COURSE STELLIDOS CHE 321							
COURSE TITLE	ENGLISH	ARABIC CODE/NO	CREDITS				
	CODE/NO		Th.	Pr.	Tr.	Tu.	Total
Chemical Reaction Engineering	ChE 321	هـکم ۳۲۱	3			1	3
Pre-requisites:	ChE 302 and EE 332						
	Required or Elective:			Required			
Course Role in Curriculum	A nue neguicite fem			ChE441, 0			hE442,
	A pre-requisite for:			ChE451, ChE499			

COURSE SYLLABUS – ChE 321

Catalogue Description:

The course aims to develop the student's ability to understand mole balances, conversion and reactor sizing, rate laws and stoichiometry for a single and multiple reactors and its applications to steady-state isothermal reactors. Collection and analysis of rate data of catalytic reactors.

Textbooks:

H. Scott Fogler, Elements of Chemical Reaction Engineering, 4th Edition, Printice Hall Intl., 2006.

**The latest available edition for the world reputable book for Chem. Eng. Plant Design Supplemental Materials:*

J. M. Smith, "Chemical Engineering Kinetics, 3rd Edition, McGraw- Hill International Book Company, Singapore. 1981.

Course Learning Outcomes:

By the completion of the course the student should be able to:

,	By the completion of the course the student should be dole to.
1.	Apply the mole balance equations for batch, CSTR, PFR, and PBR reactors
2.	Apply the Levenspiel plots to the sizing of chemical reactors
3.	<u>Design</u> Ideal reactors for single reactions in terms of $-r_A$ as a function of conversion
4.	Set up stoichiometric tables as a tool for expressing concentration as a function of conversion
5.	<u>Apply</u> the algorithm that allows the solution of chemical reaction engineering problems for isotherms single reactions
6.	<u>Analyze</u> rate data using different numerical techniques and softwares such as Polymath software
7.	Select the type of reactor and operating parameters to maximize the selectivity and yield of a desired product
8.	<u>Apply</u> the algorithm that allows the solution of chemical reaction engineering problems for isotherms multiple reactions Polymath software
9.	Develop the rate equation of a catalytic reaction using Langmuir-Hinshelwood mechanism.
10.	Recognize safety aspects of chemical reactors.

Topics to be Covered:		<u>Duration in Weeks</u>
1.	The Mole Balance and Reactor Sizing	1
2.	Conversion and Reactor sizing	3
3.	Rate Laws and Stoichiometry	2
4.	Isothermal Reactor Design	2
5.	Collection and Analysis of Rate Data	2
6.	Reaction Yield and Selectivity	1
7.	Isothermal Multiple Reactions	1
8.	Catalyzed Reaction	1
9.	Reactor Safety issues	1

<u>Key Student Outcomes addressed by the course</u>: (Put a $\sqrt{\text{sign}}$)

(a)	an ability to apply knowledge of mathematics, science, and engineering	
(b)	an ability to design and conduct experiments, as well as to analyze and interpret	
	data	
(c)	an ability to design a system, component, or process to meet desired needs	\checkmark
	within realistic constraints such as economic, environmental, social, political,	
	ethical, health and safety, manufacturability, and sustainability	
(d)	an ability to function on multidisciplinary teams	
(e)	an ability to identify, formulate, and solve engineering problems	
(f)	an understanding of professional and ethical responsibility	
(g)	an ability to communicate effectively	
(h)	the broad education necessary to understand the impact of engineering solutions in	
	a global, economic, environmental, and societal context	
(i)	a recognition of the need for, and an ability to engage in life-long learning	
(j)	a knowledge of contemporary issues	\checkmark
(k)	an ability to use the techniques, skills, and modern engineering tools necessary	\checkmark
	for engineering practice.	
Kon	Student Outcomes assassed in the course: (a) (i) and (k)	

Key Student Outcomes assessed in the course: (c), (j) and (k)

Class Schedule:

- Lecture: two 1.5 hour sessions per week
- Tutorials: one 3.0 hours session per week

Instructor:	Prof. Yahia Alhamed
Last updated :	January 2015