

Secret Communication on Facebook Using Image

Steganography: Experimental Study

Abstract—Facebook is a popular online social network that

provides the means for connecting people all over the world to

communicate together on one venue through chatting, sharing

photos, documents, and videos. The wide penetration of Facebook

globally makes it a very attractive medium for image

steganography, especially with millions of images uploaded daily,

which further obscure steganography in the uploaded images.

Transmitting photos through Facebook enforces the application of

image processing to the uploaded photos prior to their publication,

which has the consequence of altering the original features of the

uploaded images. This paper presents a set of experiments for

exploring Facebook image processing schemes. Also, it explores

several methods for successfully applying steganography over

Facebook.

Keywords-steganography; online social network; Facebook;

JPEG

I. INTRODUCTION

Online social networks (OSN) such as Facebook allow

people to communicate easily worldwide. The great popularity

of Facebook and its availability on many platforms on desktop

and mobile computing platforms that are running different

operating systems such as Windows, Unix, Android, and iOS

enables Facebook to be a very attractive medium for

performing steganography. Steganography is the discipline of

hiding secret messages in another medium to extract it at the

destination point, with the result that, among all the observers

of the involved media, only the intended recipient is aware of

the existence of the hidden message [1] [2]. However,

transmitting hidden messages using image steganography via

Facebook runs the risk of losing the embedded secret messages

due to the imposed image processing applied to the uploaded

photos. This paper explores Facebook image processing and

examines several methods for successfully applying

steganography via Facebook in which stego images can survive

Facebook’s image processing.

The paper is structured as follows. Section II provides

background information about Facebook and steganography.

Section III summarizes previous related work. Section IV

tackles the selected steganography tools that we used

throughout our experiments. Section V details our efforts in

conducting the preliminary experiments for assessing Facebook

image processing in different environments. Section VI

describes our steganography experiments on a carrier photo

selected from section V. Section VII compares the selected

steganography tools based on our experiments’ findings, while

section VIII covers the discussion and section IX provides the

concluding remarks of our work.

II. BACKGROUND

The following subsections provide an overview of Facebook,

steganography, the history of steganography, steganography

classification, steganography techniques, and steganalysis.

A. Facebook

Online social networks are defined as web-based services

that enable users to create their own profile within a bounded

system, communicate with other users with whom they share a

connection, and view and navigate their list of connections

along with the connections of other users within the system [3].

Facebook is a leading online social network with over 1.49

billion monthly active users worldwide as of August 2015 [4].

Its mission is to make the world more open and connected by

allowing users to control and share information [5]. Through

Facebook, users can share photos, videos, documents, and

much other information. Besides offering the possibility for

users to create their own pages and groups, it gives them the

option to customize their privacy. Hence, users are able to make

their pages public to everyone, public to friends only, public to

specific users, or private. Moreover, it allows users to control

who can follow, view, post, and comment on their pages [6].

With the outstanding popularity of Facebook and the number of

photos shared daily, it would seem to be the perfect place to

conduct steganography.

B. Steganography

Information security is one of the most important factors

required for information communication through the Internet.

Securing the secrecy of communication is known as

cryptography while securing the existence of the message is

known as steganography [7]. Steganography means “covered

writing” and derives from the Greek word “stegos,” which

means “covered” and the word “graphia,” which means

“writing” [8]. It is the science of concealing information of

which only the sender and the intended recipient are aware of

the existence and the retrieval of the hidden message [9]. The

process of applying steganography requires a set of elements,

which are the cover object (C) that acts as a carrier to hold the

secret message, the secret message (M) that is embedded in the

cover object, the selected steganographic technique, and the

stego key (K) that is used to encode and decode the secret

Budoor S. Edhah
Department of Information Systems

King Abdulaziz University, Saudi Arabia

beidhah@stu.kau.edu.sa

Daniyal M. Alghazzawi
Faculty of Computing & Information Technology

Department of Information Systems

King Abdulaziz University, Saudi Arabia

dghazzawi@kau.edu.sa

Li Cheng
Xinjiang Technical Institute of

Physics & Chemistry

Chinese Academy of Sciences

chengli@ms.xjb.ac.cn

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

428 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

mailto:beidhah@stu.kau.edu.sa
mailto:dghazzawi@kau.edu.sa
mailto:chengli@ms.xjb.ac.cn

message [10]. Steganography is gaining attraction due to the

pressing issue of security over the Internet [7]. Fig. 1 illustrates

the generic steganography process.

Figure 1. Generic steganography process

C. History of Steganography

While steganography has existed since 440 BC, its

terminology was invented at the end of the fifteenth century [8].

Historically, steganography was used in messages that were

hidden inside waxed wooden tablets, written on the stomachs of

rabbits, or tattooed on slaves’ scalps: after the hair had grown

back, the secret messages would be undetected until the heads

were shaved again [11]. Also, invisible ink and microdots were

used as means for steganography; early in World War II,

steganographic technology consisted mainly of those inks in

which innocent letters contain a very different secret message

between the lines [12] [13]. Moreover, five hundred years ago,

the Italian mathematician Jerome Cardan adapted an ancient

Chinese method of secret writing. This method consists of two

parties who would each have a copy of the same paper mask

that contains holes. The sender places the paper mask over a

blank sheet of paper and writes the secret message through

those holes; then the paper mask is taken off and the sender

would continue writing on the blank paper in which the paper is

viewed as having innocuous text [14]. Nowadays with the

emergence of technology, steganography has begun to assume

many new forms.

D. Steganography Classification

With digitization, steganography is used on digital objects.

Such objects include images, music, videos, programs, and

networks. All digital file formats can be used for

steganography, and the most suitable formats are those that

contain large amounts of redundant bits [15]. A steganography

system can be classified based on two general approaches. The

first approach is based on the type of the cover media, while the

second one is based on the type of the embedding method.

These consist of the insertion-based method, substitution-based

method, or generation-based method [8]. An insertion-based

method embeds the secret message in areas of the cover object

that are ignored by applications; therefore, after the embedding

process, the stego file size will be greater than the size of the

cover object. The substitution method embeds the secret

message by replacing insignificant bits from the cover object

with bits of the secret message, hence this method maintains the

same size of the original cover object, but in some cases, the

quality of the cover object can be altered. Finally, the

generation method uses the secret message to generate the stego

file, hence, detecting this method is hard since no cover object

exists [16] [17]. Fig. 2 illustrates the steganography

classification.

E. Steganographic Techniques

There are two types of domains in which steganography is

performed, the spatial domain and the frequency domain. In the

spatial domain, the processing is performed directly on the

pixel values of the photo, while in the frequency domain, the

processing is executed indirectly; the pixel values are first

transformed and then the processing will take place on the

transformed coefficients [12]. Steganography can be applied

through different techniques, which include the Least

Significant Bit (LSB), Discrete Cosine Transform (DCT), or

Discrete Wavelet Transform (DWT) [18]. The LSB technique

is implemented in the spatial domain in which the bits of the

hidden information are embedded into the least significant bits

of the cover photo [19]. On the other hand, DCT and DWT

steganographic techniques are implemented in the frequency

domain in which the payload bits are embedded into the

frequency components of the cover image after the image has

been transformed from the spatial domain to the frequency

domain [20] [21].

Figure 2. Steganography classification

F. Steganalysis

Steganalysis is the art of discovering the secret information in

a cover object. Steganography is considered secure if the stego

image does not reveal any detectable artifacts of the existence

of the embedded message [22]. The stego images should have

the same statistical properties as the cover image [23].

Steganography can be discovered through a set of comparisons

between the original photo and the stego photo, or through

detecting the steganography program’s signatures on which

most steganalysis programs depend [24]. Moreover,

steganalysis is applied by checking the statistical abnormalities

in the suspected photo in which the mean, the chi-square test,

the linear analysis, and the variance are examined to measure

the amount of departure from the expected norm and thereby

reveal the distortion [25].

III. RELATED WORK

This section discusses several efforts that have

complemented or otherwise inspired and influenced our

research.

Castiglione, Cattaneo, and De Santis [26] analyzed the image

processing of several online social networks: Facebook, Badoo,

and Google+, which is imposed on the uploaded photos. The

analysis mostly focused on the published images’ properties on

those OSNs and the changes that arose due to the processing

with regard to the JPEG quantization table, pixel resolution,

and related metadata. Of particular interest to our research is

Cover Object C

Secret Message M

Stego Key K

Stego-System Stego Object S

Steganography

Text Image Video Audio Protocol

Spatial Domain

LSB DCT

Frequency Domain

DWT

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

429 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

which photo formats Facebook uses for the uploaded photos

and how it processes those images.

As proposed by Nagaraja, Houmasadr, Piyawongwisal,

Singh, Agrawal, and Borisov [27], Stegobot is a bot network

that communicates over unobservable communication channels.

Stegobot is a social network botnet on Facebook for stealing

data from users and sending those stolen data to the botmaster.

It is based on a model of covert communication over a social

network in which bots use Facebook image steganography to

conceal the presence of communication within the image-

sharing activity of user interaction. Commands are directed

from one infected node to another, and the stolen data is

returned to the botmaster, node after node. Through their work,

a database of 116 different photos was used to identify the

maximum JPEG resolution not altered by Facebook image

processing. Then photos were resized to a lower size than the

maximum Facebook constraint. After that, the bot

communications were embedded through the use of the Yet

Another Stenographic System (YASS) steganography method.

Once the carrier images had been uploaded to Facebook, a

YASS decoder was employed to extract the communications.

The YASS method [28] embeds data in randomized locations

from which it will hinder blind steganalysis and the malicious

processing of steganographic signals by rivals. YASS embeds

data randomly in 8×8 blocks in which the embedding does not

correspond with the 8×8 grid used during JPEG compression.

YASS resists blind steganalysis and corruption from JPEG

compression. Therefore, this method is better suited to be used

on Facebook since it resists the JPEG compression applied by

Facebook. However, Facebook image compression methods

can still distort some bits of the steganography, but the majority

of the message can be recovered and the lost data can be

inferred when the data is in the form of text or photos. In our

research, we also use Facebook to apply image steganography

and investigate the Facebook image processing in order to

provide better steganographic results over Facebook.

Throughout the research, we have used multiple steganography

tools to carry out our experiments, in which we aim to hide and

transmit the secret message rather than hiding and transmitting

bot network communications.

One of the most relevant works for steganography on

Facebook was done by Owen Campbell Moore in April 2013

for his master’s degree project [29]. Owen developed

Secretbook, which is a Goggle Chrome web browser extension

using Modified Linear Block Code method to encrypt up to 140

ASCII characters into an image. Facebook users can manually

upload the image on their account and decrypt the message

from Facebook images through the extension. Owen

determined that Facebook compresses JPEG images with a

quality factor of 75. Beckhusen in [30] demonstrates that

Secretbook automatically compresses a JPEG image as

Facebook would and then embeds the hidden message. In

addition, it adds redundancy so any lasting alteration can be

corrected by restoration from the copies. Our research approach

is related to the work of Campbell-Moore, in which, for some

part of our experiments, we have tried to investigate the image

formats accepted and the image processing imposed by

Facebook to photos uploaded a series of 50 times; we have

attempted to allow photos to be processed by Facebook prior to

applying steganography in order to minimize some of the

Facebook image processing, which may destroy the embedded

secret messages. Also, we proved that it is possible to use JPEG

images to transmit secret messages longer than 140 characters

through Facebook.

The work of Amsden, Chen, and Yuan [31] investigated a

technique for applying steganography on Facebook cover

photos. Their experiments demonstrated that Facebook cover

photos can successfully hold hidden information to a capacity

of at least 20% using the DCT coefficient embedding method.

They concluded from their experiments that manual interaction

with Facebook should be used for steganographic purposes

instead of an automated Facebook integrated application. This

research is also related to our work in which we have

experimented applying steganography on Facebook cover

photos by embedding secret messages up to 20 KB using

different steganography tools. In addition, we have investigated

the Facebook image processing on different platforms and

different browsers, and we have concluded that applying

steganography using Facebook’s mobile application is not

applicable due to the high intensity of image processing applied

to the uploaded photos. In addition, we proved that we can

apply steganography on Facebook post photos and Facebook

profile photos using SilentEye tool.

A recent research [32] by Hiney, Dakve, Szczypirski, and

Gaj investigated the compression that Facebook imposes on

photos uploaded to the site through a set of experiments. Their

work explored a method for minimizing the level of Facebook

compression so that JPEG images can be used as steganography

carriers on Facebook. Their experiments attempted to

preprocess JPEG images through resizing them, converting

them to 2048 * yyy and 960 * yyy resolutions, and compressing

them prior to uploading to Facebook so that the Facebook

processing on the uploaded photos will be minimized.

Moreover, they selected photos that have Facebook upload to

download file size ratios closest to 1.0 to start applying

steganography on them. As they tested multiple steganography

tools prior to their Facebook steganography test, they

discovered that JPHide and JPSeek (JPHS) steganography tool

yielded a success rate of 50% for recovery attempts. This

research is very close to our work in which we have

investigated the Facebook image processing on a selected JPEG

photo for 50 times. In addition, we have tested different

operating systems and browsers to determine whether these

factors would have an influence on Facebook image processing

or not. In our work, we also used different steganography

methods to apply steganography on Facebook using different

steganography tools.

To summarize our efforts, we have attempted in this research

to explore Facebook image processing on uploaded photos for

50 times, and on various platforms, operating systems, and

browsers. We have selected certain steganography tools that

have success rates for applying steganography on Facebook

based on the literature. Through this research, we have explored

different methods for applying steganography on Facebook

cover photos, post photos, and profile photos with various text

file sizes of 77 bytes, 134 bytes, 1 KB, 10 KB, and 20 KB.

Also, we have examined the steganography persistency on

photos uploaded to Facebook and explored the possibility of

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

430 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

applying nested steganography. Finally, we have demonstrated

comparisons between the selected tools based on our findings.

The following section explains the steganographic tools we

selected and our motives behind this selection.

IV. STEGANOGRAPHY TOOLS

There are multiple steganographic tools available to apply

steganography on different file formats. Since we interested in

image steganographic tools that can be used to hide and extract

secret messages from uploaded and downloaded Facebook

photos respectively, we were very selective in choosing those

tools that we planned to use to carry out our steganography

experiments. Those selected tools are SilentEye, JPHide and

JPSeek (JPHS), and Secretbook. We chose to select those three

tools specifically because, after reviewing the literature, we

learned that experiments have already been conducted using

those three tools to apply steganography on Facebook. These

experiments revealed some level of successful attempts in

extracting the hidden messages after downloading the stego

images from Facebook [31] [33]. This is especially the case for

Secretbook, which has been designed specifically for

steganography on Facebook. The following three subsections

provide more details about these tools along with the reasons

behind selecting them to carry out our experiments.

A. SilentEye

SilentEye is a cross-platform steganography application. This

software combines a new steganography method and

cryptography process by using a plug-in system. SilentEye

allows information to be hidden in photos or sounds using the

least significant bit (LSB) steganography technique [34]. Based

on the experiment in [33], after downloading steganographic

images (post photos) from Facebook, out of several

steganographic tools that had been tested, which are JPHide

and JPSeek, StegHide, F5, SteganPEG, and SilentEye, the

researchers found SilentEye was the only tool that was able to

extract the hidden messages from the downloaded Facebook

stego post images; at some level, SilentEye was able to survive

the Facebook compression process. Based on the test result of

the aforementioned research, we selected SilentEye tool as one

of the steganography tools that we used to carry out our

experiments.

B. JPHide and JPSeek (JPHS)

JPHide and JPSeek (JPHS) is an open source steganography

software that respectively embeds and recovers files in/from

JPEG images. JPHide uses a DCT coefficient-embedding

method to encrypt the secret message into the cover medium.

The user of JPHide is required to set a passphrase to encode the

data, while the user of JPSeek needs to have the exact

passphrase to decode the secret message successfully [35].

Referring to the two experiments carried out in [31] and [32],

both papers selected JPHide and JPSeek tool to perform their

experiments of communicating secret messages via Facebook.

In the first study, the researchers used JPHide and JPSeek tool

to hide and extract secret messages from Facebook’s cover

photo successfully. While in the second study, the researchers

tested several steganography tools to be used for Facebook,

which are Open Puff, Outguess Rebirth, JPHide and JPSeek,

Steg, F5, Our Secret, StegHide, Incognito, and Steganography.

Out of all those tools tested, JPHide and JPSeek was the only

tool that succeeded in applying steganography on Facebook

with a 50% success rate of secret message retrieval from the

downloaded Facebook stego post photo. Therefore, we have

selected JPHide and JPSeek to be the second steganography

tool we used in our experiments.

C. Secretbook

Secretbook is a Google Chrome extension that is designed to

apply steganography on Facebook. Secretbook uses a Modified

Linear Block Code method to encrypt up to 140 ASCII

characters into photos [29] [36] [37]. We have selected

Secretbook as one of the tools to be used in our experiments

since this tool is designed specifically for applying

steganography on Facebook, so including this tool will add

value to our work and provide a wider perspective to our

findings. The following section details our efforts in conducting

the preliminary experiments for assessing Facebook image

processing.

V. PRELIMINARY EXPERIMENTS

Facebook resizes and formats the uploaded photos and

eliminates any redundant data on those photos prior to their

publication. This allows photos to use minimum space and

bandwidth when posted on Facebook pages. Facebook resizes

regular photos to 720 pixels, 960 pixels, or 2048 pixels and

cover photos to 851 pixels by 315 pixels. In addition, Facebook

changes the format of all pictures uploaded to JPEG format and

ensures that the size of the cover photo is less than 100 KB;

otherwise, Facebook compresses the uploaded photo to the

aforementioned sizes [38]. The following subsections

demonstrate our efforts in investigating and assessing Facebook

image processing on the uploaded photos through a set of

preliminary experiments. The first section covers our first

experiment of investigating Facebook image processing on

different platforms. The second and the third sections cover our

experiments using different operating systems and browsers

respectively.

A. Assessing Facebook’s Photo Processing Scheme

As a start and before applying steganography on photos and

uploading them to Facebook, we attempted to pretest and

explore Facebook environment and interaction with regular

photos uploaded to it to investigate image processing,

compression, or any relative changes that might alter the

regular images’ properties after uploading those images to

Facebook. The purpose of this experiment was to check the

possibility of any photo processing by Facebook that could

have potential critical consequences on the secret messages

embedded in the carrier’s photos uploaded to Facebook when

we applied steganography on them later. We conducted this test

on Facebook in different platforms (mobile and personal

computer [PC]), operating systems, and browsers and in diverse

possible Facebook photo uploading locations. We have done

the test on Facebook mobile application and Facebook website;

and the test included Facebook cover photo, Facebook profile

photo, and Facebook post photo category.

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

431 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

In our preliminary experiments, we chose a random regular

photo that had no secret message on it and uploaded it to

Facebook. The features of the photo that we selected to carry

out the test are in the JPEG format, with a size of 92.3 KB,

94,607 bytes, dimensions of 705 pixels × 856 pixels, horizontal

and vertical resolution of 72 dpi, bit depth of 24, resolution unit

of 2, and color representation of sRGB. Fig. 3 illustrates the

original photo selected to be used throughout all our

experiments and Fig. 4 presents Facebook page highlighting the

three different photo uploading locations. We have noticed that

as we uploaded the original photo to Facebook, the photo’s

properties with regard to the size, dimensions, and even

perceptibility have changed. We have recorded the observed

variations between the original photo before uploading to

Facebook and the changes that occurred after uploading;

accordingly, we kept uploading the previous uploaded photo to

Facebook several times to check if Facebook image processing

would continue to be applied to the previous already processed

image, or would it be stopped at a certain point in time?

Figure 3. The original photo

 Figure 4. Facebook photo uploading locations

We repeated the experiment 50 times in the following

sequence: we first uploaded the original photo, downloaded it,

uploaded the former original downloaded photo, uploaded it

again, downloaded it and so on for 50 times. Fig. 5 illustrates

the 50-times uploading process. From this experiment’s results,

we learned that Facebook image processing will continue to be

applied even if the photo has already gone through processing

for all of the 50 uploading tries on Facebook, and this is applied

on both Facebook mobile application and Facebook website.

For the case of Facebook mobile application, the size of the

uploaded original photo kept changing for all of the 50 tries of

the experiment. However, for the case of uploading photos

manually by interacting directly with Facebook website through

the PC instead of uploading through Facebook mobile

application, the photo processing, with regard to any change of

the photo’s size in bytes, occurred during the early tries of the

uploading; and it was fixed at a certain point regardless of the

number of times the photo was re-uploaded and downloaded

again. To give specific details, as we started uploading the

original photo of size 94,607 bytes and dimensions of 705 ×

856 pixels using the PC, for the case of Facebook cover photo,

the photo’s size changed from the first uploading try to hold at

the new size of 66,305 bytes and this size was fixed for the rest

of the 50 uploading tries of the test. For the case of Facebook

post photo, the image processing altered the size of the

uploaded photo for the first 11 tries and on the 12
th

 try the size

of Facebook post photo got fixed at 14,250 bytes for the rest of

the 50 test tries. On the other hand, the image processing with

regard to the change in size of Facebook profile photo stopped

at the 14
th

 try of the test and proceeded to provide the same

fixed size, which is 14,249 bytes, for the rest of the 50 test tries.

We can clearly notice that Facebook image processing through

a mobile application has a higher intensity than the processing

through a PC. Also, the findings indicate that the level of photo

compression through the PC is higher than the photo

compression through the mobile application. Moreover, the

uploaded photos though the PC appear very close to the

original photo, while the uploaded photos through Facebook

mobile application look distorted and different than the original

photo. Table I demonstrates the series of size changes in bytes

due to Facebook image processing, which occurred on the

uploaded original photo using both a Facebook mobile

application and a PC for 50 times; and Fig. 6 illustrates those

findings on a chart.

Upload to FacebookUpload to Facebook Download the
processed photo

Download the
processed photo

For 50 times

Figure 5. The 50 uploading process

TABLE I
Facebook Image Processing on the Original Photo Uploaded for 50 Times

Facebook

Mobile Application Personal Computer (PC)

Cover Post Profile Cover Post Profile

0 94,607 94,607 94,607 94,607 94,607 94,607

1 89,652 49,003 89,607 66,305 46,891 46,891

2 89,658 95,253 84,903 66,305 46,879 15,894

10 83,557 92,048 71,646 66,305 14,251 14,249

20 77,925 93,790 65,288 66,305 14,250 14,249

30 75,150 100,431 62,541 66,305 14,250 14,249

40 73,803 103,093 61,587 66,305 14,250 14,249

50 73,184 102,274 61,640 66,305 14,250 14,249

Figure 6. Facebook mobile and PC image processing

Facebook

Cover Photo

Facebook

Profile Photo

Facebook

Post Photo

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

432 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

The experiment’s outcomes from uploading the original

photo to Facebook for 50 times are illustrated in Table II. Out

of these 50 tries of uploading the previous downloaded photo to

Facebook, the selected tries included in this table are try 0,

which is the original photo before uploading to Facebook and

try 1, which is the first time we uploaded the original photo to

Facebook. This try reflects how the original photo’s size was

changed for the first time due to its first encounter with

Facebook image processing. Also, we included try 2 in the

table, which is the re-uploading of the first downloaded photo

from Facebook. We selected this try because, as we noticed,

most of the leaps of the original photo’s change of size usually

occurred on the 1
st
 and 2

nd
 tries of uploading to Facebook, and

the rest of the 50 tries usually had a gradual change of sizes if

they were not fixed. Moreover, tries 10, 20, 30, 40, and 50 are

also included in the table below to give a view of the gradual

changes of the original photo uploaded to Facebook due to the

continuous image processing. This table also demonstrates the

size in bytes and the dimensions in pixels for each uploaded

photo. All photos in Table II are illustrated in black and white

tones to highlight the gradual visual changes. Only in the case

of Facebook mobile post photos, the black and white theme did

not reflect all the visual changes; therefore, we presented a

second version of Facebook Mobile post photos with a

grayscale theme in Table III. To provide a comprehensive

perspective about Facebook image processing that was imposed

on the 50 uploading tries of the original photo, we attempted to

use a photo comparison tool that makes visual and binary

comparisons between files and tracks differences in order to

investigate the continuous Facebook image processing on the

preceding processed uploaded photos. The tool that we selected

to track the differences between consecutive photos of the 50

tries is Araxis Merge [39]. This tool provides image

comparisons in the changed pixels as well as illustrating binary

comparisons, thereby demonstrating the block of bytes

removals, insertions, and changes that occurred between

photos. We used this tool in our experiment to make

comparisons between each two consecutive uploaded photos

from the 50 tries in which we have identified the block of bytes

removals [-], bytes insertions [+], and bytes changes [#] for

them. The findings are also illustrated in Table II.

TABLE II Mobile and PC Facebook Image Processing on the Original Photo Uploaded for 50 Times and the Binary Comparisons

 0 1 2 10 20 30 40 50

FB (M)

Cover photo*

49,607 Bytes

705x856 Pixels

89,652 Bytes

705x856 Pixels
[-]78 [+]74 [#]186

89,658 Bytes

705x856 Pixels
[-]43 [+]83 [#]787

83,557 Bytes

705x856 Pixels
[-]49 [+]45 [#]105

77,925 Bytes

705x856 Pixels
[-]33 [+]31 [#]154

75,150 Bytes

705x856 Pixels
[-]33 [+]30 [#]184

73,803 Bytes

705x856 Pixels
[-]41 [+]38 [#]167

73,184 Bytes
705x856 Pixel

[-]87 [+]81 [#]241

FB (M)

Post photo*

49,607 Bytes

705x856 Pixels

94,003 Bytes

705X856 Pixels
[-]99 [+]93 [#]232

95,253 Bytes

705X856 Pixels
[-]70 [+]64 [#]483

92,048 Bytes

705X856 Pixels
[-]4 [+]1 [#]143

93,790 Bytes

705X856 Pixels
[-]2 [+]1 [#]405

100,431 Bytes
705X856 Pixels
[-]6 [+]4 [#]433

103,093 Bytes
705X856 Pixels
[-]8 [+]3 [#]441

102,274 Bytes
705X856 Pixels
[-]2 [+]2 [#]422

FB (M)

Profile photo*

49,607 Bytes

705x856 Pixels

89,607 Bytes

705X705 Pixels
[-]84 [+]77 [#]112

84,903 Bytes

705X705 Pixels
[-]57 [+]51 [#]291

71,646 Bytes

705X705 Pixels
[-]46 [+]43 [#]73

65,288 Bytes

705X705 Pixels
[-]23 [+]21 [#]84

62,541 Bytes

705X705 Pixels
[-]35 [+]33 [#]104

61,587 Bytes

705X705 Pixels
[-]69 [+]62 [#]159

61,640 Bytes

705X705 Pixels
[-]49 [+]46 [#]142

FB (PC)

Cover

photo**
49,607 Bytes

705x856 Pixels

66,305 Bytes

705x856 Pixels
[-]20 [+]21 [#]23

66,305 Bytes

705x856 Pixels
[-]0 [+]0 [#]1

66,305 Bytes

705x856 Pixels
[-]0 [+]0 [#]1

66,305 Bytes

705x856 Pixels
[-]0 [+]0 [#]1

66,305 Bytes

705x856 Pixels
[-]0 [+]0 [#]1

66,305 Bytes

705x856 Pixels
[-]0 [+]0 [#]1

66,305 Bytes

705x856 Pixels
[-]0 [+]0 [#]1

FB (PC)

Post photo**

49,607 Bytes

705x856 Pixels

46,891 Bytes
705x856 Pixels

[-]23 [+]10 [#]20

46,879 Bytes

705x856 Pixels
[-]0 [+]1 [#]209

14,251 Bytes

705x856 Pixels
[-]9 [+]21 [#]58

14,250 Bytes

705x856 Pixels
[-]2 [+]2 [#]36

14,250 Bytes

705x856 Pixels
[-]0 [+]0 [#]1

14,250 Bytes

705x856 Pixels
[-]0 [+]0 [#]1

14,250 Bytes

705x856 Pixels
[-]0 [+]0 [#]1

FB (PC)

Profile photo**

49,607 Bytes
705x856 Pixels

46,891 Bytes

705x856 Pixels
[-]23 [+]10 [#]20

15,894 Bytes

325x395 Pixels
[-]9 [+]14 [#]60

14,249 Bytes

325x395 Pixels
[-]15 [+]11 [#]86

14,249 Bytes

325x395 Pixels
[-]1 [+]0 [#]19

14,249 Bytes

325x395 Pixels
[-]0 [+]0 [#]1

14,249 Bytes

325x395 Pixels
[-]0 [+]0 [#]1

14,249 Bytes

325x395 Pixels
[-]0 [+]0 [#]1

*FB (M): Facebook through a Mobile Application, * *FB (PC): Facebook through a Personal Computer

Binary Comparisons Highlighting [-]: Number of Removed Blocks, [+]: Number of Inserted Blocks, and [#]: Number of Changed Blocks

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

433 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

file:///C:/Users/User/Desktop/CLEAN_REVISED.docx%23_ENREF_39

From the table above, we can view the gradual visual

changes that occurred to the original photo uploaded to

Facebook (FB) using both the personal computer (PC) and

Facebook mobile application (M). We have noticed that the

dimensions of Facebook profile photos using the Facebook

mobile application are different than Facebook profile photos

using the PC. This is due to the imposed crop feature in FB

mobile app, whereas we didn’t crop the photos when we

uploaded them through Facebook website. Furthermore, we

repeated the same experiment of the 50 uploading tries on

Facebook mobile application and PC for three times to check if

we are going to have the same outcomes if we upload the same

original photo. Surprisingly, as we repeated the same

experiment using the same original photo on the same app or

PC, we found that every time we somehow received different

results. Table IV demonstrates the different outcomes of

repeating the same experiment using Facebook mobile

application. Also, we clearly noticed that most of the changes,

image processing, or distortions occurred when we uploaded

photos using Facebook mobile app rather than a PC and

especially when we uploaded photos as a Facebook post photo

rather than a Facebook cover or profile photo. Fig. 7 illustrates

the visual changes of three selected Facebook post photos

throughout the 50 tries using a PC. Also, to provide a more

accurate conclusion about those visual differences between the

uploaded photos, we used with Araxis Merge tool, another

image comparison tool (Image Comparer 3.8), which makes

comparisons between photos and indicates the percentage of

differences between them. We have selected two photos, try 5

and try 15, from the 50 tries of Facebook PC post photos and

compared between them using Image Comparer; this tool

indicated that 5% of differences exist between the two photos

selected, which supports our observations; however, we

depended on Araxis Merge more since this tool demonstrates

the photos’ differences with greater details. For Facebook cover

photos, we noticed that the size of the original photo uploaded

changed only on the 1
st
 try of the experiment and then it

remained fixed for the rest of the 50 tries. We suspect that

although the rest of the 50 tries of Facebook cover photos held

the same size, dimensions, and the perceptibility, other,

invisible photo’s properties might have existed that got changed

during the experiments; this also applies to the late tries of

Facebook post and profile photos in which the photos’ sizes

became fixed at the 12
th

 and the 14
th

 try respectively. To

validate our assumption, we examined similar photos selected

from the 50 tries of Facebook’s cover, post, and profile photos

in which they share the same size, dimensions, and

manifestation and compared them using Araxis Merge to

confirm our assumption, which is that although those photos

hold the same size, dimensions, and manifestation, they are

different and contain invisible changes. By doing so, we

discovered through the binary comparison of each two

consecutive photos of the 50 uploaded cover, post, and profile

photos that they actually hold some binary differences. For the

case of Facebook cover photo, we learned that a single block of

bytes was changed between the consecutive uploaded Facebook

cover photos, which confirmed our assumption. For the case of

Facebook post photos that shared the same sizes, starting from

try 12, the binary comparison proved that there are some

differences with regard to the number of blocks of bytes

removed, inserted, and changed; and these differences are

minimized gradually till they reach to only 1 constant block of

bytes changed for the remainder of the 50 tries starting

precisely from the 19
th

 try and forward. Furthermore, although

Facebook profile photos had fixed sizes starting from try 14,

the binary comparison revealed many changes on those photos;

those changes gradually decreased for each proceeding

uploading try until they stabilized at only 1 change for the

remaining part of the 50 tries, starting also from try number 19.

Fig. 8 illustrates the Araxis Merge photo comparison of try 2

and try 10 of the PC Facebook profile photos and Fig. 9

demonstrates their binary comparisons.

TABLE III Facebook Mobile Post Photos with Grayscale Theme

1 2 10 20 30 40 50

94,003 Bytes

705X856 Pixels
[-]99 [+]93 [#]232

95,253 Bytes

705X856 Pixels
[-]70 [+]64 [#]483

92,048 Bytes

705X856Pixels
[-]4 [+]1[#]143

93,790 Bytes

705X856 Pixels
[-]2 [+]1 [#]405

100,431 Bytes
705X856 Pixels
[-]6 [+]4 [#]433

103,093 Bytes
705X856 Pixels
[-]8 [+]3 [#]441

102,274 Bytes
705X856 Pixels
[-]2 [+]2 [#]422

TABLE IV Different Facebook Processing Using the Facebook Mobile

Application

Processing of Facebook Mobile Application

Experiment 1 Experiment 2 Experiment 3

0 94,607 94,607 94,607

1 94,003 94,003 49,003

2 95,253 95,253 95,253

10 92,048 92,048 92,048

20 93,823 93,790 93,790

30 98,779 100,277 100,431

40 79,822 103,068 103,093

50 76,461 103,270 102,274

Figure 7. Visual changes of PC Facebook uploaded post photos

Figure 8. Araxis Merge photo comparison of tries 2 and 10 of PC Facebook

profile photos

Try#10

14,251 Bytes
705x856 Pixels

Try#50

14,250 Bytes
705x856 Pixels

Try#1

46,891 Bytes
705x856 Pixels

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

434 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

Figure 9. Araxis Merge binary comparison of try 2 and 10 of PC Facebook

profile photos

Moreover, after we had uploaded the original photo to

Facebook 50 times, from among these 50 tries we selected, at

random, a single photo and ran a small experiment: we

attempted to upload this photo to Facebook to check if the

uploaded version would have the same features each time as the

one from our previous experiment or not. We repeated this

experiment three times, during which we uploaded the same

photo and checked the photo’s features once we downloaded it.

For this experiment, we selected try number 11 from Facebook

cover, post, and profile photos, uploaded them to Facebook,

downloaded them as photo number 12, and finally checked

their features. The previous size of Facebook cover photo

number 11 was 66,305 bytes and the size of cover photo

number 12 was also 66,305 bytes. Whereas the previous size of

Facebook post photo number 11 was 14,248 bytes and photo

number 12 was 14,250 bytes. For the case of the Facebook

profile photo, the size of the 11
th

 photo was 14,247 bytes and

for the 12
th

 photo the size was 14,252 bytes. The purpose of this

experiment was to check if uploading the same photo will lead

exactly to the next photo being the same and to check if the

downloaded photo from each try is also the same, confirming

the outcomes with a binary comparison using Araxis Merge.

From this experiment, we learned that as we upload the cover

photo number 11, which holds the size of 66,305 bytes, we

always get a photo number 12, which holds the same size of

66,305 bytes. The same thing applies to Facebook post and

profile photos in which we get the same sizes as the previous

experiment. The findings of repeating this experiment for three

times were also the same. Checking the differences between

each consecutive downloaded photo using a binary comparison,

we discovered that the downloaded photos are different

although they share the same size; hence, all of them hold one

block of bytes changed between each consecutive photo, which

indicates that the downloaded photos are different although

they share the same size. Table V illustrates the findings of this

experiment and Fig. 10 illustrates the single block of bytes

changed between downloaded cover photo number 11 of the 1
st

and the 2
nd

 tries. The following subsection discusses our next

experiment using different operating systems.

TABLE V Binary Comparison of the Same Downloaded Photo

FB Cover Photo FB Post Photo FB Profile Photo

Try 1 Try 2 Try 3 Try 1 Try 2 Try 3 Try 1 Try 2 Try 3

11 66, 305 66, 305 66, 305 14,248 14,248 14,248 14,247 14,247 14,247

12
66, 305

[-]0 [+]0 [#]1
66, 305

[-]0 [+]0 [#]1
66, 305

[-]0 [+]0 [#]1
14,250

[-]0 [+]0 [#]1
14,250

[-]0 [+]0 [#]1
14,250

[-]0 [+]0 [#]1
14,252

[-]0 [+]0 [#]1
14,252

[-]0 [+]0 [#]1
14,252

[-]0 [+]0 [#]1
[-]: Number of Removed Blocks, [+]: Number of Inserted Blocks, and [#]: Number of Changed Blocks

Figure 10. Binary comparison of the downloaded Facebook cover photos

number 11

B. Different Operating Systems

We repeated the same experiment in which we uploaded the

same original photo to different photo uploading locations on

Facebook for 10 times; however, this time we used different

operating systems (OSs) to check if different operating systems

have an effect on the same experiment’s findings or not with

regard to the uploaded photos’ size in bytes and the binary

comparisons. The purpose of this experiment was to confirm if

repeating the same experiment using different operating

systems would lead to an exact result or not. For this

experiment we selected various operating systems, which were

Windows, Mac, Fedora, iOS, and Android; we compared the

findings based on Windows OS since the previous experiment

had been conducted using Windows. We conducted the

experiment on Facebook cover photo, Facebook post photo,

and Facebook profile photo for 10 times, for each of which we

uploaded the same original image to Facebook, downloaded it,

uploaded it again, and so on for 10 times. Tables VI, VII, and

VIII demonstrate the findings of this experiment and Figures

11, 12, and 13 illustrate those findings in charts. We noticed

that for Facebook cover photo, Windows and Fedora operating

systems led to the same results while each one of the other

operating systems led to different findings. Also, according to

Fig. 11, we noticed that in all operating systems, the curves of

the Facebook cover photos started with a decreasing manner

and around the second try the curves approximately started to

have a fixed pattern. Checking Facebook post photo, we

observed that Windows, Fedora, and Mac OSs had the same

results for the first three uploading tries and on the fourth try

they started to provide different outcomes from Windows in

which Fedora and Mac have approximately the same outcomes.

This is clearly illustrated in Table VII and Fig. 12. For the case

of Facebook profile photo, we discovered that each operating

system led to different outcomes from Windows, and we

noticed that Fedora and Mac had approximately the exact

results. Checking Fig. 13, we noticed that the curves of

Facebook profile photos in all the operating systems started

with a decreasing mode and, around the second try, the curves

started to have an approximately regular pattern. From this

experiment, we concluded that Facebook processes the

uploaded photo differently based on the operating system.

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

435 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

TABLE VI Facebook Cover Photos through Different Operating Systems

Facebook Cover Photo

Windows Fedora Mac iOS Android

0 94,607 94,607 94,607 94,607 94,607

1
66,305

[-]20 [+]21 [#]23
66,305

[-]20 [+]21 [#]23
46,891

[-]23 [+]10 [#]20
89,652

[-]78 [+]74 [#]186
40,721

[-]21 [+]1 [#]18

2
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
46,879

[-]0 [+]1 [#]209
89,658

[-]43 [+]38 [#]787
40,721

Identical

3
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
46,870

[-]2 [+]1 [#]197
87,772

[-]24 [+]23 [#]207
40,721

Identical

4
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
46,878

[-]1 [+]1 [#]185
87,762

[-]115 [+]112 [#]723
40,721

Identical

5
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
46,890

[-]5 [+]3 [#]191
86,273

[-]49 [+]90 [#]386
40,721

Identical

6
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
46,875

[-]3 [+]3 [#]162
86,218

[-]90 [+]82 [#]724
40,721

Identical

7
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
46,879

[-]1 [+]1 [#]131
84,833

[-]21 [+]18 [#]347
40,604

[-]4 [+]5 [#]185

8
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
46,880

[-]4 [+]4 [#]134
84,770

[-]65 [+]61 [#]831
40,604

Identical

9
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
46,879

[-]1 [+]1 [#]104
83,778

[-]44 [+]39 [#]443
40,604

Identical

10

66,305

[-]0 [+]0 [#]1

66,305

[-]0 [+]0 [#]1

46,869

[-]0 [+]0 [#]83

83,557

[-]33 [+]24 [#]662

40,604

Identical
[-]: Number of Removed Blocks, [+]: Number of Inserted Blocks, and [#]: Number of Changed Blocks

Figure 11. Facebook cover photos through different operating systems

TABLE VII Facebook Post Photos through Different Operating Systems

Facebook Post Photo

Windows Fedora Mac iOS Android

0 94,607 94,607 94,607 94,607 94,607

1
46,891

[-]23 [+]10 [#]20
46,891

[-]23 [+]10 [#]20
46,891

[-]23 [+]10 [#]20
49,003

[-]99 [+]93 [#]232
40,721

[-]21 [+]1 [#]18

2
46,879

[-]0 [+]1 [#]209
46,879

[-]0 [+]1 [#]209
46,879

[-]0 [+]1 [#]209
95,253

[-]70 [+]64 [#]483
40,604

[-]4 [+]5 [#]185

3
46,870

[-]3 [+]0 [#]195
46,870

[-]3 [+]0 [#]195
46,870

[-]3 [+]0 [#]195
99,044

[-]9 [+]8 [#]316
40,586

[-]0 [+]0 [#]36

4
15,897

[-]14 [+]17 [#]52
46,878

[-]1 [+]1 [#]185
46,878

[-]1 [+]1 [#]185
98,641

[-]4 [+]3 [#]666
40,580

[-]0 [+]0 [#]19

5
14,258

[-]14 [+]8 [#]81
46,890

[-]5 [+]3 [#]191
46,890

[-]5 [+]3 [#]191
97,012

[-]3 [+]3 [#]733
40,582

[-]0 [+]0 [#]12

6
14,251

[-]4 [+]3 [#]93
46,875

[-]3 [+]3 [#]162
46,875

[-]3 [+]3 [#]163
95,665

[-]6 [+]2 [#]761
40,582

[-]0 [+]0 [#]1

7
14,248

[-]2 [+]3 [#]95
46,879

[-]1 [+]1 [#]131
46,879

[-]1 [+]1 [#]131
94,544

[-]4 [+]4 [#]720
40,582

[-]0 [+]0 [#]1

8
14,252

[-]3 [+]3 [#]90
46,880

[-]4 [+]4 [#]134
46,880

[-]4 [+]4 [#]134
93,585

[-]17 [+]4 [#]722
40,582

[-]0 [+]0 [#]1

9
14,250

[-]1 [+]1 [#]62
46,879

[-]1 [+]1 [#]104
46,879

[-]1 [+]1 [#]104
92,869

[-]11 [+]3 [#]786
40,582

[-]0 [+]0 [#]1

10

14,251

[-]0 [+]0 [#]45

15,948

[-]6 [+]21 [#]48

15,948

[-]6 [+]21 [#]48

92,048

[-]1 [+]2 [#]914

40,582

[-]0 [+]0 [#]1
[-]: Number of Removed Blocks, [+]: Number of Inserted Blocks, and [#]: Number of Changed Blocks

Figure 12. Facebook post photos through different operating systems

TABLE VIII Facebook Profile Photos through Different Operating Systems

Facebook Profile Photo

Windows Fedora Mac iOS Android

0 94,607 94,607 94,607 94,607 94,607

1
46,891

[-]23 [+]10 [#]20
46,891

[-]23 [+]10 [#]20
46,891

[-]23 [+]10 [#]20
89,607

[-]84 [+]77 [#]112
35,162

[-]25 [+]1 [#]11

2
15,894

[-]9 [+]14 [#]60
46,879

[-]0 [+]1 [#]209
46,879

[-]0 [+]1 [#]209
84,903

[-]57 [+]51 [#]291
35,162

Identical

3
14,249

[-]17 [+]11 [#]83
46,870

[-]2 [+]0 [#]196
46,870

[-]3 [+]0 [#]195
82,159

[-]60 [+]55 [#]391
35,162

Identical

4
14,246

[-]0 [+]0 [#]99
46,878

[-]1 [+]1 [#]185
46,878

[-]1 [+]1 [#]186
79,713

[-]0 [+]1 [#]132
35,162

Identical

5
14,246

[-]1 [+]1 [#]108
46,890

[-]5 [+]3 [#]199
46,890

[-]5 [+]3 [#]191
77,853

[-]52 [+]49 [#]301
35,162

Identical

6
14,247

[-]3 [+]3 [#]86
46,875

[-]3 [+]3 [#]162
46,875

[-]3 [+]3 [#]162
76,287

[-]41 [+]38 [#]334
35,162

Identical

7
14,246

[-]5 [+]2 [#]90
46,879

[-]1 [+]1 [#]131
46,879

[-]1 [+]1 [#]131
74,973

[-]32 [+]27 [#]392
34,793

[-]8 [+]5 [#]208

8
14,250

[-]2 [+]2 [#]67
46,880

[-]4 [+]4 [#]134
46,880

[-]4 [+]4 [#]134
73,721

[-]39 [+]35 [#]301
34,793

Identical

9
14,248

[-]0 [+]0 [#]39
46,879

[-]1 [+]1 [#]104
46,879

[-]1 [+]1 [#]104
72,583

[-]37 [+]34 [#]338
34,793

Identical

10

14,249

[-]1 [+]1 [#]38

46,869

[-]0 [+]0 [#]83

46,869

[-]0 [+]0 [#]83

71,646

[-]9 [+]8 [#]328

34,793

Identical
[-]: Number of Removed Blocks, [+]: Number of Inserted Blocks, and [#]: Number of Changed Blocks

Figure 13. Facebook profile photos through different operating systems

C. Different Web Browsers

We again conducted the same previous experiment but this

time examining four different Internet browsers in which we

uploaded the same original photo to Facebook website for 10

times to check if the type of the browser has an effect on the

experiment findings of Facebook image processing or not; the

experiment included the photos’ size in bytes and the binary

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

436 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

comparison. The four browsers that we selected to carry out

this experiment were Google Chrome, Internet Explorer,

Mozilla Firefox, and Safari. The findings of this experiment are

presented in Tables IX, X, and XI. From the experiment

findings, we noticed that for the case of Facebook cover photo,

all the browsers led to the exact same results. For the case of

Facebook post photo, all the browsers led to the same results

except for the case of Google Chrome, which led to the exact

same result as the rest of the browsers until it started to have

different results starting from try number 6. Finally, for the case

of Facebook profile photo, again all the browsers led to the

same exact results except for Google Chrome, which had the

exact same results as the other browsers until it started to

change starting from try number 7. We concluded from this

experiment that the type of the browser will not have a great

effect on the future steganography experiments, at least in the

first five tries for all the browsers. Also, through this

experiment, we observed that in all the browsers there is only

one block of bytes changes between consecutive uploaded

photos when we upload them as cover photos rather than post

or profile photos. Thus, we predicted that applying

steganography on Facebook cover photos could lead to the

desired results, which we will explore in the following section.

The subsequent section discusses steganography experiments

using different methods.

TABLE IX Facebook Cover Photos through Different Internet Browsers

Windows

Facebook Cover Photo

Google Chrome Firefox Internet Explorer Safari

0 94,607 94,607 94,607 94,607

1
66,305

[-]20 [+]21 [#]23
66,305

[-]20 [+]21 [#]23
66,305

[-]20 [+]21 [#]23
66,305

[-]20 [+]21 [#]23

2
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1

3
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1

4
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1

5
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1

6
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1

7
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1

8
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1

9
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1
66,305

[-]0 [+]0 [#]1

10

66,305

[-]0 [+]0 [#]1

66,305

[-]0 [+]0 [#]1

66,305

[-]0 [+]0 [#]1

66,305

[-]0 [+]0 [#]1
[-]: Number of Removed Blocks, [+]: Number of Inserted Blocks, and [#]: Number of Changed Blocks

TABLE X Facebook Post Photos through Different Internet Browsers

Windows

Facebook Post Photo

Google Chrome Firefox Internet Explorer Safari

0 94,607 94,607 94,607 94,607

1
46,891

[-]23 [+]10 [#]20
46,891

[-]23 [+]10 [#]20
46,891

[-]23 [+]10 [#]20
46,891

[-]23 [+]10 [#]20

2
46,879

[-]0 [+]1 [#]209
46,879

[-]0 [+]1 [#]209
46,879

[-]1 [+]2 [#]208
46,879

[-]0 [+]1 [#]209

3
46,870

[-]3 [+]0 [#]195
46,870

[-]2 [+]0 [#]196
46,870

[-]2 [+]0 [#]196
46,870

[-]3 [+]0 [#]195

4
46,878

[-]14 [+]17 [#]52
46,878

[-]1 [+]1 [#]186
46,878

[-]1 [+]1 [#]185
46,878

[-]1 [+]1 [#]185

5
46,890

[-]14 [+]8 [#]81
46,890

[-]5 [+]3 [#]191
46,890

[-]5 [+]3 [#]191
46,890

[-]5 [+]3 [#]191

6
15,922

[-]4 [+]3 [#]93
46,875

[-]3 [+]3 [#]162
46,875

[-]3 [+]3 [#]162
46,875

[-]3 [+]3 [#]162

7
14,276

[-]2 [+]3 [#]95
46,879

[-]1 [+]1 [#]131
46,879

[-]1 [+]1 [#]132
46,879

[-]1 [+]1 [#]132

8
14,274

[-]3 [+]3 [#]90
46,880

[-]4 [+]4 [#]134
46,880

[-]4 [+]4 [#]134
46,880

[-]4 [+]4 [#]134

9
14,273

[-]1 [+]1 [#]62
46,879

[-]1 [+]1 [#]104
46,879

[-]1 [+]1 [#]104
46,879

[-]1 [+]1 [#]104

10

14,273

[-]0 [+]0 [#]45

86,869

[-]0 [+]0 [#]83

86,869

[-]0 [+]0 [#]83

86,869

[-]0 [+]0 [#]83
[-]: Number of Removed Blocks, [+]: Number of Inserted Blocks, and [#]: Number of Changed Blocks

TABLE XI Facebook Profile Photos through Different Internet Browsers

Windows

Facebook Profile Photo

Google Chrome Firefox Internet Explorer Safari

0 94,607 94,607 94,607 94,607

1
46,891

[-]23 [+]10 [#]20
46,891

[-]23 [+]10 [#]20
46,891

[-]23 [+]10 [#]20
46,891

[-]23 [+]10 [#]20

2
46,879

[-]9 [+]14 [#]60
46,879

[-]0 [+]1 [#]209
46,879

[-]0 [+]1 [#]209
46,879

[-]0 [+]1 [#]209

3
46,870

[-]17 [+]11 [#]83
46,870

[-]2 [+]0 [#]196
46,870

[-]3 [+]0 [#]195
46,870

[-]2 [+]0 [#]196

4
46,878

[-]0 [+]0 [#]99
46,878

[-]1 [+]1 [#]186
46,878

[-]1 [+]1 [#]186
46,878

[-]1 [+]1 [#]185

5
46,890

[-]1 [+]1 [#]108
46,890

[-]5 [+]3 [#]191
46,890

[-]5 [+]3 [#]191
46,890

[-]5 [+]3 [#]191

6
46,875

[-]3 [+]3 [#]86
46,875

[-]3 [+]3 [#]162
46,875

[-]3 [+]3 [#]162
46,875

[-]3 [+]3 [#]162

7
66,305

[-]5 [+]2 [#]90
46,879

[-]1 [+]1 [#]131
46,879

[-]1 [+]1 [#]131
46,879

[-]1 [+]1 [#]131

8
46,892

[-]2 [+]2 [#]67
46,880

[-]4 [+]4 [#]134
46,880

[-]4 [+]4 [#]134
46,880

[-]4 [+]4 [#]134

9
46,890

[-]0 [+]0 [#]39
46,879

[-]1 [+]1 [#]104
46,879

[-]1 [+]1 [#]104
46,879

[-]1 [+]1 [#]104

10

46,879

[-]1 [+]1 [#]38

46,869

[-]0 [+]0 [#]83

46,869

[-]0 [+]0 [#] 83

46,869

[-]0 [+]0 [#]83
[-]: Number of Removed Blocks, [+]: Number of Inserted Blocks, and [#]: Number of Changed Blocks

VI. STEGANOGRAPHY EXPERIMENTS

This section covers steganography experiments on Facebook

through adopting several methods. All the experiments are

applied on the original photo previously selected and tested in

different photo posting locations of Facebook (Facebook cover

photo, Facebook post photo, and Facebook profile photo).

Through these experiments, we attempted to explore different

methods for applying steganography on Facebook in order to

have a wider perspective of various possibilities by which stego

images at some level would survive the Facebook image

processing, and the secret embedded messages would be

extracted successfully at the destination point. We generated

two main different scenarios or methods for applying

steganography on Facebook. Moreover, we experimented with

hiding different payload capacities; hence, we prepared

different sizes of secret messages in a text file format that

would be embedded in the original image in order to test the

capability of the message retrieval after uploading the stego

image on Facebook. The secret messages’ capacities that we

selected to carry out our steganography experiments were 77

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

437 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

bytes, 134 bytes, 1 kilobyte, 10 kilobytes, and 20 kilobytes. The

purpose of choosing such sizes was to investigate the

possibilities for the secret message retrieval; hence, if it was

successful in the cases that have smaller sizes such as 77 bytes,

134 bytes, and 1 Kilobyte, would it also survive holding greater

sizes such as 10 and 20 Kilobytes? More precisely, we selected

payload capacities of 77 and 134 bytes in particular for our

steganography experiments, because one of the steganography

tools adopted in this research (Secretbook) suggested those

sizes for the original photo that we had selected; thus, we aimed

to unify the payload sizes for all the tools for the purpose of the

subsequent comparison of tools in section VII. We discuss

more details of the motives behind selecting 77 bytes and 134

bytes in the following subsection. Moreover, we selected 1

kilobyte for the test because this size had already been tested in

[31]; and through the aforementioned research, the researchers

proved the ability to retrieve secret messages from Facebook

cover photo at a capacity of at least 20%, which inspired us to

include more sizes in the test, such as 10 and 20 kilobytes. The

steganography experiments were conducted using the three

aforementioned tools, which are SilentEye, JPHide and JPSeek

(JPHS), and Secretbook. We have tested (SilentEye and JPHide

and JPSeek) tools with regards to their abilities for hiding and

retrieving the hidden messages prior to uploading the stego

photos on Facebook; thus, any obstacles that arise to retrieving

the secret message from the downloaded photos will be due

solely to Facebook image processing. The following

subsections provide more details for the two main methods we

employed during our steganography experiments on Facebook.

A. Experiment 1: Steganography without Facebook Image

Processing

The first method we followed for transmitting secret

messages using Facebook is considered a traditional one. We

used the steganographic tools (SilentEye, JPHide and JPSeek

(JPHS), and Secretbook) for embedding secret messages of

different sizes in the original photo, uploading the stego photo

on Facebook, downloading the uploaded stego photo, and

finally using the same tools to check the ability for retrieving

the embedded message. For the case of Secretbook tool, the

maximum size of the embedded secret messages was up to 134

bytes only, which is explained comprehensively in the

following paragraph. Through using SilentEye tool, we

discovered we were able to retrieve the secret messages from

Facebook cover photo in all cases of the different message

sizes. For the case of Facebook post photo, SilentEye was

successful in retrieving the embedded messages when their

sizes were only 77 bytes, 134 bytes, and 1 kilobyte and it failed

to retrieve messages that held the sizes of 10 or 20 kilobytes.

For the case of Facebook profile photo, SilentEye was able to

retrieve messages from the downloaded profile photos that held

the size of 77 bytes, 134 bytes, and 1 kilobyte and failed in the

rest of the tries. On the other hand, the finding from using the

second tool, which is JPHide and JPSeek (JPHS), is that this

tool was able to retrieve the secret messages from all Facebook

cover photos with different payload capacities whereas it failed

in all the tries of retrieving secret messages from Facebook post

and profile photos. For the case of Secretbook, this tool was

successful in retrieving secret messages of a size only of 77 and

134 bytes from all Facebook cover, post, and profile photos;

and for other message sizes, it was not applicable for

Secretbook to embed messages of such sizes. Table XII

illustrates the findings of the 1
st
 steganography experiment.

TABLE XII Findings of Experiment 1 Steganography without Facebook
Processing

Steganography without Facebook Image Processing

Tool

FB Cover Photo FB Post Photo FB Profile Photo

7
7

 B

1
3

4
 B

1
 K

B

1
0

 K
B

2
0

 K
B

7
7

 B

1
3

4
 B

1
 K

B

1
0

 K
B

2
0

 K
B

7
7

 B

1
3

4
 B

1
 K

B

1
0

 K
B

2
0

 K
B

SilentEye ⅹⅹ ⅹⅹ

JPHS ⅹⅹⅹ ⅹ ⅹ ⅹⅹⅹ ⅹ ⅹ

Secretbook N/A N/A N/A N/A N/A N/A N/A N/A N/A

N/A: Not Applicable

Secretbook tool hides and retrieves the secret message while

it is on Facebook page. Secretbook automatically determines

the max payload capacity that can be hidden in the photo;

therefore, we could not apply the same experiment where we

hide the same predetermined aforementioned sizes of texts (1

KB, 10 KB, and 20 KB) since it is not applicable to this tool.

As we uploaded the original photo to Secretbook, this tool

determined the max payload capacity that could be embedded

in the uploaded photo, which was identified as 77 characters.

Therefore, we tried this experiment with the same size that

Secretbook suggested and we attempted to include this

proposed size in all our steganography experiments with the

two tools (SilentEye and JPHide and JPSeek [JPHS]) for the

sake of the comparison between all of the three tools. As we

embedded 77 characters on the original photo using Secretbook

and posted the photo on Facebook to extract the hidden

message through Secretbook, we found that no message had

been hidden in the uploaded photo, as Secretbook stated. We

inferred that Secretbook made an error in embedding the secret

message due to the white background of the original photo that

we had uploaded; hence, according to Secretbook, it is clearly

stated before hiding any message in any photo, it is important

for the user to choose high-quality images with dimensions of

960×720 pixels for best outcomes; moreover, the user needs to

avoid images that have large areas of sky or any single color

since these sorts of images are prone to errors [30] [40]. Based

on this information, we at first tried to add more colors to the

white background of the original photo and used this first

modified photo for our steganography experiment via

Secretbook, as is displayed in Fig. 14 image (b). Uploading this

adjusted stego photo to Facebook, Secretbook failed to indicate

any secret message existed on the first modified photo.

Consequently, we attempted to re-modify the original photo,

which previously had the dimensions of 705×856 pixels to the

dimensions suggested by Secretbook, which were 960×720

pixels and re-modified the background from light colors to a

rich colorful background, as is illustrated in Figure 14 (c).

Figure 11 displays the modification series of the original photo

illustrating the first and the second modified photos. As we

modified the original photo for the second time to match the

Secretbook recommendation of steganography, we repeated the

same experiment where we uploaded the new modified original

photo to Secretbook, in which the tool suggested a new max

payload capacity for embedding the secret message, which was

indicated by 134 characters. Posting this stego photo to

Facebook, Secretbook was able to extract the secret message.

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

438 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

Thus, this new modified original photo is the one selected to

perform our steganography experiments with Secretbook and

with the size of 134 bytes suggested; whereas for the other tools

(SilentEye and JPHS), we used the same original photo that has

no modification with different payload capacities ranging from

77 bytes to 20 kilobytes including the new size of 134 bytes

identified by Secretbook in our steganography experiments.

Figure 14. The original photo after modification suggested by Secretbook

For all the failed attempts at retrieving the embedded secret

messages from the previous experiment, we attempted to repeat

the same experiment on the failed cases for three rounds. The

purpose of applying this method was to check the possibility of

retrieving the re-embedded secret messages from all previous

failed attempts at extracting hidden messages from Facebook

stego downloaded photos. To provide a clearer view of the

mechanism of this method, we reviewed the findings of the first

experiment and took all downloaded Facebook photos of failed

message retrieval attempts and embedded the same secret

messages again on them. We again uploaded those stego photos

to Facebook, downloaded them, and checked if whether it was

possible this time to retrieve the secret message or not. We

repeated this experiment three times. Referring to the findings

of the first experiment, SilentEye failed to retrieve the secret

message from Facebook post and profile photos when the

message size was 10 and 20 kilobytes, whereas JPHS failed to

retrieve secret messages from Facebook post and profile photos

for all message sizes. After embedding the secret messages

again on those photos, except for the case of the 20-kilobyte

message using SilentEye tool in which SilentEye indicated that

there was not enough space on the photo to embed new

messages; and subsequently uploading them to Facebook again

for the second time, then downloading them, SilentEye failed to

retrieve any secret messages on the first round, whereas JPHS

was able to retrieve secret messages from Facebook post and

profile photos when the size was 77 and 134 bytes only.

Repeating the same experiment again, SilentEye was able to

retrieve the secret message from the Facebook post photo that

had a secret message of size 10 kilobytes and failed for the rest

of the downloaded Facebook photos, whereas JPSeek failed to

retrieve secret messages from all the downloaded Facebook

photos, except for the ones retrieved from the second round.

Repeating this experiment for the third time just to confirm our

findings, we got the same results as the second round in which

SilentEye was able to retrieve the secret message of 10

kilobytes in size from Facebook post photo and failed in the

other cases, whereas JPSeek failed in all retrieval cases except

for the 77 and 134 bytes messages for both Facebook post and

profile photos.

For all the successful attempts at extracting secret messages

from the first time, we tended to repeat the same experiment on

those photos where we re-embedded the same secret messages

again on those stego photos to investigate the possibility of

retaining secret messages from stego photos that previously had

contained a secret message. We conducted this experiment on

the findings of the first experiment that had successful cases of

message retrieval for three rounds. Those cases were SilentEye

for all Facebook cover photos and Facebook post and profile

photos when the message sizes were 77 bytes, 134 bytes, and 1

kilobyte. For the case of JPHS, we implemented the experiment

in all Facebook cover photos since they were the only ones

succeeded in retrieving a secret message from them. Finally, for

the case of Secretbook, this tool succeeded in retrieving the

secret messages of size 77 and 134 bytes from all Facebook

cover, post, and profile photos. The findings from this

experiment are that SilentEye and JPHS were able to extract the

payloads successfully from all Facebook cover photos in all the

three rounds. Also, SilentEye succeeded in retrieving a message

in all the three rounds of Facebook profile photo when the

message sizes were 77 bytes, 134 bytes, and 1 kilobyte.

Moreover, SilentEye was able to retrieve messages from

Facebook post photos when the message size was 134 bytes in

all the three rounds, whereas it failed to retrieve secret

messages from Facebook post photos of size 77 bytes in the

first and the third rounds, and of size 1 kilobyte in the third

round. For the case of the third tool, Secretbook succeeded in

retrieving the secret messages of size 77 and 134 bytes from all

Facebook cover, post, and profile photos in all the three rounds.

We concluded from all those experiments that we were able to

enhance some of the failed cases of message retrievals by re-

embedding messages again on them. Also, we proved that we

could use stego photos as new carriers for new secret messages.

Fig. 15 illustrates the workflow of the first experiment

including the successful and failed cases and Table XIII

demonstrates the findings of the successful and failed cases of

experiment 1, steganography without Facebook processing,

using SilentEye, JPHide and JPSeek (JPHS), and Secretbook

steganography tools.

Hide Message.

Upload to Facebook

Message exist?

Download

EndYES

Experiemnt#1
Steganography

without Facebook
processing

 L
o

o
p

 f
o

r
3

 r
o

u
n

d
s

Lo
o

p
 f

o
r

3
 r

o
u

n
d

s

YES

NO

1. Failed case 2. Succeeded case

Figure 15. Experiment 1 of steganography without Facebook processing

(a) Original photo (b) First modified

photo

(c) Second modified photo

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

439 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

TABLE XIII Steganography Findings of Successful and Failed Cases of

Experiment 1

Steganography without Facebook Image Processing

Tool
FB Cover Photo FB Post Photo FB Profile Photo

7
7

 B

1
3

4
 B

1
 K

B

1
0

 K
B

2
0

 K
B

7
7

 B

1
3

4
 B

1
 K

B

1
0

 K
B

2
0

 K
B

7
7

 B

1
3

4
 B

1
 K

B

1
0

 K
B

2
0

 K
B

S
il

en
tE

ye
 Initial ⅹ ⅹ ⅹ ⅹ

Round1 ⅹ ⅹ N/A ⅹ ⅹ

Round2 ⅹ ⅹ

Round3 ⅹ ⅹ ⅹ ⅹ

J
P

H
S

Initial ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ

Round1 ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ

Round2 ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ

Round3 ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ

S
ec

re
tb

o
o

k

Initial N/A N/A N/A N/A N/A N/A N/A N/A N/A

Round1

Round2

Round3
N/A: Not Applicable

B. Experiment 2: Steganography with Facebook Image

processing

The second method we followed in our experiment was to

impose Facebook image processing prior to applying

steganography. This method is inspired by the work in [31]. It

is about allowing the original photo to undergo Facebook image

processing prior to applying steganography. To give a broader

perspective about the mechanism of this method, we first

uploaded the original photo to Facebook and downloaded the

photo. By doing so, this allowed the photo to be processed by

Facebook. Then, we attempted to use the steganography tools

(SilentEye, JPHS, and Secretbook) to embed a secret message

of different sizes and upload those stego images to Facebook

again. Thereafter, we downloaded the stego images from

Facebook and checked them using the first two tools to

investigate the possibility of retrieving the secret messages. For

the case of Secretbook, the checking was done while the photo

was posted on Facebook; hence, Secretbook is a Google

Chrome extension. We learned that using SilentEye tool, the

secret message can be extracted successfully for all sizes in the

case of Facebook cover photo. Checking for Facebook post

photo, SilentEye was able to retrieve the secret message when

the message sizes were 77 bytes, 134 bytes, 1 kilobyte and 10

kilobytes; however, SilentEye was not able to retrieve the secret

message from Facebook post photo when the secret message

size was 20 kilobytes. For the case of Facebook profile photo,

SilentEye was able to extract the secret message in all the

different sizes assigned except for the message that has a size of

20 kilobytes, as it failed in the message retrieval of that size. On

the other hand, using the JPHide and JPSeek tool, JPSeek was

able to retrieve the secret message of all sizes for the case of

Facebook cover photo and failed in all secret message sizes for

the case of Facebook post and profile photos except for the

message size of 77 and 134 bytes. Moreover, Secretbook

succeeded in retrieving the secret messages of size 77 and 134

bytes from all Facebook cover, post, and profile photos. From

this experiment, we concluded that applying Facebook

processing on photos prior to using steganography provides

better results; specifically, SilentEye tool was able to retrieve

all messages from all cases except when the message size was

20 Kilobytes for both post and profile photos. JPHS succeeded

in all cases except when the message size was 1, 10, and 20

kilobytes for both Facebook post and profile photos.

Secretbook succeeded in all the applicable cases (77 bytes and

134 bytes). Fig. 16 illustrates the workflow of this experiment

and Table XIV demonstrates our findings.

TABLE XIV Findings of Experiment 2 Steganography with Facebook
processing

Steganography with Facebook Image Processing

Tool

FB Cover Photo FB Post Photo FB Profile Photo

7
7

 B

1
3

4
 B

1
 K

B

1
0

 K
B

2
0

 K
B

7
7

 B

1
3

4
 B

1
 K

B

1
0

 K
B

2
0

 K
B

7
7

 B

1
3

4
 B

1
 K

B

1
0

 K
B

2
0

 K
B

SilentEye ⅹ ⅹ

JPHS ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ

Secretbook N/A N/A N/A N/A N/A N/A N/A N/A N/A

N/A: Not Applicable

FB image processing

Hide Message

Upload to Facebook

Message exist?

Download

End

Upload to
Facebook

Download

YES

Experiment#2
Steganography
with Facebook

processing

NO

Figure 16. Experiment 2 of steganography with Facebook (FB) processing

C. Steganography Persistency

In this section, we describe our attempts to examine the

persistency of the secret messages in photos downloaded from

Facebook from which, previously, secret messages were

successfully extracted; the method will check the results when

we uploaded those stego photos several times on Facebook and

then downloaded them. The question then arises: will

steganography tools still be able to extract the same secret

messages from those photos or not? We have applied this

method to both findings from experiments 1 and 2. To elaborate

more about the mechanism of this method, we at first checked

all the successful attempts of SilentEye at retrieving secret

messages from experiment 1, which were Facebook cover

photos in all secret message sizes and Facebook post and

profile photos when the message sizes were 77 bytes, 134

bytes, and 1 kilobyte. Then we tried to upload those photos to

Facebook again and checked if the old secret message could

still be extracted successfully or not. We repeated this

experiment three times. The findings indicated that for all the

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

440 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

three rounds, all Facebook cover photos were able to maintain

the secret messages on them even if the same stego photos were

uploaded to Facebook several times. While for the case of

Facebook post photos that have a message size of 77 bytes and

1 kilobyte, the secret message survived Facebook image

processing on the first uploading round. Moreover, for the

Facebook profile photo that has a message size of 1 kilobyte,

the secret message survived and could be extracted from the

first round of the experiment, while for the second round, the

secret message could not be extracted. On the other hand, based

on SilentEye’s findings from experiment 2, the secret messages

were successfully extracted from all of the downloaded

Facebook photos except from Facebook post and profile photos

that have a message size of 20 kilobytes. Uploading those

photos that have successful secret message retrievals again to

Facebook, we discovered that all cover photos had maintained

the secret messages on them for the whole three rounds. While

for Facebook post and profile photos, only when the message

sizes were 77 bytes, 134 bytes, and 1 kilobyte, the persistency

of the secret messages maintained for 2, 2, and 1 round

respectively. On the other hand, repeating the same experiment

using JPHS tool, we found that all Facebook cover photos

maintained the secret messages on them for all the three rounds

and for both findings of experiments 1 and 2. Moreover,

Facebook post and profile photos of sizes 77 and 134 bytes

using JPHS maintained the secret messages on them for all the

three rounds, except for the case of Facebook profile photo of

size 77 bytes, in which the messages were maintained for only

2 rounds. For the case of Secretbook, we were able to maintain

the embedded secret messages in all the three rounds; however,

some of the characters of the secret messages were altered.

More details about Secretbook case are discussed in the

following paragraph. From this experiment, we concluded that

stego messages have the possibility to be retained again for

several times even if the photos encountered Facebook

processing more than one time. We also concluded that the

persistency of secret messages is higher when applying this

method on the findings of experiment 2, which is

steganography with Facebook processing, than if applying it on

the findings of the first steganography experiment. Tables XV

and XVI demonstrate the persistency findings from

experiments 1 and 2 respectively.

Performing a steganography persistency experiment using

Secretbook, we recorded a set of observations regarding the

retrieved embedded message. As we embedded a message size

of 134 bytes on the original photo and uploaded it to Facebook

several times, we found that some of the characters of the

retrieved message had either been altered, removed, inserted,

changed, or undergone a combination of different alteration

processes. This experiment directly linked us to our first

preliminary experiments where we performed the binary

comparisons of each consecutive uploaded photo to check the

number of blocks of bytes removed, inserted, and changed

between the uploaded photos. Fig. 17 demonstrates our

observation regarding the altered characters in the embedded

message in Facebook cover photo. The following section

discusses our attempt to perform nested steganography.

TABLE XV Steganography Persistency based on Experiment 1

Steganography Persistency

Tool FB Cover Photo FB Post Photo FB Profile Photo

7
7
 B

1
3
4
 B

1
 K

B

1
0
 K

B

2
0
 K

B

7
7
 B

1
3
4
 B

1
K

 B

1
0
 K

B

2
0
 K

B

7
7
 B

1
3
4
 B

1
K

 B

1
0
 K

B

2
0
 K

B

S
il

en
tE

ye

Initial ⅹ ⅹ ⅹ ⅹ

 Round1 ⅹ ⅹ ⅹ

Round2 ⅹ ⅹ ⅹ

Round3

J
P

H
S

 Initial ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ

Round1

Round2

Round3

S
ec

re
tb

o
o

k

Initial N/A N/AN/A **N/A N/A N/A **N/A N/A N/A

Round1 ** **

Round2 ** **

Round3 ** **

N/A: Not Applicable, *: Altered Retrieved Message

TABLE XVI Steganography Persistency based on Experiment 2

Steganography Persistency

Tool FB Cover Photo FB Post Photo FB Profile Photo

77
 B

13
4

B

1
K

B

10
 K

B

20
 K

B

77
 B

13
4

B

1
K

B

10
 K

B

20
 K

B

77
 B

13
4

B

1
K

B

10
 K

B

20
 K

B

S
il

en
tE

ye

Initial ⅹ ⅹ

Round 1 ⅹ ⅹ

Round 2 ⅹ

 ⅹ

Round 3 ⅹ ⅹ

 ⅹ ⅹ

J
P

H
S

 Initial ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ

Round 1

Round 2

Round 3 ⅹ

S
ec

re
tb

o
o

k
 Initial N/AN/AN/A**N/A N/A N/A * *N/A N/A N/A

Round 1 ** * *

Round 2 ** * *

Round 3 ** * *

N/A: Not Applicable, *: Altered Retrieved Message

The embedded secret message

Initial 1st round

2nd round 3rd round

Figure 17. Secretbook altered message

“ i am writing a secret message to know more about SecretBook

..HOPE EVERYTHING PASS WELL Because I HAVE TRIED

LOTS OF TIMES TO FINIALIZ”

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

441 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

D. Nested Steganography

In this section, we describe our attempts to perform nested

steganography, embedding secret messages one over the other

in Facebook cover photo category. The experiment involves all

three of the tools (SilentEye, JPHide and JPSeek (JPHS), and

Secretbook) conducted on a processed Facebook cover photo.

We selected Facebook cover photo specifically for this

experiment because, according to all our previous

steganography experiments, Facebook cover photo is the only

photo category in Facebook that led to a successful outcome in

retrieving and maintaining the secret message in all the cases

tested compared to Facebook post or profile photo.

Furthermore, from our previous persistency experiment, we

found that Facebook cover photo has a higher persistency in

preserving the stego message than other categories; therefore,

selecting Facebook cover photo for this experiment is the

perfect choice, especially if the selected photo is preprocessed

in advance by Facebook image processing. Hence, based on our

second steganography experiment (steganography with

Facebook image processing), the outcomes achieved are better

than applying steganography without Facebook processing. The

purpose of this experiment was to investigate the secret

message identity if we were to embed two secret messages

respectively in the same photo to indicate which message of

these two messages is going to be retrieved and based on which

tool is selected. The size of the secret message selected was 134

bytes; hence this is the size that matches with all three of the

tools especially for Secretbook, as it is the only maximum size

accepted for the original photo designed for Secretbook. We

prepared two different secret messages of the same size (134

bytes) to perform the experiment. We started this experiment by

uploading the original photo to Facebook as a cover photo.

Downloading the previous uploaded photo, we embedded the

first secret message using the three tools and uploaded them to

Facebook. As we downloaded the first stego photos from

Facebook, we confirmed the existence of the first message

embedded using the three tools and we attempted to embed the

second message on the download tested stego photos using the

same tools. Uploading these stego photos, which hold two stego

messages on them, to Facebook as a cover photo and

downloading them, we used the three steganography tools to

check which message of the two embedded ones is retrieved.

We found that all three of the tools retrieved only the second

embedded message; hence, the first stego message got

overwritten by the second one. We concluded from this

experiment that performing nested steganography always leads

to retrieving the last embedded message. Table XVII

demonstrates our findings of this experiment. The following

section covers the comparison of the three selected

steganography tools.

TABLE XVII Nested Steganography on Facebook Cover Photo

Nested Steganography

Facebook Cover Photo

Tool Retrieve 1
ST

 Message Retrieve 2
ND

 Message

SilentEye ⅹ

JPHS ⅹ

Secretbook ⅹ

VII. STEGANOGRAPHY TOOLS’ COMPARISONS

In this section, we attempt to compare the steganography

tools employed in our experiments. Through this research, we

have conducted experiments on several scenarios or methods

for applying steganography on Facebook. We have used three

tools throughout these experiments, which are SilentEye,

JPHide and JPSeek (JPHS), and Secretbook. We have tested the

ability of SilentEye and JPHide and JPSeek tools to recover the

embedded secret messages prior to uploading to Facebook and

then we proceeded with steganography experiments through

Facebook. Our observations during the embedding process

using these tools are illustrated in Table XVI below. We

noticed that using SilentEye tool to embed secret messages of

different sizes (77 Bytes, 134 Bytes, 1 KB, 10 KB, and 20 KB)

will somehow alter the visible features of the original photo.

This is especially the case when the image white background

showed some dots that did not exist previously on the original

photo; and as we increase the size of the embedded secret

message, the dots in the background increase too and the photo

becomes more visually suspicious for steganography.

For the case of JPHide and JPSeek (JPHS), when embedding

the secret message of different sizes on the original photo, we

have noticed that the visible features of the stego image

remained approximately the same as the original photo and the

stego image was not suspicious for steganography to the naked

eye. For Secretbook, the visual features of the stego image

remained approximately the same as the original photo.

Therefore, based on our observation and the experiment done

on [2] and [33], we concluded that SilentEye generates

significant artifacts on the stego image that disclose the

steganography use with all different message sizes, whereas

JPHide and JPSeek avoid such a disclosure. Out of the three

tools, we concluded that the message retrievals using SilentEye

tool provided better results than JPHS tool. Moreover, based on

our observations, we found that the quality of stego photos in

terms of image similarity to the original photo was high with

Secretbook and JPHide and JPSeek (JPHS) and was low with

SilentEye. To provide accurate results about our observations

for the stego images’ quality, we calculated peak signal to noise

ratio (PSNR) since it is used as a quality measure for stego

images. PSNR measures the similarity between two images and

it is measured in decibels (db). A large PSNR value reflects a

high-quality image, which indicates that both the original photo

and the stego photo are very similar to each other [41][42]. The

mathematical representation of PSNR is as follows:

PSNR = 10 log
(255)2

𝑀𝑆𝐸
 (1)

Where the MSE (Mean Squared Error)

MSE =
1

𝑀𝑁
 ∑ ∑ (𝑋𝑖,𝑗

𝑁
𝐽=1

𝑀
𝐼=1 - 𝑋′

𝑖,𝑗)
2 (2)

Where X represents the matrix data of the original photo, X’

represents the matrix data of the stego image, M represents the

numbers of rows of pixels of the image and i represents the

index of that row, N represents the number of columns of pixels

of the image and j represents the index of that column. We

used Matlab (version: R2010a) as a tool to calculate PSNR for

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

442 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

the photos used in our steganography experiments. We found

that PSNR value between the original photo and the stego

images from the three steganography tools was high in JPHS,

medium in Secretbook, and low in SilentEye, which supports

our observations. We calculated PSNR for all stego photos of

the three tools in all the sizes tested. Table XVIII illustrates the

findings of the steganography tools comparison displaying the

stego photos, the size, the dimension and the PSNR values.

Furthermore, we repeated the same imperceptibility test

through calculating PSNR using a different photo to confirm

our findings. We selected a standard test image for Lenna of

size 51,403 bytes and with a dimension of 480 × 480. We

embedded a secret message of size 27 bytes using the three

tools as this size is accepted with Secretbook. The results of

this experiment confirmed our previous findings. Table XIX

illustrates the PSNR findings of Lenna image. Furthermore, the

stego photos are analyzed by the histogram analysis. We found

that the stego images that contain low payload capacity show

minimum changes in the histograms compared to the original

photo histogram which makes it difficult to infer the existence

of the secret messages. Fig. 18 illustrates Lenna stego photos

that contain a secret message of 27 bytes using the three tools

and Fig. 19 illustrates the histograms of those photos.

TABLE XVIII Stego Photos Using Different Steganography Tools and

PSNR values

Tool Original 134 bytes 1 KB 10 KB 20 KB

S
il

en
tE

ye

49,607 Bytes
705x856 Pixels

53,698 Bytes
705x856 Pixels

34.0236 db

53,741 Bytes
705x856 Pixels

34.0660 db

55,627 Bytes

705x856 Pixels
33.4426 db

56,271 Bytes
705x856 Pixels

33.2330 db

J
P

H
S

49,607 Bytes
705x856 Pixels

68,267 Bytes

705x856 Pixels
63.8162 db

68,318 Bytes
705x856 Pixels

64.0423 db

68,307 Bytes
705x856 Pixels

63.9493 db

68,298 Bytes
705x856 Pixels

63.9279 db

S
ec

re
tb

o
o

k

248,446 Bytes
960x720 Pixels

103,087 Bytes
960x720 Pixels

35.0515 db

N/A N/A N/A

N/A: Not Applicable

Figure 18. Lenna test image

TABLE XIX PSNR Values for Lenna Stego Photo with Payload

Capacity of 27 B

Tool PSNR

SilentEye 34.6515 db

JPHS 54.893 db

Secretbook 39.23 db

Figure 19. Histograms of Lenna photo and the stego photos of 27 bytes using

the 3 tools

VIII. DISCUSSION

In this section, we discuss and highlight the major

conclusions of our paper. Analyzing our findings from all the

experiments that we have implemented on Facebook with all

the methods or scenarios that we have employed, we conclude

that Facebook image processing performed on Facebook cover

photo, Facebook post photo, and Facebook profile photo are

different from each other; this is clearly demonstrated by our

findings in all the methods followed in which the findings of

any of the same experiment look different for each Facebook

photo category, even though we used the same original photo in

all the experiments, the same tools, and the same secret

message sizes. Also, based on our experiments in all of the

scenarios, we conclude that applying steganography to

Facebook cover photos provides better results as it is supported

by the work in [31]. In addition, throughout all our

experiments, we proved that steganography in Facebook cover

photos, in terms of successfully extracting the embedded

messages of all the different sizes tested and maintaining the

secret messages, performed successful outcomes more

consistently than applying steganography on Facebook post or

profile photos. More precisely, in our preliminary experiments,

we demonstrated the binary comparison of Facebook cover

photos indicating a consistent number of byte block changed, at

the rate of exactly one change in every uploading try, which to

our knowledge explains the causes of successful message

retrieval and the higher rate of steganography persistency in

Facebook cover photos than in Facebook post or profile photos.

Also, from our preliminary experiments of uploading the

original photo of size 49,607 bytes to Facebook for 50 times,

we determined that Facebook processing for a cover photo

increases the size of the uploaded photo to maintain a new size

of 66,305 bytes for all of the 50 tries, while processing for the

post and profile photo decreases the original image size to

46,891 bytes; thus, this allows for more capacity in the cover

photo to hide and maintain the secret message than in post and

profile photos. For the case of steganography on Facebook post

photos and Facebook profile photos using SilentEye tool, we

indicate that experiment 2, which consists of performing

Facebook image processing on the original photo prior to

uploading it to Facebook, provides better results for message

retrieval than experiment 1, which consists of uploading the

stego photo directly to Facebook without performing any prior

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

443 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

processing. To elaborate further, in the first experiment we

were able to extract the hidden messages from the stego images

of Facebook post and profile photos only when the size of the

image was up to 1 KB, whereas after conducting experiment 2

and applying Facebook image processing prior to uploading

stego images to Facebook, we were able to extract embedded

messages that have a size of up to 10 KB. However, JPSeek

was unable to retrieve any messages from Facebook post

photos and Facebook profile photos in experiment 1, but in

experiment 2 it succeeded when the message size was 77 bytes

or less than 1 KB. Moreover, with the use of the method of re-

embedding the secret message on Facebook photos that failed

to extract a secret message from them, we were able to enhance

some of the failed results of the first steganography experiment;

hence, previously we were not able to extract messages that

hold a size of 10 KB from Facebook post photos. Furthermore,

after re-embedding the 10-KB secret message again on the

previous failed Facebook post photo and uploading it to

Facebook, in the second round of the experiment, we succeeded

in retrieving the 10-KB embedded message. Additionally,

based on our experiment of checking the persistency of the

embedded secret message regardless of the number of times the

photo uploaded to Facebook, we conclude that stego Facebook

cover photos have a higher persistency of preserving the secret

messages on them regardless of the number of times the same

photos are uploaded to Facebook as compared to Facebook

profile and post photos. In addition, we calculated the PSNR

values for all the stego photos and found that JPHS tool

provided the best quality of stego photos compared to other

tested tools; moreover, we illustrated the photos histograms for

a test image that held 27 bytes secret message embedded using

all the three tools.

IX. CONCLUSION

Steganography is the art and science of hiding secret

messages on another object. Several methods for using

Facebook for image steganography exist. In this research, we

proved that we can apply image steganography on Facebook

cover photos with secret messages up to 20 KB using SilentEye

and JPHide and JPSeek tools, and with Facebook post photos

and Facebook profile photos with secret messages up to 10 KB

using SilentEye tool. Furthermore, we illustrated that Facebook

image processing to the uploaded photos through the mobile

application is more intense than processing through a personal

computer (PC) in which major changes in the photos

perceptibility, block of bytes, and sizes occurred when we

upload photos using the Facebook mobile application. In

addition, we demonstrated the Facebook processing schemes on

the uploaded photos from different platforms, operating

systems, and browsers, and we provided the binary

comparisons of the subsequent uploaded photos. Through the

research, we were able to enhance some of the failed cases of

message retrievals for steganography by re-embedding

messages again on them. We proved that we could use stego

photos as new carriers for new secret messages. We also

concluded that the persistency for secret messages is higher

when it is applied to the findings of experiment 2, which is

steganography with Facebook processing, than if it is applied to

the findings of the first steganography experiment.

Furthermore, we proved that applying nested steganography

always leads to successful retrieval of the last embedded

message. Moreover, we showed that the quality of stego photos

in terms of image similarity with the original photo was high

with JPHS tool, was also good with Secretbook, and was low

with SilentEye; however, message retrievals and the payload

capacity handled using SilentEye tool provides better results

than JPHS and Secretbook tools.

REFERENCES

[1] N. Provos and P. Honeyman, "Hide and seek: An introduction to
steganography," Security & Privacy, IEEE, vol. 1, pp. 32-44, 2003.

[2] A. Chee, "Steganographic techniques on social media: investigation
guidelines," Thesis, School of Computing and Mathematical Science
Auckland University of Technology, 2013.

[3] D. Boyd and N. Ellison, "Social network sites: definition, history, and
scholarship," IEEE Engineering Management Review, vol. 3, pp. 16-31,
2010.

[4] Stastista. "Leading social networks worldwide as of August 2015,
ranked by number of active users (in millions)". Available:
http://www.statista.com/statistics/272014/global-social-networks-
ranked-by-number-of-users/. Accessed October 1, 2015.

[5] Facebook. "Facebook Mission". Available:
https://www.facebook.com/facebook/info?tab=page_info. Accessed
October 30, 2015.

[6] A. N. Joinson, "Looking at, looking up or keeping up with people?:
motives and use of facebook," in Proceedings of the SIGCHI conference
on Human Factors in Computing Systems, 2008, pp. 1027-1036.

[7] A. Kumar and K. Pooja, "Steganography-A data hiding technique,"
International Journal of Computer Applications, vol. 9, pp. 19-23, 2010.

[8] S. Sharma and U. Kumar, " Steganography: The Art of Covert
Communication," Multidisciplinary Journal of Research in Engineering
and Technology, vol. 2, pp. 669-675, 2015.

[9] P. Richer, "Steganalysis: Detecting hidden information with computer
forensic analysis," SANS/GIAC Practical Assignment for GSEC
Certification, SANS Institute, vol. 6, 2003.

[10] T. Morkel, J. H. Eloff, and M. S. Olivier, "An overview of image
steganography," in ISSA, pp. 1-11, 2005.

[11] P. Khare, J. Singh, and M. Tiwari, "Digital Image Steganography," Journal
of Engineering Research and Studies, vol. 2, pp. 101-104, 2011.

[12] U. Rizwan and H. F. Ahmed, "A New Approach in Steganography using
different Algorithms and Applying Randomization Concept,"
International Journal of Advanced Research in Computer and
Communication Engineering, vol. 1, 2012.

[13] N. F. Johnson and S. Jajodia, "Exploring steganography: Seeing the
unseen," Computer, vol. 31, pp. 26-34, 1998.

[14] A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, "Digital image
steganography: Survey and analysis of current methods," Signal
processing, vol. 90, pp. 727-752, 2010.

[15] M. Hussain and M. Hussain, "A survey of image steganography
techniques," 2013.

[16] K. Rabah, "Steganography-the art of hiding data," Information
Technology Journal, vol. 3, pp. 245-269, 2004.

[17] M. B. Pope, M. Warkentin, E. Bekkering, and M. B. Schmidt, "Digital
Steganography—An Introduction to Techniques and Tools,"
Communications of the Association for Information Systems, vol. 30, p.
22, 2012.

[18] E. Walia, P. Jain, and N. Navdeep, "An analysis of LSB & DCT based
steganography," Global Journal of Computer Science and Technology,
vol. 10, 2010.

[19] D. Neeta, K. Snehal, and D. Jacobs, "Implementation of LSB
steganography and its evaluation for various bits," in Digital
Information Management, 2006 1st International Conference on, 2006,
pp. 173-178.

[20] T. Morkel, J. H. Eloff, and M. S. Olivier, "An overview of image
steganography," in ISSA, 2005, pp. 1-11.

[21] S. Goel, A. Rana, and M. Kaur, "A Review of Comparison Techniques of
Image Steganography," Global Journal of Computer Science and
Technology, vol. 13, 2013.

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

444 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

http://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
http://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
http://www.facebook.com/facebook/info?tab=page_info

[22] K. M. Sullivan, "Image Steganalysis: Hunting & Escaping," University of
California Santa Barbara, 2005.

[23] R. J. Anderson and F. A. Petitcolas, "On the limits of steganography,"
Selected Areas in Communications, IEEE Journal on, vol. 16, pp. 474-
481, 1998.

[24] R. Chandramouli, M. Kharrazi, and N. Memon, "Image steganography
and steganalysis: Concepts and practice," in Digital Watermarking, ed:
Springer, 2004, pp. 35-49.

[25] G. C. Kessler, "An overview of steganography for the computer
forensics examiner," Forensic Science Communications, vol. 6, pp. 1-27,
2004.

[26] A. Castiglione, G. Cattaneo, and A. De Santis, "A forensic analysis of
images on online social networks," in Intelligent Networking and
Collaborative Systems (INCoS), 2011 Third International Conference on,
2011, pp. 679-684.

[27] S. Nagaraja, A. Houmansadr, P. Piyawongwisal, V. Singh, P. Agarwal,
and N. Borisov, "Stegobot: a covert social network botnet," Information
Hiding, pp. 299-313, 2011.

[28] K. Solanki, A. Sarkar, and B. Manjunath, "YASS: Yet another
steganographic scheme that resists blind steganalysis," in Information
Hiding, 2007, pp. 16-31.

[29] O. Moore, "Secret Communication on Facebook implemented with
Browser-Based Steganography," Thesis, Department of Computer
Science, Oxford University, 2013.

[30] R. Beckhusen. (April 10, 2013, Secretbook lets you encode hidden
messages in your Facebook pics. Available:
http://www.wired.com/2013/04/secretbook/. Accessed October 10,
2015.

[31] N. D. Amsden, L. Chen, and X. Yuan, "Transmitting hidden information
using steganography via Facebook," in Computing, Communication and
Networking Technologies (ICCCNT), 2014 International Conference on,
2014, pp. 1-7.

[32] J. Hiney, T. Dakve, K. Szczypiorski, and K. Gaj, "Using Facebook for
Image Steganography," arXiv preprint arXiv:1506.02071, 2015.

[33] B. Cusack and A. Chee, "Steganographic Checks In Digital Forensic
Investigation: A Social Networking Case," 2013.

[34] A. Chorein, "SilentEye-Steganography is yours," 2008.
[35] A. Latham. "Steganography". Available:

http://linux01.gwdg.de/~alatham/stego.html. Accessed 10, Nov. 2015.
[36] O. Moore. "An Error-Resistant Steganography Algorithm for

Communicating Secretly on Facebook." M.A. thesis, Oxford University,
Britain, 2013.

[37] O. Moore. "Hide Secret Messages In Facebook Photos Using This New
Chrome Extension". Available:
http://www.owencampbellmoore.com/blog/2013/04/hide-secret-
messages-in-facebook-photos-using-this-new-chrome-extension/.
Accessed October 18, 2015.

[38] Facebook, Inc. "How can I make sure that my photos display in the
highest possible quality?". Available:
https://www.facebook.com/help/266520536764594#How-can-I-make-
sure-thatmy-photos-display-in-the-highest-possible-quality?. Accessed
October 3, 2015.

[39] Araxis, Ltd. "Araxis Merge". Available: http://www.araxis.com/about.
Accessed October 4, 2015.

[40] Chrome-Extension. "Secretbook Instructions". Available: chrome-
extension://plglafijddgpenmohgiemalpcfgjjbph/installed.html.
Accessed November 3, 2015.

[41] A. Al-Mohammad, "Steganography-based secret and reliable
communications: Improving steganographic capacity and
imperceptibility," Brunel University, School of Information Systems,
Computing and Mathematics Theses, 2010.

[42] S. Hemalatha, U. D. Acharya, A. Renuka, and P. R. Kamath, "A secure
and high capacity image steganography technique," Signal & Image
Processing, vol. 4, p. 83, 2013.

AUTHORS PROFILE

Budoor Salem Edhah is a master student in Information

Systems at Faculty of Computing and Information Technology,

King Abdulaziz University, Jeddah, Saudi Arabia. She obtained

her bachelor degree with first honor in Management

Information Systems and her MBA degree from Dar Al Hekma

University, Jeddah, Saudi Arabia. She held the position of Vice

President of Students Government and MIS representative at

Dar Al Hekma University. She completed the Certified Ethical

Hacker Course with EC-Council. Her research interests include

Information Security, Mobile Learning, and Business Process

Reengineering.

Dr. Daniyal Alghazzawi obtained his Bachelor's degree with

honor in Computer Science from King Abdulaziz University in

1999. He completed his master's degree and doctorate in the

field of Computer Science at the University of Kansas at the

United States in 2007. He also obtained another master's degree

in Teaching and Leadership from University of Kansas in 2004

which helped him to develop his teaching and leadership skills.

He also obtained the certificate of Management International

Leadership (LMI) and has been the Head of the Information

Systems department, Faculty of Computing and Information

Technology for over five years during which he organized

many workshops and international and domestic conferences.

He is holding an honorary lecturer position at the University of

Essex since 2010 and joined them in several researches in the

field of smart environment. In 2012, he got promoted to

associate professor as a consideration for his output in research

field which exceeded currently 80 researches and books in the

field of Intelligent Systems and Information Security. He also is

the head of the Information Security Research Group at King

Abdulaziz University and a reviewer for more than 20

international journals. His research interests include Smart e-

Learning, Information Security, and Computational Intelligent.

Dr. Li Cheng graduated from Zhejiang University and obtained

his Bachelor’s degrees in Industrial Automation and Computer

Science. He obtained his master’s degree and doctorate in

computer science from the University of Kansas. He has been

holding positions as senior software developer and researcher at

the University of Kansas for four years. He joined U.S. DoD

Biotechnology High Performance Software Institute in 2009

and served as a senior software architect and a research

scientist since then. He was selected as a “1000 talent plan”

expert and joined Chinese Academy of Sciences (CAS) as a full

professor in 2013. He has been serving as a committee member

for the Chinese language processing society in Chinese

Computer Federation. Currently, he is the head of a research

group focusing on big data analytics at CAS. His research

interests include data mining, machine learning, cloud

computing, intelligent systems, artificial intelligence, natural

language processing and bioinformatics.

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 10, October 2016

445 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

http://www.wired.com/2013/04/secretbook/
http://linux01.gwdg.de/~alatham/stego.html
http://www.owencampbellmoore.com/blog/2013/04/hide-secret-messages-in-facebook-photos-using-this-new-chrome-extension/
http://www.owencampbellmoore.com/blog/2013/04/hide-secret-messages-in-facebook-photos-using-this-new-chrome-extension/
http://www.facebook.com/help/266520536764594#How-can-I-make-sure-thatmy-photos-display-in-the-highest-possible-quality?
http://www.facebook.com/help/266520536764594#How-can-I-make-sure-thatmy-photos-display-in-the-highest-possible-quality?
http://www.araxis.com/about

