1) $\lim _{x \rightarrow 3^{+}} \frac{2}{x-3}=$

Solution:

If $x \rightarrow 3^{+}$, then $x>3 \Rightarrow x-3>0$

$$
\therefore \lim _{x \rightarrow 3^{+}} \frac{2}{x-3}=\infty
$$

3) $\lim _{x \rightarrow 3^{+}} \frac{-2}{x-3}=$

Solution:
If $x \rightarrow 3^{+}$, then $x>3 \Rightarrow x-3>0$

$$
\therefore \quad \lim _{x \rightarrow 3^{+}} \frac{-2}{x-3}=-\infty
$$

5) $\lim _{x \rightarrow-3^{+}} \frac{2}{x+3}=$

Solution:

If $x \rightarrow-3^{+}$, then $x>-3 \Rightarrow x+3>0$

$$
\therefore \lim _{x \rightarrow-3^{+}} \frac{2}{x+3}=\infty
$$

7) $\lim _{x \rightarrow 2^{+}} \frac{3 x-1}{x-2}=$

Solution:
If $x \rightarrow 2^{+}$, then $x>2 \Rightarrow x-2>0$ and $3 x-1>0$

$$
\therefore \lim _{x \rightarrow 2^{+}} \frac{3 x-1}{x-2}=\infty
$$

9) $\lim _{x \rightarrow-2^{+}} \frac{1-x}{(x+2)^{2}}=$

Solution:
If $x \rightarrow-2^{+}$, then $x>-2$

$$
\Rightarrow 1-x>0 \text { and }(x+2)^{2}>0
$$

$$
\therefore \lim _{x \rightarrow-2^{+}} \frac{1-x}{(x+2)^{2}}=\infty
$$

11) $\lim _{x \rightarrow-2^{+}} \frac{x-1}{(x+2)^{2}}=$

Solution:
If $x \rightarrow-2^{+}$, then $x>-2$

$$
\begin{gathered}
\Rightarrow \quad x-1<0 \text { and }(x+2)^{2}>0 \\
\therefore \lim _{x \rightarrow-2^{+}} \frac{x-1}{(x+2)^{2}}=-\infty
\end{gathered}
$$

13) $\lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=$

Solution:
If $x \rightarrow 2^{+}$, then $x^{2}>4$

$$
\begin{gathered}
\Rightarrow x^{2}-4>0 \text { and } 6 x-1>0 \\
\therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=\infty
\end{gathered}
$$

2) $\lim _{x \rightarrow 3^{-}} \frac{2}{x-3}=$

Solution:

If $x \rightarrow 3^{-}$, then $x<3 \Rightarrow x-3<0$

$$
\therefore \lim _{x \rightarrow 3^{-}} \frac{2}{x-3}=-\infty
$$

4) $\lim _{x \rightarrow 3^{-}} \frac{-2}{x-3}=$

Solution:
If $x \rightarrow 3^{-}$, then $x<3 \Rightarrow x-3<0$

$$
\therefore \quad \lim _{x \rightarrow 3^{-}} \frac{2}{x-3}=\infty
$$

6) $\lim _{x \rightarrow-3^{-}} \frac{2}{x+3}=$

Solution:

If $x \rightarrow-3^{-}$, then $x<-3 \Rightarrow x+3<0$

$$
\therefore \lim _{x \rightarrow-3^{-}} \frac{2}{x+3}=-\infty
$$

8) $\lim _{x \rightarrow 2^{-}} \frac{3 x-1}{x-2}=$

Solution:

If $x \rightarrow 2^{-}$, then $x<2 \Rightarrow x-2<0$ and $3 x-1>0$

$$
\therefore \lim _{x \rightarrow 2^{-}} \frac{3 x-1}{x-2}=-\infty
$$

10) $\lim _{x \rightarrow-2^{-}} \frac{1-x}{(x+2)^{2}}=$

Solution:

If $x \rightarrow-2^{-}$, then $x<-2$

$$
\begin{gathered}
\Rightarrow \quad 1-x>0 \text { and }(x+2)^{2}>0 \\
\therefore \lim _{x \rightarrow-2^{+}} \frac{1-x}{(x+2)^{2}}=\infty
\end{gathered}
$$

12) $\lim _{x \rightarrow-2^{-}} \frac{x-1}{(x+2)^{2}}=$

Solution:

$$
\begin{aligned}
& \text { If } x \rightarrow-2^{-} \text {, then } x<-2 \\
& \qquad \quad x-1<0 \text { and }(x+2)^{2}>0 \\
& \therefore \quad \lim _{x \rightarrow-2^{-}} \frac{x-1}{(x+2)^{2}}=-\infty
\end{aligned}
$$

14) $\lim _{x \rightarrow 2^{-}} \frac{6 x-1}{x^{2}-4}=$

Solution:
If $x \rightarrow 2^{-}$, then $x^{2}<4$

$$
\begin{gathered}
\Rightarrow x^{2}-4<0 \text { and } 6 x-1>0 \\
\therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=-\infty
\end{gathered}
$$

15) $\lim _{x \rightarrow-2^{+}} \frac{6 x-1}{x^{2}-4}=$

Solution:

If $x \rightarrow-2^{+}$, then $x^{2}<4$

$$
\begin{aligned}
& \Rightarrow x^{2}-4<0 \text { and } 6 x-1<0 \\
& \quad \therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=\infty
\end{aligned}
$$

17) $\lim _{x \rightarrow-2^{-}} \frac{6 x-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{6 x-1}{x^{2}-x-6}=\frac{6 x-1}{(x-3)(x+2)}
$$

If $x \rightarrow-2^{-}$, then $x<-2$

$$
\begin{aligned}
& \Rightarrow x-3<0, x+2<0 \text { and } 6 x-1<0 \\
& \quad \therefore \lim _{x \rightarrow-2^{-}} \frac{6 x-1}{x^{2}-x-6}=-\infty
\end{aligned}
$$

19) $\lim _{x \rightarrow 3^{+}} \frac{-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{-1}{x^{2}-x-6}=\frac{-1}{(x-3)(x+2)}
$$

If $x \rightarrow 3^{+}$, then $x>3$

$$
\begin{aligned}
& \Rightarrow x-3>0, x+2>0 \text { and }-1<0 \\
& \therefore \quad \lim _{x \rightarrow 3^{+}} \frac{-1}{x^{2}-x-6}=-\infty
\end{aligned}
$$

21) $\lim _{x \rightarrow(\pi / 2)^{+}} \tan x=$

Solution:

$$
\lim _{x \rightarrow(\pi / 2)^{+}} \tan x=-\infty
$$

23) The vertical asymptote of $f(x)=\frac{1-x}{2 x+1}$ is

Solution:
We see that the function $f(x)$ is not defined when
$2 x+1=0 \Rightarrow x=-\frac{1}{2}$. Since

$$
\lim _{x \rightarrow\left(-\frac{1}{2}\right)^{+}} \frac{1-x}{2 x+1}=\infty
$$

and

$$
\lim _{x \rightarrow\left(-\frac{1}{2}\right)^{-}} \frac{1-x}{2 x+1}=-\infty
$$

then, $x=-\frac{1}{2}$ is a vertical asymptote.
16) $\lim _{x \rightarrow-2^{-}} \frac{6 x-1}{x^{2}-4}=$

Solution:
If $x \rightarrow-2^{-}$, then $x^{2}>4$

$$
\begin{aligned}
& \Rightarrow x^{2}-4>0 \text { and } 6 x-1<0 \\
& \quad \therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=-\infty
\end{aligned}
$$

18) $\lim _{x \rightarrow-2^{+}} \frac{6 x-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{6 x-1}{x^{2}-x-6}=\frac{6 x-1}{(x-3)(x+2)}
$$

If $x \rightarrow-2^{+}$, then $x>-2$

$$
\begin{aligned}
& \Rightarrow x-3<0, x+2>0 \text { and } 6 x-1<0 \\
& \quad \therefore \quad \lim _{x \rightarrow-2^{+}} \frac{6 x-1}{x^{2}-x-6}=\infty
\end{aligned}
$$

20) $\lim _{x \rightarrow 3^{-}} \frac{-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{-1}{x^{2}-x-6}=\frac{-1}{(x-3)(x+2)}
$$

If $x \rightarrow 3^{-}$, then $x<3$

$$
\begin{aligned}
& \Rightarrow x-3<0, x+2>0 \text { and }-1<0 \\
& \quad \therefore \lim _{x \rightarrow 3^{-}} \frac{-1}{x^{2}-x-6}=\infty
\end{aligned}
$$

22) $\lim _{x \rightarrow(\pi / 2)} \tan x=$

Solution:

$$
\lim _{x \rightarrow(\pi / 2)^{-}} \tan x=\infty
$$

24) The vertical asymptote of $f(x)=\frac{3-x}{x^{2}-4}$ is

Solution:
We see that the function $f(x)$ is not defined when $x^{2}-4=0 \Rightarrow x= \pm 2$. Since

$$
\lim _{x \rightarrow 2^{+}} \frac{3-x}{x^{2}-4}=\infty, \quad \lim _{x \rightarrow 2^{-}} \frac{3-x}{x^{2}-4}=-\infty
$$

and

$$
\lim _{x \rightarrow-2^{+}} \frac{3-x}{x^{2}-4}=-\infty, \quad \lim _{x \rightarrow-2^{-}} \frac{3-x}{x^{2}-4}=\infty
$$

then, $x= \pm 2$ are vertical asymptotes.
25) The vertical asymptote of $f(x)=\frac{3-x}{x^{2}-x-6}$ is

Solution:

$$
\begin{gathered}
f(x)=\frac{3-x}{x^{2}-x-6}=\frac{3-x}{(x-3)(x+2)}=\frac{-(x-3)}{(x-3)(x+2)} \\
=-\frac{1}{x+2}
\end{gathered}
$$

We see that the function $f(x)$ is not defined when

$$
x^{2}-x-6=0 \Rightarrow(x-3)(x+2)=0
$$

$\Rightarrow x=3$ or $x=-2$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{3-x}{x^{2}-x-6}=\lim _{x \rightarrow 3} \frac{3-x}{(x-3)(x+2)} \\
& \quad=\lim _{x \rightarrow 3} \frac{-(x-3)}{(x-3)(x+2)}=\lim _{x \rightarrow 3} \frac{-1}{x+2}=-\frac{1}{5}
\end{aligned}
$$

then, $x=3$ is a removable discontinuity.

$$
\lim _{x \rightarrow-2^{+}} \frac{3-x}{x^{2}-x-6}=\lim _{x \rightarrow-2^{+}} \frac{3-x}{(x-3)(x+2)}=-\infty
$$

and

$$
\lim _{x \rightarrow-2^{-}} \frac{3-x}{x^{2}-x-6}=\lim _{x \rightarrow-2^{-}} \frac{3-x}{(x-3)(x+2)}=-\infty
$$

then, $x=-2$ is a vertical asymptote only.
27) The vertical asymptote of $f(x)=\frac{x-7}{x^{2}+5 x+6}$ is

Solution:

$$
f(x)=\frac{x-7}{x^{2}+5 x+6}=\frac{x-7}{(x+3)(x+2)}
$$

We see that the function $f(x)$ is not defined when $x+3=0$ or $x+2=0 \Rightarrow x=-3$ or $x=-2$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow-3^{+}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-3^{+}} \frac{x-7}{(x+3)(x+2)}=\infty \\
& \lim _{x \rightarrow-3^{-}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-3^{-}} \frac{x-7}{(x+3)(x+2)}=-\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{+}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-2^{+}} \frac{x-7}{(x+3)(x+2)}=-\infty \\
& \lim _{x \rightarrow-2^{-}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-2^{-}} \frac{x-7}{(x+3)(x+2)}=\infty
\end{aligned}
$$

then, $x=-3$ and $x=-2$ are vertical asymptotes.
29) The vertical asymptote of $f(x)=\frac{x-7}{x^{2}-3 x}$ is Solution:

$$
f(x)=\frac{x-7}{x^{2}-3 x}=\frac{x-7}{x(x-3)}
$$

We see that the function $f(x)$ is not defined when $x=0$ or $x-3=0 \Rightarrow x=0$ or $x=3$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 3^{+}} \frac{x-7}{x(x-3)}=-\infty \\
& \lim _{x \rightarrow 3^{-}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 3^{-}} \frac{x-7}{x(x-3)}=\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 0^{+}} \frac{x-7}{x(x-3)}=\infty \\
& \lim _{x \rightarrow 0^{-}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 0^{-}} \frac{x-7}{x(x-3)}=-\infty
\end{aligned}
$$

then, $x=3$ and $x=0$ are vertical asymptotes.
26) The vertical asymptote of $f(x)=\frac{7-x}{x^{2}-5 x+6}$ is Solution:

$$
f(x)=\frac{7-x}{x^{2}-5 x+6}=\frac{7-x}{(x-3)(x-2)}
$$

We see that the function $f(x)$ is not defined when $x-3=0$ or $x-2=0 \Rightarrow x=3$ or $x=2$.
Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 3^{+}} \frac{7-x}{(x-3)(x-2)}=\infty \\
& \lim _{x \rightarrow 3^{-}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 3^{-}} \frac{7-x}{(x-3)(x-2)}=-\infty
\end{aligned}
$$ and

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 2^{+}} \frac{7-x}{(x-3)(x-2)}=-\infty \\
& \lim _{x \rightarrow 2^{-}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 2^{-}} \frac{7-x}{(x-3)(x-2)}=\infty
\end{aligned}
$$

then, $x=3$ and $x=2$ are vertical asymptotes.
28) The vertical asymptote of $f(x)=\frac{x-7}{x^{2}+3 x}$ is

Solution:

$$
f(x)=\frac{x-7}{x^{2}+3 x}=\frac{x-7}{x(x+3)}
$$

We see that the function $f(x)$ is not defined when $x=0$ or $x+3=0 \Rightarrow x=0$ or $x=-3$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow-3^{+}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow-3^{+}} \frac{x-7}{x(x+3)}=\infty \\
& \lim _{x \rightarrow-3^{-}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow-3^{-}} \frac{x-7}{x(x+3)}=-\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow 0^{+}} \frac{x-7}{x(x+3)}=-\infty \\
& \lim _{x \rightarrow 0^{-}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow 0^{-}} \frac{x-7}{x(x+3)}=\infty
\end{aligned}
$$

then, $x=-3$ and $x=0$ are vertical asymptotes.
30) The vertical asymptotes of $f(x)=\frac{2 x^{2}+1}{x^{2}-9}$ are Solution:

$$
f(x)=\frac{2 x^{2}+1}{x^{2}-9}=\frac{2 x^{2}+1}{(x+3)(x-3)}
$$

We see that the function $f(x)$ is not defined when $x^{2}-9=0 \Rightarrow x= \pm 3$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow 3^{+}} \frac{2 x^{2}+1}{(x+3)(x-3)}=\infty \\
& \lim _{x \rightarrow 3^{-}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow 3^{-}} \frac{2 x^{2}+1}{(x+3)(x-3)}=-\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow 3^{+}} \frac{2 x^{2}+1}{(x+3)(x-3)}=-\infty \\
& \lim _{x \rightarrow-3^{-}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow-3^{-}} \frac{2 x^{2}+1}{(x+3)(x-3)}=\infty
\end{aligned}
$$

then, $x= \pm 3$ are vertical asymptotes.
31) The function $f(x)=\frac{x+1}{x^{2}-9}$ is continuous at $a=2$ because
$1-f(2)=\frac{(2)+1}{(2)^{2}-9}=\frac{3}{-5}=-\frac{3}{5}$
$2-\lim _{x \rightarrow 3^{-}} \frac{x+1}{x^{2}-9}=\lim _{x \rightarrow 2} \frac{(2)+1}{(2)^{2}-9}=\frac{3}{-5}=-\frac{3}{5}$
$3-\quad \lim _{x \rightarrow 2} \frac{x+1}{x^{2}-9}=f(2)$
OR
We know that $D_{f}=\mathbb{R} \backslash\{ \pm 3\}$, so $\{2\} \in D_{f}$.
Note: Any function is continuous on its domain.
34) The function $f(x)=\frac{x+1}{x^{2}-9}$ is continuous on its domain which is $D_{f}=\mathbb{R} \backslash\{ \pm 3\}$.
36) The function $f(x)=\left\{\begin{array}{c}\frac{\sin 3 x}{x}, \\ 5, x=0 \\ 5,\end{array}\right.$ is discontinuous at $a=0$ because
1- $f(0)=5$
2- $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=3 \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}=3(1)=3$
3- $\lim _{x \rightarrow 0} f(x) \neq f(0)$
38) The function $f(x)=\left\{\begin{array}{cc}\frac{2 x^{2}-3 x+1}{x-1}, & x \neq 1 \\ 1, & x=1\end{array}\right.$ is continuous at $a=1$ because
1- $f(1)=1$
2- $\lim _{x \rightarrow 1} \frac{2 x^{2}-3 x+1}{x-1}=\lim _{x \rightarrow 1} \frac{(2 x-1)(x-1)}{x-1}=\lim _{x \rightarrow 1}(2 x-1)=1$
3- $\lim _{x \rightarrow 1} f(x)=f(1)$
40) The function $f(x)=\left\{\begin{array}{ll}2 x+3, & x>2 \\ 3 x+1, & x \leq 2\end{array}\right.$ is continuous at $a=2$ because
1- $f(2)=3(2)+1=7$
2- $\lim _{x \rightarrow 2^{+}}(2 x+3)=2(2)+3=7$
$\lim _{x \rightarrow 2^{-}}(3 x+1)=3(2)+1=7$
$\therefore \lim _{x \rightarrow 2} f(x)=7$
3- $\lim _{x \rightarrow 2} f(x)=f(2)$
42) The function $f(x)=\sqrt{x^{2}-4}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
\begin{aligned}
& x^{2}-4 \geq 0 \Rightarrow x^{2} \geq 4 \Rightarrow \sqrt{x^{2}} \geq \sqrt{4} \\
& \Rightarrow|x| \geq 2 \quad \Leftrightarrow \quad x \geq 2 \text { or } x \leq-2
\end{aligned}
$$

Hence,
$D_{f}=(-\infty,-2] \cup[2, \infty)$.
44) The function $f(x)=\frac{x+3}{\sqrt{4-x^{2}}}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
4-x^{2}>0 \Rightarrow-x^{2}>-4 \Rightarrow x^{2}<4
$$

$\Rightarrow \sqrt{x^{2}}<\sqrt{4} \Rightarrow|x|<2 \Leftrightarrow-2<x<2$
Hence,

$$
D_{f}=(-2,2) .
$$

32) The function $f(x)=\frac{x+1}{x^{2}-9}$ is discontinuous at $a= \pm 3$ because we know that $D_{f}=\mathbb{R} \backslash\{ \pm 3\}$, so $\{ \pm 3\} \notin D_{f}$.
33) The function $f(x)=\frac{x+1}{x^{2}-9}$ is discontinuous at ± 3 because $\{ \pm 3\} \notin D_{f}$.
34) The function $f(x)=\left\{\begin{array}{c}\frac{\sin 3 x}{x}, x \neq 0 \\ 3,\end{array}\right.$ is continuous at $a=0$ because
1- $f(0)=3$
2- $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=3 \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}=3(1)=3$
3- $\lim _{x \rightarrow 0} f(x)=f(0)$
35) The function $f(x)=\left\{\begin{array}{cc}\frac{2 x^{2}-3 x+1}{x-1}, & x \neq 1 \\ 7 & , x=1\end{array}\right.$ is discontinuous at $a=1$ because
1- $f(1)=7$
2- $\lim _{x \rightarrow 1} \frac{2 x^{2}-3 x+1}{x-1}=\lim _{x \rightarrow 1} \frac{(2 x-1)(x-1)}{x-1}=\lim _{x \rightarrow 1}(2 x-1)=1$
3- $\lim _{x \rightarrow 1} f(x) \neq f(1)$
36) The function $f(x)=\frac{x^{2}-x-2}{x-2}$ is discontinuous at $a=2$ because $\{2\} \notin D_{f}$.
37) The function $f(x)=\frac{x+3}{\sqrt{x^{2}-4}}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
\begin{aligned}
& x^{2}-4>0 \Rightarrow x^{2}>4 \Rightarrow \sqrt{x^{2}}>\sqrt{4} \\
& \quad \Rightarrow|x|>2
\end{aligned} \Leftrightarrow \quad x>2 \text { or } x<-2
$$

Hence,
$D_{f}=(-\infty,-2) \cup(2, \infty)$.
43) The function $f(x)=\sqrt{4-x^{2}}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
\begin{aligned}
& 4-x^{2} \geq 0 \Rightarrow-x^{2} \geq-4 \Rightarrow x^{2} \leq 4 \\
& \Rightarrow \sqrt{x^{2}} \leq \sqrt{4} \Rightarrow|x| \leq 2 \quad \Leftrightarrow \quad-2 \leq x \leq 2
\end{aligned}
$$

Hence,

$$
D_{f}=[-2,2] .
$$

45) The function $f(x)=\frac{x+1}{x^{2}-4}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
x^{2}-4 \neq 0 \Rightarrow x^{2} \neq 4 \Rightarrow x \neq \pm 2
$$

Hence,
$D_{f}=\mathbb{R} \backslash\{ \pm 2\}$
$=(-\infty,-2) \cup(-2,2) \cup(2, \infty)=\{x \in \mathbb{R}: x \neq \pm 2\}$.
46) The function $f(x)=\log _{2}(x+2)$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
x+2>0 \Rightarrow x>-2
$$

Hence,

$$
D_{f}=(-2, \infty) .
$$

48) The function $f(x)=5^{x}$ is continuous on its domain.
Hence,

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

50) The function $f(x)=\sin ^{-1}(3 x-5)$ is continuous on its domain where $f(x)$ is defined, we mean that
$-1 \leq 3 x-5 \leq 1 \Leftrightarrow 4 \leq 3 x \leq 6 \Leftrightarrow \frac{4}{3} \leq x \leq 2$. Hence,

$$
D_{f}=\left[\frac{4}{3}, 2\right] .
$$

52) The number c that makes $f(x)=\left\{\begin{array}{cc}c+x, & x>2 \\ 2 x-c, & x \leq 2\end{array}\right.$ is continuous at $x=2$ is
Solution:
$\lim _{x \rightarrow 2} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow+^{+}} f(x) & =\lim _{x \rightarrow 2^{-}} f(x) \\
\lim _{x \rightarrow 2^{+}}(c+x) & =\lim _{x \rightarrow 2^{-}}(2 x-c) \\
c+2 & =4-c \\
c+c & =4-2 \\
2 c & =2 \\
c & =1
\end{aligned}
$$

54) The number c that makes
$f(x)=\left\{\begin{array}{cc}\frac{\sin c x}{x}+2 x-1, & x<0 \\ 3 x+4 & , x \geq 0\end{array}\right.$ is continuous at 0 is
Solution:
$\lim _{x \rightarrow 0} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{-}} f(x) \\
\lim _{x \rightarrow 0^{+}}(3 x+4) & =\lim _{x \rightarrow 0^{-}}\left(\frac{\sin c x}{x}+2 x-1\right) \\
3(0)+4 & =c(1)+2(0)-1 \\
4 & =c-1 \\
c & =4+1 \\
c & =5
\end{aligned}
$$

56) The number c that makes $f(x)=\left\{\begin{array}{cl}c^{2} x^{2}-1, & x \leq 3 \\ x+5, & x>3\end{array}\right.$ is continuous at 3 is
Solution:
$\lim _{x \rightarrow 3} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 3^{+}} f(x) & =\lim _{x \rightarrow \mathbf{x}^{-}} f(x) \\
\lim _{x \rightarrow 3^{+}}(x+5) & =\lim _{x \rightarrow 3^{-}}\left(c^{2} x^{2}-1\right) \\
(3)+5 & =c^{2}(3)^{2}-1 \\
8 & =9 c^{2}-1 \\
9 c^{2} & =8+1 \\
c^{2} & =1 \\
c & = \pm 1
\end{aligned}
$$

47) The function $f(x)=\sqrt{x-1}+\sqrt{x+4}$ is continuous on its domain where $f(x)$ is defined, we mean that $x-1 \geq 0$ and $x+4 \geq 0 \Rightarrow x \geq 1 \cap x \geq-4$
Hence,
$D_{f}=[1, \infty)$.
48) The function $f(x)=e^{x}$ is continuous on its domain.
Hence,
$D_{f}=\mathbb{R}=(-\infty, \infty)$.
49) The function $f(x)=\cos ^{-1}(3 x+5)$ is continuous on its domain where $f(x)$ is defined, we mean that $-1 \leq 3 x+5 \leq 1 \Leftrightarrow-6 \leq 3 x \leq-4 \Leftrightarrow-2 \leq x \leq-\frac{4}{3}$. Hence,

$$
D_{f}=\left[-2,-\frac{4}{3}\right] .
$$

53) The number c that makes
$f(x)=\left\{\begin{array}{cc}c x^{2}-2 x+1, & x \leq-1 \\ 3 x+2, & x>-1\end{array}\right.$ is continuous at -1 is

Solution:

$\lim _{x \rightarrow-1} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow-1^{+}} f(x) & =\lim _{x \rightarrow-\mathbf{l}^{-}} f(x) \\
\lim _{x \rightarrow-1^{+}}(3 x+2) & =\lim _{x \rightarrow-1^{-}}\left(c x^{2}-2 x+1\right) \\
3(-1)+2 & =c(-1)^{2}-2(-1)+1 \\
-1 & =c+3 \\
c & =-1-3 \\
c & =-4
\end{aligned}
$$

55) The value c that makes $f(x)=\left\{\begin{array}{l}c x^{2}+2 x, x \leq 2 \\ x^{3}-c x,\end{array}, x>2\right.$ is continuous at 2 is

Solution:

$\lim _{x \rightarrow 2} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{-}} f(x) \\
\lim _{x \rightarrow 2^{+}}\left(x^{3}-c x\right) & =\lim _{x \rightarrow 2^{-}}\left(c x^{2}+2 x\right) \\
(2)^{3}-c(2) & =c(2)^{2}+2(2) \\
8-2 c & =4 c+4 \\
-2 c-4 c & =4-8 \\
-6 c & =-4 \\
c & =\frac{-4}{-6} \\
c & =\frac{2}{3}
\end{aligned}
$$

57) The number c that makes $f(x)= \begin{cases}x-2, & x>5 \\ c x-3, & x \leq 5\end{cases}$ is continuous at 5 is

Solution:

$\lim _{x \rightarrow 5} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 5^{+}} f(x) & =\lim _{x \rightarrow 5^{-}} f(x) \\
\lim _{x \rightarrow 5^{+}}(x-2) & =\lim _{x \rightarrow)^{-}}(c x-3) \\
(5)-2 & =c(5)-3 \\
3 & =5 c-3 \\
5 c & =3+3 \\
5 c & =6 \\
c & =\frac{6}{5}
\end{aligned}
$$

58) The number c that makes $f(x)= \begin{cases}x+3, & x>-1 \\ 2 x-c, & x \leq-1\end{cases}$ is continuous at -1 is Solution:
$\lim _{x \rightarrow-1} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow-1^{+}} f(x) & =\lim _{x \rightarrow 1^{-}} f(x) \\
\lim _{x \rightarrow-1^{+}}(x+3) & =\lim _{x \rightarrow 1^{-}}(2 x-c) \\
(-1)+3 & =2(-1)-c \\
2 & =-2-c \\
c & =-2-2 \\
c & =-4
\end{aligned}
$$

