplished as
follows (Wang 2003; Hagras et al. 2007; Almohammadi and
Hagras 2013a):

wi (t) =
n

∏

s=1

µ
cg

Ãq
s
(xs(t)). (16)

A rule wi (t) weight is a degree of the strength of the points
x (t) regarding the fuzzy region covered by the entire rule.

Phase 2 For all of the data points from 1 to N , the first
phase is repeated. With the help of this practice, N rules
extracted from the data are taken in the form of Eq. (15).
Phase 1 witnesses the generation of multiple rules, all of
which have the same IF part in common but which are all
conflicting. During this phase, those rules that have the same
IF part are amalgamated to form a single rule. Subsequently,
the rules N are divided into groups, with rules in each of
the groups seen to have the same IF part. If it is considered
that such groups amount to M , and it may also be stated that
the group has Nl rules, therefore (Wang 2003; Hagras et al.
2007; Almohammadi and Hagras 2013a):

IF x1 is Ã
l
1 . . . and xn is Ã

l
n THEN y is centered at y(t

l
u).

(17)

where u = 1, . . . , N and t lu are the data points index of
Group l. The equation givenbelowshowshow to calculate the
weighted average of all rules involved in the conflict group:

av(l) =
∑Nl

u=1 y
(tlu)wi (t

l
u)

∑Nl
u=1wi (tlu)

. (18)

Subsequently, a single rule is formed by integrating these Nl

rules, resulting in the following form (Wang 2003; Hagras
et al. 2007; Almohammadi and Hagras 2013a):

IF x1 is Ã
l
1 . . . and xn is Ã

l
n THEN y is B̃l . (19)
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Fig. 5 An example of one of
the extracted fuzzy rules

IF the learners’ average level of engagements is Low AND the learners’ average 
standard deviation level of engagements is Moderate AND the difficulty level of 
the current lesson is Hard THEN the recommendation to use the “asking 
questions” teaching approach is High AND the recommendation to use the 
“practical explanation (demo)” approach is Low AND the recommendation to 
use the “teaching with cases (problem solving)” approach is Moderate AND the 
recommendation to use the “PowerPoint slides” teaching approach is Low

where there is the selection of the output fuzzy set B̃l on the
basis of the following: amongst the Vo output interval type-
2 fuzzy sets B̃l , . . . , B̃Vo calculate the Bh∗ such that (Wang
2003; Hagras et al. 2007; Almohammadi and Hagras 2013a):

µ
cg

B̃h∗(av
(l)) ≥ µ

cg

B̃h (av
(l)) (20)

for h = 1, 2 . . . , Vo.
B̃l , is chosen due to the Bh∗, where µcg

B̃h is the center of

gravity of the interval membership of B̃h at av(l) as illus-
trated in Eq. (14).

The proposed system can effectively handle the data pairs
of input/output, including multiple outputs as per the work
presented above. Stage 1 is recognized as being distinct with
regard to the number of outputs associated with each rule. By
contrast, Stage 2 provides a straightforward expansion with
the aim of enabling rules to encompass multiple outputs;
for each output, the calculations detailed in Eqs. (18–20)
are repeated. An example of the extracted rule with multiple
inputs–outputs is shown in Fig. 5.

4.3 The IT2FLS and adaption component

The generated type-2 fuzzy sets and the fuzzy rules extracted
from the input and output gathered data of learners enables
the proposed system to learn and obtain the best instructional
approaches in accordance to the varied level of engagement
of the learners and the difficulty level of the taught content.
The system is consequently able to notify the teachers to
re-adjust the online learning environment with specific con-
sideration to appropriate instructional approach. The system
actions are triggered through the examination and monitor-
ing of various learners’ varied levels of engagement and
the lesson difficulty, which subsequently affects the online
instructional environment, with a particular consideration of
the learned approximation of best tutorial actions that could
be followed by the teachers. The following are the function-
alities of the proposed type-2 fuzzy adaptive system:

• As specified in the e-learning environment, the crisp
inputs including the learners’ variables are fuzzified (via
singleton fuzzification) into the input interval type-2
fuzzy sets.

• The outputs (instructional approaches) type-2 fuzzy sets
are generated by the activation of inference engine and
rule base.

The proposed system must have the ability to be fine-tuned
with respect to the dynamic and diverse varied learners’
engagements and various difficulties of the taught lessons’
states by continuously enabling teachers to modify their
instructional approaches. Subsequently, the system will re-
adjust its procedures or it would apply new ones. If no rules
arouse from the rule base [i.e., the rule’s firing strength in
Eq. (16) wi (t) = 0] in a given input, subsequently the sys-
tem input would be captured by the system. To create a rule
covering this uncovered input status, it will capture the appro-
priated teaching approaches. Therefore, new rules would be
integrated in the system while there is an undefined state
of the online learning environment at that moment as per
the existing rules in the rules base (i.e., where none of the
present rules are fired). The new rules will be generated and
the system integrates them in such an instance, in which the
online learning environment’s current input states are spec-
ified by the antecedents besides the consequent fuzzy sets
that are dependent on the current state of the instructional
approach. The fuzzy sets that havemembership values,where

µ
cg

Ãh
c
(x (t

′)
s ) > 0 are identified for all of the input parame-

ters xs . Consequently, for each input parameter, numerous
identified fuzzy set(s) are generated in the form of a grid
from which new rules are generated based on all individual
combinations of successive input fuzzy sets. The consequent
fuzzy set that provides the greatest value of membership to
the teacher defines the appropriate instructional approach
(yc) so that it can operate as the generated rule consequent.
After performing a calculation of the output interval mem-
berships’ center of gravity, we can establish the fuzzy sets
(Wang 2003; Hagras et al. 2007; Almohammadi and Hagras
2013a):

µ
cg

B̃h∗
c
(yc) ≥ µ

cg

B̃h
c
(yc). (21)

For h = 1, . . . ,W the B̃c is chosen as B̃h∗
c , where c =

1, . . . , k. Consequently, new and upcoming rules can be pro-
gressively added.
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In case the teacher needs to change the suited instruc-
tional approaches at a given input status, the fired rules will
be identified and the rule consequents will be changed (if
more than two teachers signal the same modifications for
the teaching approaches), as indicated by Eq. (21). There-
fore, the fired rules are modified so that the updated suited
instruction approaches for the students could be reflected in
a desirable way, while taking into account the existing state
of the online learning environment. The system proposed in
this paper adopts life-long learning through facilitating the
adaptation of rules according to the optimized instruction
delivery approaches by teachers, which notably change over
time based on students varying levels of engagements and in
regard to the state of the online learning environment. Owing
to the system flexibility, the fuzzy logic model learned ini-
tially may be effortlessly expanded in order to make changes
to both new and existing rules. These fuzzy rules enable a
large range of values for all parameters (input and output)
to be captured, which in turn enables the continuation of
the generation of rules, even when the online learning envi-
ronment gradually changes. On the other hand, if notable
changes occur in terms of the students’ varied average level
of engagements or in the environment (which may not be
captured by the present rules, as highlighted above), the
new rules will be automatically generated, which ultimately
satisfy present conditions. Accordingly, the inconspicuous
system will expand its actions and may be adapted in order
to improve the instruction delivery.

5 Experiment and results

Various real-world experiments were performed in the
iClassroom of the University of Essex to compare the effec-
tiveness of the proposed Interval Type-2 Fuzzy Logic based
System (IT2FLS) with the Type-1 Fuzzy Logic based coun-
terpart system (T1FLS) and the non-adaptive version of
the system in regards of enhancing the quality of instruc-
tion to promote better student engagement and satisfaction.
To perform the experiments, 20 lessons from a Microsoft
Excel course were selected and categorized according to
level of difficulty (i.e., very hard, hard, moderate, easy,
and very easy). Furthermore, we examined four teach-
ing approaches, namely teaching: using PowerPoint slides,
practical explanation (demo), teaching with cases (problem
solving), and asking questions. These approaches were rec-
ommended by different expert teachers to be used in the
systems.

Real-world experiments were conducted with a sample of
30 students and six teachers from the University of Essex.
The experiments began by training the system. Three groups
were formed from the 15 students, each of which was ran-
domly assigned five distance learners. An expert teacher was

assigned to each group to teach 20 lessons using the four
teaching approaches.

During the teaching sessions, the learners’ average level of
engagements and the average standard deviation level were
measured and accumulated every five seconds, as well as
the difficulty level of the current lesson being presented in
the teacher–user interface; both were used as input variables.
When the teacher decided to change the teaching approach,
he/she should rank and prioritize these teaching approaches
from zero (not beneficial in the current situation) to ten
(absolutely beneficial in the current situation); this rank-
ing was used as the output. The teacher recorded the inputs
and their related outputs in the system’s database. These
inputs/outputs were captured by the observer component
whenever the teacher changed or recorded the appropriated
instructional approach. The left-hand side of Fig. 6. shows
the teachers teaching the lessons while the right-hand side
shows the students’ engagement degree recognized by the
teacher–user interface. The average engagement degree for
each student was measured using the Kinect camera (as
shown in Fig. 6 and as explained in Sect. 4.1.1).

It should be noted that the calculation of the average learn-
ers’ engagement and the standard deviation was taken from
the beginning of teaching a lesson in one of the four teach-
ing approaches until teaching another lesson that differed in
difficulty level or until changing the teaching approach.

After collecting sufficient datasets, we started the testing
phase. Here, three five-member groups were taught by three
different teachers (i.e., one teacher assigned to each group).
The teacher in the first group used a system applying T1FLS,
while the second group’s teacher used applied IT2FLs rec-
ommendations. The third group did not use any technological
system and served as the control group for the experiment.
After dividing the three groups equally and the input and out-
put data for type-1 and type-2 groups were obtained. Then,
by using the linguistic variables and rules, the fuzzy logic
models for both the type-1 and type-2 were constructed.
The type-2 fuzzy sets (shown in thick line in Fig. 7) were
obtained to capture the uncertainty that represents teachers’
views regarding a particular linguistic label explaining the
average of students’ engagement, their standard deviation,
and the teaching approach, while the type-1 fuzzy logic sys-
tem uses a type-1 fuzzy set (shown in dashed lines) as it
shown in Fig. 7. During the training phase, the total number
of the extracted rules from the T1FLS were 13 and 10 for the
T2FLS for each system single output. The addition or edit-
ing for existing rules were explained in Sect. 4.3. In addition,
examples of the generated rule is shown in Fig. 5.

As soon as the teachers in the first and second groups
started introducing the first lesson, the observer component
started calculating the average engagement and the stan-
darddeviation. Simultaneously, the observer component tried
finding thematched rule(s)with the currentmonitored inputs.
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Fig. 6 Teachers are shown on the left side photographs while they are teaching different lessons with different teaching approaches. On the right
side photographs, the students’ engagement feedback are shown in the teachers’ user interface

Fig. 7 The generated interval type-2 fuzzy sets of the average engagement level (think solid lines) and the type-1 fuzzy sets (thick dashed lines)

When the system found the matched rule(s), it would be
presented in the teacher–user interface thus, he/she could
know what the best teaching approach in that situation was
given the output of the IT2FLS. The teacher could ignore this
output and the system would learn from his/her decision of
re-prioritizing and re-ranking the teaching approaches based

on the current given data. Hence, if the teacher determined
to continue teaching the lesson (or any lesson in the same
difficulty level) without changing the teaching approach, the
observer component will continue calculating the average
engagement and the standard deviation. In contrast, if the
teacher changed the teaching approach or taught a lesson
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Table 1 Average error and
standard deviation of the system
outputs

Output name Type-2 fuzzy logic Type-1 fuzzy logic

Average error Standard deviation Average error Standard deviation

Asking questions
approach

2.60 1.43 2.73 1.88

Practical explanation
(demo) approach

1.90 1.28 2.78 1.67

teaching with cases
(problem solving)
approach

2.09 1.32 2.88 1.79

Fig. 8 Plot for group means
comparison using Tukey

that differed from the previous one, the observer component
would modify its action accordingly and adapt the corre-
sponding rules.

The notification frequency is determined by changes in the
monitored inputs (the e-learning environment state), modi-
fied by the average level of engagement, the average standard
deviation of learners engagements, or the difficulty level of
the lesson. We have noticed that these inputs do not sharply
change, so the notifications should not affect the instruc-
tor mode of teaching. Through the experiments, it has been
shown that 66% of the suggested teaching approaches were
followed by the teacher, whereas 34% divided between the
edited ones and the recommendation that affects the instruc-
tor mode of teaching. It is important to note that teachers
might need some time to switch from one teaching approach
to another, so they might in some cases ignore the recom-
mended approach.

Finally, for evaluation purposes the teacher-learned data
were collected to compare the type-2 and type-1 fuzzy logic
system to know the average error and standard deviation
of the teachers’ preferred output and the system outputs.
In addition, the comparison between the three groups in
terms of the average engagements and standard deviations
involved comparing them based on the data gathered by the
observer component (during the whole teaching session for
every group) and based on the students’ views which tracked
by their questionnaire responses.

Firstly, based on the teachers’ learned data, Table 1. shows
the average error and standard deviation to compare the
teacher preferred output and the system outputs in both
systems IT2FLS and T1FLS. These results clearly show
that IT2FLS has less average error and standard deviation.
Even for the least improvements in the “Asking questions
Approach,” the IT2FLS produced almost 5% better perfor-
mance when compared to T1FLS in terms of lower average
error between the system output “asking question approach”
and the preferred teacher-learned output “asking question
approach.” In addition, the IT2FLS produced better spread of
the errors by having 23% less standard deviation when com-
pared to T1FLS. Consequently, IT2FLS appears to bemore
effective than type-1 fuzzy logic system in recording teach-
ers’ tutorial actions.

On the other hand, according to data gathered by the
observer component, the results indicated that the use of
IT2FLS makes students more engaged and brings them
closer to each other in terms of their degree of engage-
ment. Accordingly, there was little dispersion of the set of
engagement data for the IT2FLS group, with an average
engagement degree of 68.75 and 10% average standard devi-
ation, compared to an average engagement degree of 64.23
and 16% average standard deviation for the type-1 fuzzy
logic system (T1FLS)—and a 44.34% average engagement
degree and 20% average standard deviation for the control
group.
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Furthermore, we analyzed the participants’ satisfactions
in the questionnaire using ANOVA to compare the responses
from the groups at a significance level of 0.05. The analy-
sis revealed that there is a significant statistical difference
between the various groups (p � 0.05). We also carried out
Tukey comparison test to see which pair of groups has the
difference. We observed that Group 3 (IT2FLS) and Group 1
(control group) were the most significantly different groups
as compared to other pairings, as shown in Fig. 8.

6 Conclusions and future work

This paper presented an interval type-2 fuzzy logic-based
system that can learn different teacher’s pedagogical deci-
sions based on the content difficulty level as well as
the students’ average level of engagements and the vari-
ation between the engagements in a dynamic real online
teaching environment. This learnt type-2 fuzzy-based model
was applied to enhance the teaching performance by inform-
ing the teacher about the best teaching approaches in order
to gain an enhanced average level learners’ engagement.

Furthermore, we presented a method based on type-2
fuzzy logic utilizing visual RGB-D features including head
pose direction and face expressions captured from a low-cost
but robust 3D camera (Kinect v2) tomeasure the engagement
degree of the students in both remote and on-site education.

The IT2FLShas been tested and comparedwith theT1FLS
and with a non-adaptive system. The experiments were con-
ducted with a population of six teachers and 30 students at
EssexUniversity. The results revealed that IT2FLSwas better
able to handle uncertainties where IT2FLS produced lower
average errors and standard deviation compared to T1FLS
between the systemoutputs and the preferred teacher outputs.
This has resulted in increasing the average level of engage-
ment over the T1FLS group by 7%; the engagement level
improved over the control group by 55%. Furthermore, the
use of the IT2FLS system brought the students’ engagement
levels closer together, yielding an average standard devia-
tion improvement of about 37.5% over the T1FLS group and
about 50% over the control group. UsingANOVA and Tukey
tests, we found that the satisfaction level of the participants in
the IT2FLS differed significantly from the satisfaction level
of students in the control group (p < 0.05).

Thus, these promising results from the proposed system
has facilitated the instructionwith better delivery to the learn-
ers more than the type 1 fuzzy systems and the non-adaptive
version.

It should be noted that the proposed system can be scal-
able and is designed for a large number of remote students. In
addition, the system can be extended in terms of the relations
between more varied student input variables and more teach-

ing methods outputs to be tested. In the future, we intend to
carry experiments with large size classes.

In the future, we aim to employ general type-2 fuzzy
logic to be able to better handle the model the various faced
uncertainties. We also aim to deploy the proposed system for
e-learning courses including thousands of students.
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