COURSE SYLLABUS – ChE 441

COURSE TITLE	ENGLISH	ARABIC CODE/NO	CREDITS				
COURSE TITLE	CODE/NO		Th.	Pr.	Tr.	Tu.	Total
Modeling and Simulation	ChE 441	هـ کم ۲۶۱	3			1	3
Pre-requisites:	ChE 321, ChE 334						
Course Role in Curriculum	Required or Elective:			Required			
Course Role in Curriculum	A pre-requisite for:						

Catalogue Description:

This course is designed to give a chemical engineering student the ability to solve system of algebraic- differential equations. The course will develop student ability's to drive system models and simulate digitally. The student is also trained on available simulation computer packages (Design II, ChE-Cad & Math-lab).

Textbooks:

Luyben W. L., Process Modeling Simulation & Control, 2nd edition, McGraw-Hill (1990).

Note: This text book is worldwide renowned and it is the latest edition available

Supplemental Materials:

H. Norman, Process Modeling and Computer Aided Design in Chemical Engineering, John Wiley & Sons; 2nd Edition

Course Learning Outcomes:

By the completion of the course the student should be able to:

1	Commenced and a solution of the course the student should be uble to.
1.	Summarize numerical method for solving algebraic and deferential equations, single and
<u> </u>	system.
2.	Describe simulation, modeling and control volume for lumped parameters system.
3.	Develop total material balance, modeling and simulation of storage (constant and
	variable cross-section)
4.	Formulate component material balance (lumped parameters system): modeling and
	simulation of mixing tank and reactor tank.
5.	Generate energy balance (lumped parameters system): modeling and simulation for
	heater and reactor.
6.	Prepare model and simulation of CSTR in series, distillation process and combination of
	CSTR and distillation process in series (total balance, components balance and energy
	balance).
7.	Define C.V. for distributed parameter system.
8.	Construct component balance for distributed parameters system: modeling and
	simulation of plug flow reactor and diffusion systems.
9.	<u>Create</u> energy balance for distributed parameters system: modeling and simulation of
	non-isothermal plug flow reactor and heat exchanger.
10.	Design model and simulate for a closed loop system; study the effect of different
	controller type and controller parameters on state variable.
L	1

Topics to be Covered:		<u>Duration in Weeks</u>
1.	Introduction – review numerical method	2
2.	Total mass balance for lumped parameters system	1
3.	Components mole balance for lumped parameters system	1
4.	Energy Balance for lumped parameters system 1	
5.	System in series	2
6.	Distillation Column	1
7.	CSTR & Distillation in series	2
8.	Distributed parameter system (Total , components and	2
	energy balance)	
9.	Closed loop system	2

Key Student Outcomes addressed by the course: (Put a $\sqrt{\text{sign}}$)

(a)	an ability to apply knowledge of mathematics, science, and engineering	٧
(b)	an ability to design and conduct experiments, as well as to analyze and interpret	
	data	
(c)	an ability to design a system, component, or process to meet desired needs within	
	realistic constraints such as economic, environmental, social, political, ethical,	
	health and safety, manufacturability, and sustainability	
(d)	an ability to function on multidisciplinary teams	
(e)	an ability to identify, formulate, and solve engineering problems	٧
(f)	an understanding of professional and ethical responsibility	
(g)	an ability to communicate effectively	
(h)	the broad education necessary to understand the impact of engineering solutions in	
	a global, economic, environmental, and societal context	
(i)	a recognition of the need for, and an ability to engage in life-long learning	
(j)	a knowledge of contemporary issues	
(k)	an ability to use the techniques, skills, and modern engineering tools necessary	٧
	for engineering practice.	

Key Student Outcomes assessed in the course: (a) and (k)

Class Schedule:

• Lecture: two 1.5 hour sessions per week

• Tutorials: one 3.0 hours session per week

Instructor:	Dr. Mahmoud Noor Wali
Last updated:	January 2015