King Abdulaziz University

Mechanical Engineering

MEP365

Thermal Measurements

Ch. 4 Probability and statistics

Feb. 2017

Ch. 4 Probability and statistics

Introduction
Concept of central value and probability
Probability density
Frequency distribution
Normal distribution
Infinite statistics
Finite statistics
Regression Analysis
Data Outlier Detection
Number of measurements data required

Introduction

Probability and statistics are used extensively in reducing and presenting measured data

Consider a person measuring the temperature in a room. How can the data be represented?

Consider a factory that manufacture a ball bearing. How can one represent the diameter of a sample of these bearings?

Variation in measured value is due:

* Measurement system (Resolution and repeatability)
*Measurement procedure and technique
*Measured variable (Temporal variation, spatial variation)

We would like to represent the variation in measured variable x statistically by

$$
x^{\prime}=\bar{x} \pm u_{x}(\mathrm{P} \%)
$$

Where
$\begin{array}{ll}\mathcal{X}^{\prime} & \text { True value } \\ \overline{\mathcal{X}} & \text { Mean value }\end{array}$
u_{x} is the of uncertainty interval

> P\% = probability

Example of sample data

Table 4.1 Sample of Random Variable x

i	x_{i}	i	x_{i}
1	0.98	11	1.02
2	1.07	12	1.26
3	0.86	13	1.08
4	1.16	14	1.02
5	0.96	15	0.94
6	0.68	16	1.11
7	1.34	17	0.99
8	1.04	18	0.78
9	1.21	19	1.06
10	0.86	20	0.96

$\mathrm{N}=$ no of data points=20
How to represent this data by

$$
x^{\prime}=\bar{x} \pm u_{x}(\mathrm{P} \%)
$$

Concept of central value and probability

Figure 4.1 Concept of density in reference to a measured variable (from Example 4.1).

Frequency distribution

j	Interval	n_{j}	$\mathrm{f}_{\mathrm{j}}=\mathrm{n}_{\mathrm{j}} / \mathrm{N}$
1	$0.65 \leq \mathrm{x}_{\mathrm{j}}<0.75$	1	0.05
2	$0.75 \leq \mathrm{x}_{\mathrm{j}}<0.85$	1	0.05
3	$0.85 \leq \mathrm{x}_{\mathrm{j}}<0.95$	3	0.15
4	$0.95 \leq \mathrm{x}_{\mathrm{j}}<1.05$	7	0.35
5	$1.05 \leq \mathrm{x}_{\mathrm{j}}<1.15$	4	0.20
6	$1.15 \leq \mathrm{x}_{\mathrm{j}}<1.25$	2	0.10
7	$1.25 \leq x_{\mathrm{j}} \leq 1.35$	2	0.10

i	x_{i}	i	x_{i}
1	0.98	11	1.02
2	1.07	12	1.26
3	0.86	13	1.08
4	1.16	14	1.02
5	0.96	15	0.94
6	0.68	16	1.11
7	1.34	17	0.99
8	1.04	18	0.78
9	1.21	19	1.06
10	0.86	20	0.96

How to draw a histogram for the data

Divide the range into several intervals (K)

$$
\begin{aligned}
& K=1.87(N-1)^{0.4}+1 \\
& \text { For large values of } N \quad K=\sqrt{ } N
\end{aligned}
$$

N is number of data points

Provided that $\quad n_{j} \geq 5 \quad \begin{aligned} & \text { For at least one } \\ & \text { interval }\end{aligned}$

Histogram

Central tendency value at maximum frequency

Figure 4.2 Histogram and frequency distribution for data in Table 4.1. 9

j	Interval	n_{j}	$\mathrm{f}_{\mathrm{j}}=\mathrm{n}_{\mathrm{j}} /$ N
1	$0.65 \leq \mathrm{x}_{\mathrm{j}} \leq 0.78$	1	0.05
2	$0.75 \leq \mathrm{x}_{\mathrm{j}}<0.85$	1	0.05
3	$0.85 \leq \mathrm{x}_{\mathrm{j}}<0.95$	3	0.15
4	$0.95 \leq \mathrm{x}_{\mathrm{j}}<1.05$	7	0.35
5	$1.05 \leq \mathrm{x}_{\mathrm{j}}<1.15$	4	0.20
6	$1.15 \leq \mathrm{x}_{\mathrm{j}}<1.25$	2	0.10
7	$1.25 \leq \mathrm{x}_{\mathrm{j}} \leq 1.35$	2	0.10

Frequency distribution Histogram

Figure 4.2 Histogram and frequency distribution for data in Table 4.1.

Probability density

$$
p(x)=\lim _{N \rightarrow \infty, \delta x \rightarrow 0} \frac{n_{j}}{N(2 \delta x)}
$$

Probability value changes from zero to maximum 1

Samples of probability distributions

Table 4.2 Standard Statistical Distributions and Relations to Measurements

Distribution	Applications	Mathematical Representation
Normal	Most physical properties that are continuous or regular in time or space. Variations due to random error.	$p(x)=\frac{1}{\sigma(2 \pi)^{1 / 2}} \exp \left[-\frac{1}{2} \frac{\left(x-x^{\prime}\right)^{2}}{\sigma^{2}}\right]$

Log normal

Poisson

Failure or durability projections; events whose outcomes tend to be skewed toward the extremity of the distribution.

$$
p(x)=\frac{1}{\pi \sigma(2 \pi)^{1 / 2}} \exp \left[-\frac{1}{2} \ln \frac{\left(x-x^{\prime}\right)^{2}}{\sigma^{2}}\right]
$$

Events randomly occurring
in time; $p(x)$ refers to probability of observing x events in time t. Here λ refers to x^{\prime}.

$$
p(x)=\frac{e^{-\lambda} \lambda^{x}}{x!}
$$

Samples of probability distributions [Continued]

Table 4.2 Standard Statistical Distributions and Relations to Measurements

Distribution	Applications	Mathematical Representation
Weibull	Fatigue tests; similar to \log normal applications.	See [4]

Binomial
Situations describing the number of occurrences, n, of a particular outcome during N independent tests where the probability of

$$
p(n)=\left[\frac{N!}{(N-n)!n!}\right] P^{n}(1-P)^{N-n}
$$ any outcome, P, is the same.

Normal Gaussian distribution

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2} \frac{\left(x-x^{\prime}\right)^{2}}{\sigma^{2}}\right]
$$

X^{\prime} is the true mean, σ is the standard of deviation

Gaussian Probability Function Distribution

Continues data

True mean value

$$
x^{\prime}=\int_{-\infty}^{+\infty} x p(x) d x
$$

True variance

$$
\sigma^{2}=\int_{-\infty}^{+\infty}\left(x-x^{\prime}\right)^{2} p(x) d x
$$

Discrete data

True mean value

$$
\begin{aligned}
x^{\prime} & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} x_{i} \\
\sigma^{2} & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left(x-x^{\prime}\right)^{2}
\end{aligned}
$$

Standard of deviation is $\boldsymbol{\sigma}$

$$
\sigma=\sqrt{ }(\text { Variance })
$$

Normal Gaussian distribution function

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2} \frac{\left(x-x^{\prime}\right)^{2}}{\sigma^{2}}\right]
$$

Infinite statistics ($\mathbf{N} \rightarrow \infty$)

Define:

$$
\beta=\frac{\left(x-x^{\prime}\right)}{\sigma} \quad z_{1}=\frac{\left(x_{1}-x^{\prime}\right)}{\sigma}
$$

The probability of x to have a value between

$$
\begin{gathered}
x^{\prime}-\delta x \leq x \leq x^{\prime}+\delta x \\
P\left(x^{\prime}-\delta x \leq x \leq x^{\prime}+\delta x\right)=\int_{x^{\prime}-\delta x}^{x^{\prime}+\delta x} p(x) d x \\
\beta=\frac{\left(x-x^{\prime}\right)}{\sigma} \quad z_{1}=\frac{\left(x_{1}-x^{\prime}\right)}{\sigma}
\end{gathered}
$$

$$
P\left(-z_{1} \leq \beta \leq z_{1}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-z_{1}}^{z_{1}} e^{-\beta^{2} / 2} d \beta=2\left[\frac{1}{\sqrt{2 \pi}} \int_{0}^{z_{1}} e^{-\beta^{2} / 2} d \beta\right]
$$

Probability for \mathbf{z} to be between 0 and any value z_{1}

Table 4.3 Probability Values for Normal Error Function
One-Sided Integral Solutions for $p\left(z_{1}\right)=\frac{1}{(2 \pi)^{1 / 2}} \int_{0}^{z_{1}} e^{-\beta^{2} / 2} \mathrm{~d} \beta$

$z_{1}=\frac{x_{1}-x^{\prime}}{\sigma}$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1809	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	03051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	03315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	03554	0.3577	0.3599	0.3621
1.1	0.3643	03665	0.3686	0.3708	0.3729	0.3749	03770	0.3790	0.3810	0.3830
1.2	0.3849	03869	0.3888	0.3907	0.3925	0.3944	03962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4758	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4799	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.49865	0.4987	0.4987	0.4988	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2} \frac{\left(x-x^{\prime}\right)^{2}}{\sigma^{2}}\right]
$$

$z_{1}=1, \quad 68.26 \%$ of the area under $p(x)$ lies within $\pm z_{1} \sigma$ of x^{\prime}.
$z_{1}=2, \quad 95.45 \%$ of the area under $p(x)$ lies within $\pm z_{1} \sigma$ of x^{\prime}. $z_{1}=3, \quad 99.73 \%$ of the area under $p(x)$ lies within $\pm z_{1} \sigma$ of x^{\prime}.

Normal-Gaussian Distribution (cont.)

Table 4.3 Probability values for normal error function, one-sided integral solutions for

$$
p\left(z_{1}\right)=\left[\frac{1}{(2 \pi)^{1 / 2}} \int_{0}^{z_{1}} e^{-\beta^{2} / 2} d \beta\right]
$$

$$
P\left(0 \leq z_{1} \leq 1.02\right)=?
$$

Also, $Z_{1}(P=0.3461)=1.02$

$$
P\left(z_{1}=1.02\right)=34.61 \%
$$

Example on using Gaussian normal distribution

Assume a normal distribution. Using table 4.3 find the probability that the value of x be In the range $x^{\prime} \pm \sigma$
since $\quad z_{1}=\frac{\left(x_{1}-x^{\prime}\right)}{\sigma}$

$$
z_{1}=\frac{\left(x^{\prime}+\sigma-x^{\prime}\right)}{\sigma}=1
$$

from table 4.3 with $\mathrm{z}=1$, the half side probability is 0.3413 . Therefore for the full sided probability is
$P=2^{*} 0.3413=0.6826$ or 68.26 \%

Example 4.3

The statistics of a well-defined varying voltage signal are given by $x^{\prime}=8.5 \mathrm{~V}$ and $\sigma^{2}=2.25 \mathrm{~V}^{2}$. If a single measurement of the voltage signal is made, determine the probability that the measured value indicated will be between 10.0 and 11.5 V .

$$
\begin{array}{ll}
\text { KNOWN } & x^{\prime}=8.5 \mathrm{~V} \\
& \sigma^{2}=2.25 \mathrm{~V}^{2} \quad \sigma=\sqrt{2.25}=1.5
\end{array}
$$

$$
X_{1}=10.0
$$

$$
\begin{aligned}
& \substack{x_{1}=10.0 \\
x_{2}=11.5}
\end{aligned} \quad P(10.0 \leq x \leq 11.5)=?
$$

$$
z=\frac{\left(x-x^{\prime}\right)}{\sigma}
$$

$$
z_{1}=\frac{10.0-8.5}{1.5}=1 \quad z_{2}=\frac{11.5-8.5}{1.5}=2
$$

$$
P(1 \leq z \leq 2)=?
$$

Use Table 4.3 to find

$$
P\left(0 \leq \beta \leq z_{1}\right)=\text { ? }
$$

Example 4.3 continue

$P\left(0 \leq z_{1} \leq 1\right)=0.3413$
$P\left(0 \leq z_{2} \leq 2\right)=0.4772$

Table 4.3 Probability Values for Normal Error Function
One-Sided Integral Solutions for $p\left(z_{1}\right)=\frac{1}{(2 \pi)^{1 / 2}} \int_{0}^{z_{1}} e^{-\beta^{2} / 2} \mathrm{~d} \beta$

$z_{1}=\frac{x_{1}-x^{\prime}}{\sigma}$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1809	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4758	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4799	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.49865	0.4987	0.4987	0.4988	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990

$P(1 \leq z \leq 2)=0.4772-0.3413=0.1359$
The probability that x is between 10 and 11.5 is 13.59 \%

Finite statistics

Sample mean

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

Sample variance $\quad s_{x}{ }^{2}=\left[\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}\right]$

Sample standard of deviation

$$
s_{x}=\left[\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}\right]^{1 / 2}
$$

$\mathrm{V}=\mathrm{N}-1=$ degree of freedom

Finite statistics (t-distrbuition)

Range of values of x

$$
x_{i}=\bar{x} \pm t_{v, P} s_{x}
$$

$\pm t_{v, P} s_{x} \quad$ Uncertainty interval $\quad s_{x}=\left[\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}\right]^{1 / 2}$
v is the degree of freedom $=\mathrm{N}-1$
$t_{v, P}$ is t estimator (student distribution) from table 4.4 as a function of v and $P(\%)$

$$
\text { As } \mathrm{N} \rightarrow \infty, \mathrm{t}_{\mathrm{v}, \mathrm{p}}=\mathrm{z}_{1}, \mathrm{~s}_{\mathrm{x}}=\sigma
$$

50, 90,95 and 99 are the probabilities

Evaluating $t_{v, P}$

v is the degree of freedom $=\mathrm{N}-1$
Table 4.4 Student- t Distribution

v	t_{50}	t_{90}	t_{95}	t_{99}
1	1.000	6.314	12.706	63.657
2	0.816	2.920	4.303	9.925
3	0.765	2.353	3.182	5.841
4	0.741	2.132	2.770	4.604
5	0.727	2.015	2.571	4.032
6	0.718	1.943	2.447	3.707
7	0.711	1.895	2.365	3.499
8	0.706	1.860	2.306	3.355
9	0.703	1.833	2.262	3.250
10	0.700	1.812	2.228	3.169
11	0.697	1.796	2.201	3.106
12	0.695	1.782	2.179	3.055
13	0.694	1.771	2.160	3.012
14	0.692	1.761	2.145	2.977
15	0.691	1.753	2.131	2.947
16	0.690	1.746	2.120	2.921
17	0.689	1.740	2.110	2.898
18	0.688	1.734	2.101	2.878
19	0.688	1.729	2.093	2.861
20	0.687	1.725	2.086	2.845
21	0.686	1.721	2.080	2.831
30	0.683	1.697	2.042	2.750
40	0.681	1.684	2.021	2.704
50	0.680	1.679	2.010	2.679
60	0.679	1.671	2.000	2.660
∞	0.674	1.645	1.960	22.576

Standard deviation of the means

Population

Sample 1
N_{1}, S_{1}

Sample 3
$\mathrm{N}_{3}, \mathrm{~S}_{3}$

Sample 2 $\mathrm{N}_{2}, \mathrm{~S}_{2}$

Sample 4
$\mathrm{N}_{\mathrm{m}}, \mathrm{S}_{\mathrm{m}}$

Standard deviation of the mean

Figure 4.5 The normal distribution tendency of the sample means about a true value in the absence of systematic error.

For several measurements, the means will have a normal distribution

Standard deviation of the mean

What is the mean if M replications were done?
Each time with number of measurements $=\mathrm{N}$

By definition
Standard deviation of the mean

$$
s_{\bar{x}}=\frac{s_{x}}{\sqrt{N}}
$$

True mean

$$
x^{\prime}=\bar{x} \pm t_{v, P} s_{\bar{x}}
$$

Represents the confidence
$t_{\nu, p} S_{\bar{x}}$ interval of the mean value around the mean

Distribution of x and distribution of the mean of x

Figure 4.6 Relationships between s_{x} and the distribution of x and between $s_{\bar{x}}$ and the true value x^{\prime}.

Example 4.4

Find
a) Compute the sample statistics (sample mean and standard deviation s_{x})
b) Estimate the interval of values for 95 \% probability
c) Estimate the true mean

Table 4.1 Sample of Random Variable x

i	x_{i}	i	x_{i}
1	0.98	11	1.02
2	1.07	12	1.26
3	0.86	13	1.08
4	1.16	14	1.02
5	0.96	15	0.94
6	0.68	16	1.11
7	1.34	17	0.99
8	1.04	18	0.78
9	1.21	19	1.06
10	0.86	20	0.96

Part a: Sample statistics

$\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}=\frac{1}{20} \sum_{i=1}^{20} x_{i}=1.02$

$$
s_{x}=\left[\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}\right]^{1 / 2}=0.16
$$

Part b: Interval of values if $P=95 \%$

$$
x_{i}=\bar{x} \pm t_{v, P} s_{x}
$$

Degree of freedom $v=20-1=19$
From table 4.4 with $v=19, P=95 \%, \mathrm{t}_{19,95}=2.095$
Range of values of x_{i} within 95% probability

$$
x_{i}=1.02 \pm(2.093 * .16)=1.02 \pm 0.33
$$

If one to pick one more ball the diameter will be between 0.69 and 1.35 with 95% probability

Standard of deviation for the mean

$$
s_{\bar{x}}=\frac{s_{x}}{\sqrt{N}}=\frac{0.16}{\sqrt{20}}=0.04
$$

The range of the true mean with confidence 95% is

$$
x^{\prime}=\bar{x} \pm t_{v, P} s_{\bar{x}}=1.02 \pm 2.093 * 0.04=1.02 \pm 0.08
$$

Table 4.4 Student- t Distribution

Pool statistics and
Sec. 4.5 CHI-squared distribution is omitted

Regression Analysis

Given data points: $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$

Regression Analysis

A procedure to get a relation between
dependent and independent variables

For each value of x , there are n values of y (scattered)
Total number of data points is \mathbf{N}

Regression Analysis

Figure 4.9 Distribution of measured value y about each fixed value of independent variable x. The curve y_{c} represents a possible functional relationship.

Regression Analysis

Least squares method

$$
y_{c}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{m} x^{m}
$$

Number of constants to be found is $m+1$
Sum of square of deviations $\quad D=\sum_{i=1}^{N}\left(y_{i}-y_{c i}\right)^{2}$

$$
D=\sum_{i=1}^{N}\left[y_{i}-\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{m} x^{m}\right)\right]^{2}
$$

Requirement: Reduce D. i.e. $\mathrm{D} \rightarrow 0$

Least squares method

Objective: Minimize the sum of squares of deviations

$$
\begin{gathered}
d D=\frac{\partial D}{\partial a_{0}} d a_{0}+\frac{\partial D}{\partial a_{1}} d a_{1}+\frac{\partial D}{\partial a_{2}} d a_{2}+\ldots \cdot \frac{\partial D}{\partial a_{m}} d a_{m} \\
\frac{\partial D}{\partial a_{0}}=0=\frac{\partial}{\partial a_{0}}\left\{\sum_{i=1}^{N}\left[y_{i}-\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{m} x^{m}\right)\right]^{2}\right\} \\
\frac{\partial D}{\partial a_{1}}=0=\frac{\partial}{\partial a_{1}}\left\{\sum_{i=1}^{N}\left[y_{i}-\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{m} x^{m}\right)\right]^{2}\right\} \\
\frac{\partial D}{\partial a_{2}}=0=\frac{\partial}{\partial a_{2}}\left\{\sum_{i=1}^{N}\left[y_{i}-\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{m} x^{m}\right)\right]^{2}\right\}
\end{gathered}
$$

Least squares method

$$
\begin{aligned}
& \frac{\partial D}{\partial a_{0}}=0=\frac{\partial}{\partial a_{0}}\left\{\sum_{i=1}^{N}\left[y_{i}-\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{m} x^{m}\right)\right]^{2}\right\} \\
& 2 *\left[\sum_{i=1}^{N}\left[y_{i}-\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{m} x^{m}\right]^{*}-1\right]=0\right. \\
& \quad \sum_{i=1}^{N} a_{0}+a_{1} \sum_{i=1}^{N} x_{i}+a_{2} \sum_{i=1}^{N} x_{i}^{2}+\ldots . .=\sum_{i=1}^{N} y_{i}
\end{aligned}
$$

$\frac{\partial D}{\partial a_{1}}=0 \quad$ Will give

$$
\sum_{i=1}^{N} a_{0} x_{i}+a_{1} \sum_{i=1}^{N} x_{i}^{2}+a_{2} \sum_{i=1}^{N} x_{i}^{3}+\ldots \ldots=\sum_{i=1}^{N} y_{i} x_{i}
$$

Least squares method

$$
\begin{array}{ll}
\frac{\partial D}{\partial a_{0}}=0 \quad & \rightarrow \quad \sum_{i=1}^{N} a_{0}+a_{1} \sum_{i=1}^{N} x_{i}+a_{2} \sum_{i=1}^{N} x_{i}^{2}+\ldots . .=\sum_{i=1}^{N} y_{i} \\
\frac{\partial D}{\partial a_{1}}=0 \quad & \rightarrow \quad \sum_{i=1}^{N} a_{0} x_{i}+a_{1} \sum_{i=1}^{N} x_{i}^{2}+a_{2} \sum_{i=1}^{N} x_{i}^{3}+\ldots . .=\sum_{i=1}^{N} y_{i} x_{i} \\
\frac{\partial D}{\partial a_{2}}=0 \quad & \rightarrow \quad \sum_{i=1}^{N} a_{0} x_{i}^{2}+a_{1} \sum_{i=1}^{N} x_{i}^{3}+a_{2} \sum_{i=1}^{N} x_{i}^{4}+\ldots . .=\sum_{i=1}^{N} y_{i} x_{i}^{2}
\end{array}
$$

Least squares method

Least squares method for $2^{\text {nd }}$ order curve fit

$$
\begin{gathered}
y_{c}=a_{0}+a_{1} x+a_{2} x^{2} \\
{\left[\begin{array}{ccc}
N & \sum_{i=1}^{N} x_{i} & \sum_{i=1}^{N} x_{i}^{2} \\
\sum_{i=1}^{N} x_{i} & \sum_{i=1}^{N} x_{i}^{2} & \sum_{i=1}^{N} x_{i}^{3} \\
\sum_{i=1}^{N} x_{i}^{2} & \sum_{i=1}^{N} x_{i}^{3} & \sum_{i=1}^{N} x_{i}^{4}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{N} y_{i} \\
\sum_{i=1}^{N} x_{i} y_{i} \\
\sum_{i=1}^{N} x_{i}^{2} y_{i}
\end{array}\right]}
\end{gathered}
$$

Statistics of the fit

Standard error of the fit

$$
s_{y x}=\sqrt{\frac{\sum_{i}^{N}\left(y_{i}-y_{c i}\right)^{2}}{v}}
$$

v is the degree of the freedom $\quad v=N-(m+1)$
Considering the variation of both dependent and independent variables, the confidence interval

$$
\pm t_{v, P} S_{y x}\left[\frac{1}{N}+\frac{(x-\bar{x})^{2}}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}\right]^{1 / 2} \quad(P \%)
$$

If only y variation is considered (common in measurement) then the curve fit is statistically described by:

$$
y_{c} \pm t_{v, P} \frac{s_{y x}}{\sqrt{N}} \quad(P \%)
$$

Linear Polynomial

Correlation coefficient

$$
r=\sqrt{1-\frac{S_{y x}{ }^{2}}{S_{y}{ }^{2}}}
$$

Coefficient of determination, r^{2}
Where

$$
s_{y}^{2}=\frac{1}{N-1} \sum_{i}^{N}\left(y_{i}-\bar{y}\right)^{2}
$$

When

$$
\pm 0.9<r< \pm 1.0 \quad \text { Good or reliable fit }
$$

R^{2} is called the coefficient of determination. Excel Tendline can show this factor on the curve
r and r^{2} are not effective estimators of the random error in y_{c}

Linear Curve fit

$y_{c}=a_{0}+a_{1} x \quad$ With N data points

$$
\left[\begin{array}{cc}
N & \sum_{i=1}^{N} x_{i} \\
\sum_{i=1}^{N} x_{i} & \sum_{i=1}^{N} x_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{N} y_{i} \\
\sum_{i=1}^{N} x_{i} y_{i}
\end{array}\right]
$$

Examples 4.8 \& 4.9

$$
\begin{gathered}
{\left[\begin{array}{cc}
N & \sum_{i=1}^{N} x_{i} \\
\sum_{i=1}^{N} x_{i} & \sum_{i=1}^{N} x_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{N} y_{i} \\
\sum_{i=1}^{N} x_{i} y_{i}
\end{array}\right]\left[\begin{array}{cc}
5 & 15 \\
15 & 55
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right]=\left[\begin{array}{c}
15.7 \\
57.5
\end{array}\right]} \\
5 a_{0}+15 a_{1}=15.7 \\
15 a_{0}+55 a_{1}=57.5
\end{gathered}
$$

Two equations in two unknowns
$\mathrm{a}_{0}=0.02, \mathrm{a}_{1}=1.04, \mathrm{r}=0.9965$ (correlation coefficient)

$$
y_{c}=0.02+1.04 x \quad V
$$

$$
\Sigma y x=57.5, \Sigma x^{2}=55
$$

If you have CASIO 880P use 6510 LIB

Examples 4.8 \& 4.9 Continue

$$
\begin{aligned}
& v=N-(m+1)=5-(2)=3 \\
& s_{y x}=\sqrt{\frac{\sum_{i}^{N}\left(y_{i}-y_{c i}\right)^{2}}{v}}=0.16
\end{aligned}
$$

From table $4.4 \quad t_{v, P}=3.18 \quad(P=95 \%)$
Uncertainty interval for probability of 95%

$$
\begin{gathered}
\pm t_{v, P} \frac{s_{x y}}{\sqrt{N}} \quad(P \%) \quad \pm 3.18 \frac{0.16}{\sqrt{5}}= \pm 0.23 \quad(95 \%) \\
1.04 x+0.02 \pm 0.23 \quad(95 \%)
\end{gathered}
$$

Figure 4.10 Results of the regression analysis of Example 4.9.

Summary of relations

Table 4.7 Summary Table for a Sample of N Data Points
Sample mean

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

Sample standard deviation

$$
s_{x}=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

Standard deviation of the means ${ }^{a}$

$$
s_{\bar{x}}=\frac{s_{x}}{\sqrt{N}}
$$

$$
\pm t_{\mathrm{v}, P} S_{x} \quad(\mathrm{P} \%)
$$

Confidence interval ${ }^{b, c}$ for a mean value, \bar{x}

$$
\pm t_{\mathrm{v}, P} s_{\bar{x}} \quad(\mathrm{P} \%)
$$

Confidence interval ${ }^{b, d}$ for curve fit, $y=f(x)$

$$
\pm t_{\mathrm{v}, P} \frac{s_{y x}}{\sqrt{N}} \quad(\mathrm{P} \%)
$$

[^0]
Example 4.10

See your textbook

Figure 4.11 A curve fit for Example 4.10.

Data Outlier Detection

Wrong data causes
$>$ offset the mean
$>$ inflate the random error
$>$ influence the least square correlation

How to detect data that is outside the normal variation?

Once the outlier data is removed, the statistics are re-calculated

Data Outlier Detection

Chauvenet's criterion

Outlier data point having less than $1 / 2 \mathrm{~N}$ probability of occurrence

Test criterion
Calculate sample statistics i.e. \bar{x} and s_{x}
Calculate $\quad z_{0}=\frac{x-\bar{x}}{s_{x}}$
if $\quad\left[1-2 P\left(z_{0}\right)\right]<\frac{1}{2 N} \quad \begin{aligned} & \text { Data point could be } \\ & \text { rejected. }\end{aligned}$

Example 4.11

i	1	2	3	4	5	6	7	8	9	10
x_{i}	28	31	27	28	29	24	29	28	18	27

Required: Statistics and outliers
From table 4.3
$\bar{x}=27, \quad \mathrm{~s}_{x}=3.8$
For data point $\mathrm{x}=18 \quad z_{0}=\left|\frac{18-27}{3.8}\right|=2.368, \quad P\left(z_{0}\right)=0.4910$
Chauvenet's criterion $\left[1-2 P\left(z_{0}\right)\right]<\frac{1}{2 N} \quad 1 /(20)=0.05$
$[1-2 P(z 0)]=\left[1-2^{*} 0.4910\right]=0.018 \leq 0.05$
Therefore this data point can be rejected
For the remaining 19 data points $\quad \bar{x}=28, \quad \mathrm{~s}_{x}=2.0$

Number of measurements required

Range of values of x with certain probability

$$
x^{\prime}=\bar{x} \pm t_{v, P} s_{\bar{x}} \quad(P \%)
$$

Confidence interval Cl

$$
C I= \pm t_{v, P} s_{\bar{x}}= \pm t_{v, P} \frac{s_{x}}{\sqrt{N}}
$$

One sided precision $\mathrm{d}=\mathrm{Cl} / 2=\frac{t_{v, P} s_{x}}{\sqrt{N}}$

$$
N=\left(\frac{t_{v, 95} s_{x}}{d}\right)^{2}
$$

This is equation has two unknowns N and s_{x}

$$
N=\left(\frac{t_{v, 95} s_{x}}{d}\right)^{2}
$$

A trail and error procedure is utilized to find N

Or If for N_{1} measurements one has calculate s_{1} then

$$
N_{T}=\left(\frac{t_{N-1,95} s_{1}}{d}\right)^{2}
$$

(95\%)

Additional $\mathrm{N}_{\mathrm{T}}-\mathrm{N}_{1}$ measurements will be required

Example 4.13 Given: 21 measurements, $\mathrm{S}_{1}=160, \mathrm{CI}=30$ units,

$$
P=95 \%
$$

Required: Total number of measurements required

$$
\begin{array}{r}
d=\frac{C I}{2}=15 \\
\mathrm{t}_{\mathrm{v}, \mathrm{P}}=\mathrm{t}_{20,95}=2.093 \\
\text { Use } \quad N_{T}=\left(\frac{t_{N-1,95} s_{1}}{d}\right)^{2} \\
N_{T}=\left(\frac{2.093 * 160}{15}\right)^{2}=125
\end{array}
$$

Therefore additional (125-21)=104 measurements will be required to achieved the required confidence interval

[^0]: ${ }^{a}$ Measure of random standard uncertainty in x.
 ${ }^{b}$ In the absence of systematic errors.
 ${ }^{c}$ Measure of random uncertainty in \bar{x}.
 ${ }^{d}$ Measure of random uncertainty in curve fit (see conditions of Eqs. 4.37-4.39).

