

Learning Outcomes

After studying this chapter, you will be able:

- to define vector quantity and scalar quantity and differentiate between them.
- to add vectors geometrically and write the resultant equation.
- to identify vector addition properties: commutative law, associative law and vector subtraction.
- to find the inverse of any vector.
- to resolve any vector and find its x and y components.
- to calculate the magnitude and direction of vector.
- to identify the unit vector (magnitude and direction) on three axes.
- to write a vector in unit vector notations.
- to add vectors by components.
- to multiply vector by scalar (either +ve or - ve no.).
- to identify the two kinds of multiplication of a vector by another vector.
- to calculate the scalar product of two vectors in terms of the magnitude of the two vectors and angle between them.
- to calculate the scalar product of unit vectors.
- to calculate the vector product of two vectors in terms of the magnitude of the two vectors and the angle between them, in magnitude and direction.
- to use the right-hand rule to find the direction of the vector product.
- to calculate the vector product of unit vectors.
- to calculate the magnitude of the vector product of two vectors when they are written in unit-vector notation.

3-1 VECTORS AND THEIR COMPONENTS

Vectors and Scalars

Physical Quantities

Vectors Addition

Adding Vectors Geometrically

- Vector equation
- Commutative Law
- Associative Law
- Vector Subtraction

Adding Vectors by
Components

- Components
- resolving the vector
- writing a vector in magnitude- angle notation
- Unit Vectors
- writing a vector in Unit vector notation

Adding Vectors Geometrically

- Vector equation $\Longrightarrow \vec{s}=\vec{a}+\vec{b}$,

- Commutative Law

$$
\vec{a}+\vec{b}=\vec{b}+\vec{a}
$$

Components of Vectors

- Resolving the vector is the process of finding the components

- Component is the projection of the vector on an axis

$$
\begin{gathered}
\Rightarrow \cos \theta=\frac{a_{x}}{a}, \quad \sin \theta=\frac{a_{y}}{a} \\
\downarrow \\
a_{x}=a \cos \theta \text { and } a_{y}=a \sin \theta
\end{gathered}
$$

$$
a_{x}=a \cos \theta \text { and } a_{y}=a \sin \theta
$$

$$
a_{x}=a \sin \alpha \text { and } a_{y}=a \cos \alpha
$$

\vec{a}

a and θ

- Finding the components.
$\underbrace{a_{x}=a \cos \theta \quad a_{y}=a \sin \theta}$
a_{x} and a_{y}

- Writing a vector in magnitudeangle notation

$$
a=|a|=\sqrt{a_{x}{ }^{2}+a_{y}^{2}} \quad \tan \theta=\frac{a_{y}}{a_{x}}
$$

Rem : When use these formulas to find the components, the angle must be measured from positive X -axis, if clockwise put θ-ve if counterclockwise put $\theta+\mathrm{ve}$.

How to find the components of a vector in different positions?

When the angle is from the +ve x-axis

Clockwise

$$
\begin{aligned}
& a_{x}=a \cos -\theta \\
& a_{y}=a \sin -\theta
\end{aligned}
$$

Counter-clockwise

$a_{x}=a \cos \theta$
$a_{y}=a \sin \theta$

When the angle is from any different axis

$$
\begin{aligned}
& a_{x}=-a \cos \theta \\
& a_{y}=+a \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& a_{x}=-a \sin \theta \\
& a_{y}=+a \cos \theta
\end{aligned}
$$

North of east = toward the north from due east

West of south= = toward the west from due south

Sample Problem 3.02

A small airplane leaves an airport on an overcast day and is later sighted 215 km away, in a direction making an angle of 22° east of due north. How far east and north is the airplane from the airport when sighted?

3-2 UNIT VECTORS, ADDING VECTORS BY COMPONENTS

Unit Vectors

- Unit vector is a vector of magnitude 1 and points in a particular direction

- Writing a vector in Unit vector notation

I

$$
\vec{a}=a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}
$$

Adding vectors by Components

$$
\begin{gathered}
\vec{a}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k} \\
\vec{b}=b_{x} \hat{\imath}+b_{y} \hat{\jmath}+b_{z} \hat{k} \\
\vec{r}=\vec{a} \overline{+} \vec{b} \\
\vec{r}=r_{x} \hat{\imath}+r_{y} \hat{\jmath}+r_{z} \hat{k}
\end{gathered}
$$

$$
r_{x}=a_{x} \overline{+} b_{x} \quad r_{y}=a_{y} \overline{+} b_{y} \quad r_{z}=a_{z} \overline{+} b_{z}
$$

Sample Problem 3.04

Figure 3-17a shows the following three vectors:

\vec{a}	$=(4.2 \mathrm{~m}) \hat{\mathrm{i}}-(1.5 \mathrm{~m}) \hat{\mathrm{j}}$,
\vec{b}	$=(-1.6 \mathrm{~m}) \hat{\mathrm{i}}+(2.9 \mathrm{~m})$,
and	

What is their vector sum \vec{r} which is also shown?

3-3 MULTIPLYING VECTORS

Multiplying vectors

Multiplying a vector by a scalar

 +ve scalarwill produce a new vector in the same direction as the started vector

$$
\begin{array}{|c|}
\hline \vec{a}=2 \hat{\imath}+3 \hat{\jmath} \\
2 \vec{a}=4 \hat{\imath}+6 \hat{\jmath}
\end{array}
$$

Multiplying a vector by a vector

The Scalar (Dot product)

If the two vectors are given in magnitude and the angle between them

$\vec{a} \cdot \vec{b}=a b \cos \phi$

If the two vectors are given in unit vector notation

$$
\begin{aligned}
& \vec{a}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k} \\
& \vec{b}=b_{x} \hat{\imath}+b_{y} \hat{\jmath}+b_{z} \hat{k}
\end{aligned}
$$

$$
\stackrel{\rightharpoonup}{a} \cdot \stackrel{\rightharpoonup}{b}=a_{\mathrm{x}} b_{\mathrm{x}}+a_{y} b_{\mathrm{y}}+a_{z} b_{\mathrm{z}}
$$

$$
\vec{a} \cdot \vec{b}=a b \cos \phi
$$

1- The scalar product is commutative $\Rightarrow \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
2- If the two vectors are parallel $\Rightarrow \theta=0 \Rightarrow \vec{a} \cdot \vec{b}=a b$
3- If the two vectors are perpendicular $\Longrightarrow \theta=90 \Rightarrow \vec{a} \cdot \vec{b}=0$
4- If the two vectors are Antiparallel $\Longrightarrow \theta=180 \Rightarrow \vec{a} \cdot \vec{b}=-a b$
5- Multiplying Unit vectors
$\hat{\mathrm{i}} . \hat{\mathrm{i}}=(1)(1) \cos 0=1 \quad \Longrightarrow \hat{\mathrm{i}} \cdot \hat{\mathrm{i}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{j}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=1$
$\hat{\mathbf{i}} \mathrm{j}=(1)(1) \cos 90=0 \Rightarrow \hat{\mathrm{i}} \cdot \hat{\mathrm{j}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{k}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{i}}=0$

Sample Problem 3.05

What is the angle ϕ between $\vec{a}=3.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}$ and $\vec{b}=-2.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{k}}$?

Vector (Cross product)

$$
|\vec{a} \times \vec{b}|=|c|=a b \sin \phi
$$

1- The vector product is Anti commutative $\quad \Rightarrow \vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$
2- If the two vectors are parallel $\Rightarrow \theta=0 \Rightarrow \vec{a} \times \vec{b}=0$
3- If the two vectors are perpendicular $\Rightarrow \theta=90 \Rightarrow|\vec{a} \times \vec{b}|=a b$
4- If the two vectors are Anti-parallel $\Longrightarrow \theta=180 \Rightarrow \vec{a} \times \vec{b}=0$ 5- Multiplying Unit vectors

$$
\begin{aligned}
& |\hat{i} \times \hat{i}|=(1)(1) \sin 0=0 \Longrightarrow \hat{i} \times \hat{i}=\hat{j} \times \hat{j} \\
& |\hat{i} \times \hat{j}|=(1)(1) \sin 90=1 \Longrightarrow \hat{i} \times \hat{j}=\hat{k} \\
& \hat{i} \times \hat{j}=\hat{k}, \quad \hat{j} \times \hat{k}=\hat{i}, \quad \hat{k} \times \hat{i}=\hat{j} \\
& \hat{j} \times \hat{i}=-\hat{k} \quad \hat{k} \times \hat{j}=-\hat{i} \quad \hat{i} \times \hat{k}=-\hat{j}
\end{aligned}
$$

Sample Problem 3.07

If $\vec{a}=3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}$ and $\vec{b}=-2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}$, what is $\vec{c}=\vec{a} \times \vec{b}$?

$$
\begin{aligned}
& \text { THE } \\
& \text { END }
\end{aligned}
$$

