	ENGLISH CODE/NO	ARABIC CODE/NO	CREDITS				
COURSE TITLE			Th.	Pr.	Tr.	Tu.	Total
Momentum Transfer	ChE 331	هـکم ۳۳۱	3			1	3
Pre-requisites:	MATH 203, MATH 204, ChE 201						
Course Bolo in Curriculum	Required or Elective:			Required			
Course Role in Curriculum	A pre-requisite for:			ChE 332, ChE 333			

COURSE SYLLABUS – ChE 331

Catalogue Description:

Fluid static, Mass, momentum, and energy balance on finite and differential systems. Laminar and turbulent flow in pipes. Fluid flow in porous media. Introduction to boundary layer theory. Fluid flow applications.

Textbooks:

James Welty, Charles, Wicks, Gregory L. Rorrer, Robert E. Wilson, Fundamentals of Momentum, Heat and Mass Transfer, Publisher: John Wiley & Sons; 6th Edition (2015) *Supplemental Materials:*

Bruce R. Munson, Theodore H. Okiishi, Wade W. Huebsch and Alric P. Rothmayer, Fluid Mechanics, n Wiley & Sons; 7th Edition (2013)

Course Learning Outcomes:

By the completion of the course the student should be able to:

1.	Identify the key fluid properties used in the analysis of fluid h	abavior		
	Identify the key fluid properties used in the analysis of fluid behavior.			
2.	<u>Use</u> the concept of viscosity, vapor pressure, and surface tension.			
3.	Estimate the pressure at various locations in a fluid at rest.			
4.	Explain the development, uses, and limitations of the Bernoulli equation.			
5.	Select an appropriate finite control volume to solve a fluid mechanics problem.			
6.	Apply conservation of mass and energy and Newton's second law of motion to the			
	contents of a finite control volume to get important answers.			
7.	Analyze certain types of flow using the Navier-Stockes equations.			
8.	Apply the Buckigham pi theory			
9.	Develop a set of dimensionless variables for a given flow situation			
10.	Discuss the main properties of laminar and turbulent pipe flow.			
11.	Explain the fundamental characteristics of a boundary layer, including laminar,			
	transitional and turbulent regimes.			
12.	Select an appropriate class of turbomachines for a particular application.			
		oplication.		
1 1		oplication.		
Тор	ics to be Covered:	Duration in Weeks		
Top 1.	<i>ics to be Covered:</i> Introduction to Momentum Transfer			
	Introduction to Momentum Transfer			
1.				
1. 2.	Introduction to Momentum Transfer Fluid Statics and Elementary Fluid Dynamics Finite Control Volume Analysis			
1. 2. 3.	Introduction to Momentum Transfer Fluid Statics and Elementary Fluid Dynamics			
1. 2. 3. 4.	Introduction to Momentum Transfer Fluid Statics and Elementary Fluid Dynamics Finite Control Volume Analysis Differential Analysis of Fluid Flow			
1. 2. 3. 4. 5.	Introduction to Momentum Transfer Fluid Statics and Elementary Fluid Dynamics Finite Control Volume Analysis Differential Analysis of Fluid Flow Dimensional analysis, Similitude and Modeling			

<u>Key Student Outcomes addressed by the course</u>: (Put a $\sqrt{\text{sign}}$)

(a)	an ability to apply knowledge of mathematics, science, and engineering	
(b)	an ability to design and conduct experiments, as well as to analyze and interpret	
	data	
(c)	an ability to design a system, component, or process to meet desired needs within	
	realistic constraints such as economic, environmental, social, political, ethical,	
	health and safety, manufacturability, and sustainability	
(d)	an ability to function on multidisciplinary teams	
(e)	an ability to identify, formulate, and solve engineering problems	\checkmark
(f)	an understanding of professional and ethical responsibility	
(g)	an ability to communicate effectively	\checkmark
(h)	the broad education necessary to understand the impact of engineering solutions in	
	a global, economic, environmental, and societal context	
(i)	a recognition of the need for, and an ability to engage in life-long learning	
(j)	a knowledge of contemporary issues	
(k)	an ability to use the techniques, skills, and modern engineering tools necessary for	
	engineering practice.	
Key	Student Outcomes assessed in the course: (e) and (g)	

Class Schedule:

- Lecture: three 1.0 hour sessions per week
- Tutorials: one 3.0 hours session per week

Instructor:	Dr. Sharif Fakhruz Zaman
Last updated :	January 2015