Workshop Solutions to Sections 3.4 and 3.5

1)
$$\lim_{x \to 3^+} \frac{2}{x - 3} =$$

If $x \to 3^+$, then $x > 3 \implies x - 3 > 0$ $\lim_{x \to 3^+} \frac{2}{x - 3} = \infty$

$$\therefore \lim_{x \to 3^+} \frac{2}{x - 3} = \infty$$

2) $\lim_{x \to 3^{-}} \frac{2}{x - 3} =$

If $x \to 3^-$, then $x < 3 \implies x - 3 < 0$ $\therefore \lim_{x \to 3^-} \frac{2}{x - 3} = -\infty$

$$\therefore \lim_{x \to 3^-} \frac{2}{x - 3} = -\infty$$

3)
$$\lim_{x \to 3^+} \frac{-2}{x - 3} =$$

If $x \to 3^+$, then $x > 3 \implies x - 3 > 0$

$$\therefore \lim_{x \to 3^+} \frac{-2}{x - 3} = -\infty$$

4) $\lim_{x \to 3^{-}} \frac{-2}{x - 3} =$

Solution:

If $x \to 3^-$, then $x < 3 \implies x - 3 < 0$

$$\therefore \lim_{x \to 3^{-}} \frac{2}{x - 3} = \infty$$

5)
$$\lim_{x \to -3^+} \frac{2}{x+3} =$$

Solution:

If $x \to -3^+$, then $x > -3 \implies x + 3 > 0$

$$\therefore \lim_{x \to -3^+} \frac{2}{x+3} = \infty$$

6) $\lim_{x \to -3^{-}} \frac{2}{x+3} =$

Solution:

If $x \to -3^-$, then $x < -3 \implies x + 3 < 0$

$$\therefore \lim_{x \to -3^-} \frac{2}{x+3} = -\infty$$

7)
$$\lim_{x \to 2^+} \frac{3x - 1}{x - 2} =$$

Solution:

If $x \to 2^+$, then $x > 2 \implies x - 2 > 0$ and 3x - 1 > 0

$$\therefore \lim_{x \to 2^+} \frac{3x - 1}{x - 2} = \infty$$

 $8) \quad \overline{\lim_{x \to 2^{-}} \frac{3x - 1}{x - 2}} =$

Solution:

If $x \to 2^-$, then $x < 2 \implies x - 2 < 0$ and 3x - 1 > 0

$$\therefore \lim_{x \to 2^{-}} \frac{3x - 1}{x - 2} = -\infty$$

9)
$$\lim_{x \to -2^+} \frac{1-x}{(x+2)^2} =$$

Solution:

If $x \to -2^+$, then x > -2

$$\Rightarrow 1 - x > 0 \text{ and } (x+2)^2 > 0$$

$$\therefore \lim_{x \to -2^+} \frac{1 - x}{(x+2)^2} = \infty$$

10) $\lim_{x \to -2^{-}} \frac{1-x}{(x+2)^{2}} =$

Solution:

If $x \to -2^-$, then x < -2

⇒
$$1-x > 0$$
 and $(x+2)^2 > 0$
∴ $\lim_{x \to -2^+} \frac{1-x}{(x+2)^2} = \infty$

11)
$$\lim_{x \to -2^+} \frac{x-1}{(x+2)^2} =$$

Solution:

If $x \to -2^+$, then x > -2

$$\Rightarrow x - 1 < 0 \text{ and } (x + 2)^2 > 0$$

$$\therefore \lim_{x \to -2^+} \frac{x - 1}{(x + 2)^2} = -\infty$$

12) $\lim_{x \to -2^{-}} \frac{x - 1}{(x + 2)^2} =$

Solution:

If $x \to -2^-$, then x < -2

⇒
$$x-1 < 0$$
 and $(x+2)^2 > 0$
∴ $\lim_{x \to -2^-} \frac{x-1}{(x+2)^2} = -\infty$

13)
$$\lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} =$$

Solution:

If $x \to 2^+$, then $x^2 > 4$

$$\Rightarrow x^2 - 4 > 0 \text{ and } 6x - 1 > 0$$

$$\therefore \lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} = \infty$$

14)
$$\lim_{x \to 2^{-}} \frac{6x - 1}{x^2 - 4} =$$

Solution:

If $x \to 2^-$, then $x^2 < 4$

$$\Rightarrow x^2 - 4 < 0 \text{ and } 6x - 1 > 0$$

$$\therefore \lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} = -\infty$$

15) $\lim_{x \to -2^+} \frac{6x - 1}{x^2 - 4} =$	16) $\lim_{x \to -2^{-}} \frac{6x - 1}{x^2 - 4} =$
Solution:	Solution:
If $x \to -2^+$, then $x^2 < 4$	If $x \to -2^-$, then $x^2 > 4$
$\Rightarrow x^2 - 4 < 0 \text{ and } 6x - 1 < 0$	$\Rightarrow x^2 - 4 > 0 \text{ and } 6x - 1 < 0$
$\lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} = \infty$	$\lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} = -\infty$
17) $\lim_{x \to -2^{-}} \frac{6x - 1}{x^2 - x - 6} =$	18) $\lim_{x \to -2^+} \frac{6x - 1}{x^2 - x - 6} =$
$\begin{array}{c} x \rightarrow -2^{-} x^{2} - x - 6 \\ \underline{\text{Solution:}} \end{array}$	$x \to -2^+ x^2 - x - 6$ Solution:
$f(x) = \frac{6x - 1}{x^2 - x - 6} = \frac{6x - 1}{(x - 3)(x + 2)}$	$f(x) = \frac{6x - 1}{x^2 - x - 6} = \frac{6x - 1}{(x - 3)(x + 2)}$
x = x = (x - 3)(x + 2)	x = x = 0 (x = 0)(x + 2)
If $x \to -2^-$, then $x < -2$	If $x \to -2^+$, then $x > -2$
$\Rightarrow x - 3 < 0, x + 2 < 0 \text{ and } 6x - 1 < 0$	$\Rightarrow x - 3 < 0$, $x + 2 > 0$ and $6x - 1 < 0$
$\lim_{x \to -2^-} \frac{6x-1}{x^2-x-6} = -\infty$	$\lim_{x \to -2^+} \frac{6x-1}{x^2-x-6} = \infty$
19) $\lim_{x \to 3^+} \frac{-1}{x^2 - x - 6} =$	$\lim_{x \to 3^{-}} \frac{-1}{x^{2} - x - 6} =$
$x \rightarrow 3^+ x^2 - x - 6$ Solution:	$x \rightarrow 3^- x^2 - x - 6$ Solution:
$f(x) = \frac{-1}{x^2 - x - 6} = \frac{-1}{(x - 3)(x + 2)}$	$f(x) = \frac{-1}{x^2 - x - 6} = \frac{-1}{(x - 3)(x + 2)}$
$\lambda \lambda $	$\lambda \lambda 0 (\lambda 3)(\lambda \mid 2)$
If $x \to 3^+$, then $x > 3$	If $x \to 3^-$, then $x < 3$
$\Rightarrow x - 3 > 0, x + 2 > 0 \text{ and } -1 < 0$	$\Rightarrow x - 3 < 0$, $x + 2 > 0$ and $-1 < 0$
$\lim_{x \to 3^+} \frac{-1}{x^2 - x - 6} = -\infty$	$\therefore \lim_{x \to 3^-} \frac{-1}{x^2 - x - 6} = \infty$
$\lim_{x \to (\pi/2)^+} \tan x =$	$\lim_{x \to (\pi/2)^{-}} \tan x =$
Solution:	Solution:
$\lim_{x \to (\pi/2)^+} \tan x = -\infty$	$\lim_{x \to (\pi/2)^{-}} \tan x = \infty$
x → (¹ / ₂)	(12)
23) The vertical asymptote of $f(x) = \frac{1-x}{2x+1}$ is	24) The vertical asymptote of $f(x) = \frac{3-x}{x^2-4}$ is
Solution:	Solution:
We see that the function $f(x)$ is not defined when	We see that the function $f(x)$ is not defined when
$2x + 1 = 0 \implies x = -\frac{1}{2}$. Since	$x^2 - 4 = 0 \implies x = \pm 2$. Since
$\lim_{x \to \infty} \frac{1-x}{1-x} = \infty$	$\lim_{x \to 2^+} \frac{3 - x}{x^2 - 4} = \infty, \qquad \lim_{x \to 2^-} \frac{3 - x}{x^2 - 4} = -\infty$
$\lim_{x \to \left(-\frac{1}{2}\right)^{+}} \frac{1 - x}{2x + 1} = \infty$	$x \rightarrow 2 \cdot x = 4$ $x \rightarrow 2 \cdot x = 4$
and	and
$\lim_{x \to \left(-\frac{1}{2}\right)^{-}} \frac{1-x}{2x+1} = -\infty$	$\lim_{x \to -2^{+}} \frac{3 - x}{x^{2} - 4} = -\infty, \qquad \lim_{x \to -2^{-}} \frac{3 - x}{x^{2} - 4} = \infty$
. \ 2/	$x \rightarrow -2^+ x^2 - 4$ $x \rightarrow -2^- x^2 - 4$ then, $x = \pm 2$ are vertical asymptotes.
then, $x = -\frac{1}{2}$ is a vertical asymptote.	<u></u>
_	
1	

25) The vertical asymptote of $f(x) = \frac{3-x}{x^2-x-6}$ is Solution:

$$f(x) = \frac{3-x}{x^2 - x - 6} = \frac{3-x}{(x-3)(x+2)} = \frac{-(x-3)}{(x-3)(x+2)}$$
$$= -\frac{1}{x+2}$$

We see that the function f(x) is not defined when

$$x^{2} - x - 6 = 0 \implies (x - 3)(x + 2) = 0$$

$$\implies x = 3 \text{ or } x = -2 \text{. Since}$$

$$\lim_{x \to 3} \frac{3 - x}{x^{2} - x - 6} = \lim_{x \to 3} \frac{3 - x}{(x - 3)(x + 2)}$$

$$= \lim_{x \to 3} \frac{-(x - 3)}{(x - 3)(x + 2)} = \lim_{x \to 3} \frac{-1}{x + 2} = -\frac{1}{5}$$

then, x = 3 is a removable discontinuity.

$$\lim_{x \to -2^+} \frac{3-x}{x^2 - x - 6} = \lim_{x \to -2^+} \frac{3-x}{(x-3)(x+2)} = \infty$$

and

$$\lim_{x\to -2^-}\frac{3-x}{x^2-x-6}=\lim_{x\to -2^-}\frac{3-x}{(x-3)(x+2)}=-\infty$$
 then, $x=-2$ is a vertical asymptote only.

27) The vertical asymptote of $f(x) = \frac{x-7}{x^2+5x+6}$ is Solution:

$$f(x) = \frac{x-7}{x^2 + 5x + 6} = \frac{x-7}{(x+3)(x+2)}$$

We see that the function f(x) is not defined when x+3=0 or $x+2=0 \implies x=-3$ or x=-2 . Since

$$\lim_{x \to -3^{+}} \frac{x-7}{x^{2}+5x+6} = \lim_{x \to -3^{+}} \frac{x-7}{(x+3)(x+2)} = \infty$$

$$\lim_{x \to -3^{-}} \frac{x-7}{x^{2}+5x+6} = \lim_{x \to -3^{-}} \frac{x-7}{(x+3)(x+2)} = -\infty$$

and

$$\lim_{x \to -2^{+}} \frac{x-7}{x^{2}+5x+6} = \lim_{x \to -2^{+}} \frac{x-7}{(x+3)(x+2)} = -\infty$$

$$\lim_{x \to -2^{-}} \frac{x-7}{x^{2}+5x+6} = \lim_{x \to -2^{-}} \frac{x-7}{(x+3)(x+2)} = \infty$$

then, x = -3 and x = -2 are vertical asymptotes.

29) The vertical asymptote of $f(x) = \frac{x-7}{x^2-3x}$ is Solution:

$$f(x) = \frac{x-7}{x^2 - 3x} = \frac{x-7}{x(x-3)}$$

We see that the function f(x) is not defined when x = 0 or $x - 3 = 0 \implies x = 0$ or x = 3. Since

$$\lim_{x \to 3^{+}} \frac{x - 7}{x^{2} - 3x} = \lim_{x \to 3^{+}} \frac{x - 7}{x(x - 3)} = -\infty$$

$$\lim_{x \to 3^{-}} \frac{x - 7}{x^{2} - 3x} = \lim_{x \to 3^{-}} \frac{x - 7}{x(x - 3)} = \infty$$

and

$$\lim_{x \to 0^{+}} \frac{x - 7}{x^{2} - 3x} = \lim_{x \to 0^{+}} \frac{x - 7}{x(x - 3)} = \infty$$

$$\lim_{x \to 0^{-}} \frac{x - 7}{x^{2} - 3x} = \lim_{x \to 0^{-}} \frac{x - 7}{x(x - 3)} = -\infty$$

then, x = 3 and x = 0 are vertical asymptotes.

26) The vertical asymptote of $f(x) = \frac{7-x}{x^2-5x+6}$ is Solution:

$$f(x) = \frac{7 - x}{x^2 - 5x + 6} = \frac{7 - x}{(x - 3)(x - 2)}$$

We see that the function f(x) is not defined when x-3=0 or $x-2=0 \implies x=3$ or x=2 . Since

$$\lim_{x \to 3^{+}} \frac{7 - x}{x^{2} - 5x + 6} = \lim_{x \to 3^{+}} \frac{7 - x}{(x - 3)(x - 2)} = \infty$$

$$\lim_{x \to 3^{-}} \frac{7 - x}{x^{2} - 5x + 6} = \lim_{x \to 3^{-}} \frac{7 - x}{(x - 3)(x - 2)} = -\infty$$

and

$$\lim_{x \to 2^{+}} \frac{7 - x}{x^{2} - 5x + 6} = \lim_{x \to 2^{+}} \frac{7 - x}{(x - 3)(x - 2)} = -\infty$$

$$\lim_{x \to 2^{-}} \frac{7 - x}{x^{2} - 5x + 6} = \lim_{x \to 2^{-}} \frac{7 - x}{(x - 3)(x - 2)} = \infty$$

then, x = 3 and x = 2 are vertical asymptotes.

28) The vertical asymptote of $f(x) = \frac{x-7}{x^2+3x}$ is Solution:

$$f(x) = \frac{x-7}{x^2+3x} = \frac{x-7}{x(x+3)}$$

We see that the function f(x) is not defined when x = 0 or $x + 3 = 0 \implies x = 0$ or x = -3. Since

$$\lim_{x \to -3^{+}} \frac{x-7}{x^{2}+3x} = \lim_{x \to -3^{+}} \frac{x-7}{x(x+3)} = \infty$$

$$\lim_{x \to -3^{-}} \frac{x-7}{x^{2}+3x} = \lim_{x \to -3^{-}} \frac{x-7}{x(x+3)} = -\infty$$

and

$$\lim_{x \to 0^{+}} \frac{x - 7}{x^{2} + 3x} = \lim_{x \to 0^{+}} \frac{x - 7}{x(x + 3)} = -\infty$$

$$\lim_{x \to 0^{-}} \frac{x - 7}{x^{2} + 3x} = \lim_{x \to 0^{-}} \frac{x - 7}{x(x + 3)} = \infty$$

then, x = -3 and x = 0 are vertical asymptotes.

30) The vertical asymptotes of $f(x) = \frac{2x^2+1}{x^2-9}$ are Solution:

$$f(x) = \frac{2x^2 + 1}{x^2 - 9} = \frac{2x^2 + 1}{(x+3)(x-3)}$$

We see that the function f(x) is not defined when $x^2 - 9 = 0 \implies x = \pm 3$. Since

$$\lim_{x \to 3^{+}} \frac{2x^{2} + 1}{x^{2} - 9} = \lim_{x \to 3^{+}} \frac{2x^{2} + 1}{(x+3)(x-3)} = \infty$$

$$\lim_{x \to 3^{-}} \frac{2x^{2} + 1}{x^{2} - 9} = \lim_{x \to 3^{-}} \frac{2x^{2} + 1}{(x+3)(x-3)} = -\infty$$

and

$$\lim_{x \to -3^{+}} \frac{2x^{2} + 1}{x^{2} - 9} = \lim_{x \to -3^{+}} \frac{2x^{2} + 1}{(x+3)(x-3)} = -\infty$$

$$\lim_{x \to -3^{-}} \frac{2x^{2} + 1}{x^{2} - 9} = \lim_{x \to -3^{-}} \frac{2x^{2} + 1}{(x+3)(x-3)} = \infty$$

then, $x = \pm 3$ are vertical asymptotes.

31) The function
$$f(x) = \frac{x+1}{x^2-9}$$
 is continuous at $a=2$ because

1 -
$$f(2) = \frac{(2)+1}{(2)^2-9} = \frac{3}{-5} = -\frac{3}{5}$$

$$2 - \lim_{x \to 3^{-}} \frac{x+1}{x^{2}-9} = \lim_{x \to 2} \frac{(2)+1}{(2)^{2}-9} = \frac{3}{-5} = -\frac{3}{5}$$

$$3 - \lim_{x \to 2} \frac{x+1}{x^2 - 9} = f(2)$$

OR

We know that $D_f = \mathbb{R} \setminus \{\pm 3\}$, so $\{2\} \in D_f$.

33) The function $f(x) = \frac{x+1}{x^2-9}$ is discontinuous at ± 3 because $\{\pm 3\} \notin D_f$.

32) The function $f(x) = \frac{x+1}{x^2-9}$ is discontinuous at

 $a=\pm 3$ because we know that $D_f=\mathbb{R}\setminus\{\pm 3\}$,

Note: Any function is continuous on its domain.

- 34) The function $f(x) = \frac{x+1}{x^2-9}$ is continuous on its domain which is $D_f = \mathbb{R} \setminus \{\pm 3\}$.
- 35) The function $f(x) = \begin{cases} \frac{\sin 3x}{x}, & x \neq 0 \\ 3, & x = 0 \end{cases}$ is continuous at a = 0 because
- 1- f(0) = 3
- 2- $\lim_{x\to 0} \frac{\sin 3x}{x} = 3 \lim_{x\to 0} \frac{\sin 3x}{3x} = 3(1) = 3$ 3- $\lim_{x\to 0} f(x) = f(0)$

so $\{\pm 3\} \notin D_f$.

- 36) The function $f(x) = \begin{cases} \frac{\sin 3x}{x}, & x \neq 0 \\ 5, & x = 0 \end{cases}$ is discontinuous at a = 0 because
- 1- f(0) = 5
- 2- $\lim_{x \to 0} \frac{\sin 3x}{x} = 3 \lim_{x \to 0} \frac{\sin 3x}{3x} = 3(1) = 3$ 3- $\lim_{x \to 0} f(x) \neq f(0)$

- 37) The function $f(x) = \begin{cases} \frac{2x^2 3x + 1}{x 1}, & x \neq 1 \\ 7, & x = 1 \end{cases}$ is discontinuous at a = 1 because
- 2- $\lim_{x \to 1} \frac{2x^2 3x + 1}{x 1} = \lim_{x \to 1} \frac{(2x 1)(x 1)}{x 1} = \lim_{x \to 1} (2x 1) = 1$ 3- $\lim_{x \to 1} f(x) \neq f(1)$
- 38) The function $f(x) = \begin{cases} \frac{2x^2 3x + 1}{x 1}, & x \neq 1 \\ 1, & x = 1 \end{cases}$ is continuous at a = 1 because
- 2- $\lim_{x \to 1} \frac{2x^2 3x + 1}{x 1} = \lim_{x \to 1} \frac{(2x 1)(x 1)}{x 1} = \lim_{x \to 1} (2x 1) = 1$ 3- $\lim_{x \to 1} f(x) = f(1)$

- 39) The function $f(x) = \frac{x^2 x 2}{x 2}$ is discontinuous at a=2 because $\{2\} \notin D_f$.
- 40) The function $f(x) = \begin{cases} 2x + 3, & x > 2 \\ 3x + 1, & x \le 2 \end{cases}$ is continuous at a = 2 because
- 1- f(2) = 3(2) + 1 = 7
- 2- $\lim_{x \to 0} (2x + 3) = 2(2) + 3 = 7$ $\lim_{x \to 0} (3x + 1) = 3(2) + 1 = 7$ $\lim_{x \to 2} f(x) = 7$
- $3-\lim_{x\to 2} f(x) = f(2)$

41) The function $f(x) = \frac{x+3}{\sqrt{x^2-4}}$ is continuous on its domain where f(x) is defined, we mean that $x^2 - 4 > 0 \implies x^2 > 4 \implies \sqrt{x^2} > \sqrt{4}$

 \Rightarrow $|x| > 2 \Leftrightarrow x > 2$ or x < -2Hence, $D_f = (-\infty, -2) \cup (2, \infty)$.

- 42) The function $f(x) = \sqrt{x^2 4}$ is continuous on its domain where f(x) is defined, we mean that $x^2 - 4 \ge 0 \implies x^2 \ge 4 \implies \sqrt{x^2} \ge \sqrt{4}$ \Rightarrow $|x| \ge 2 \Leftrightarrow x \ge 2 \text{ or } x \le -2$

Hence,

$$D_f = (-\infty, -2] \cup [2, \infty) .$$

 $D_f = (-\infty, -2] \cup [2, \infty) .$ 44) The function $f(x) = \frac{x+3}{\sqrt{4-x^2}}$ is continuous on its

domain where
$$f(x)$$
 is defined, we mean that $4-x^2>0 \implies -x^2>-4 \implies x^2<4$

$$\Rightarrow \sqrt{x^2} < \sqrt{4} \Rightarrow |x| < 2 \Leftrightarrow -2 < x < 2$$
 Hence,

$$D_f = (-2,2) .$$

- 43) The function $f(x) = \sqrt{4 x^2}$ is continuous on its domain where f(x) is defined, we mean that $4 - x^2 \ge 0 \implies -x^2 \ge -4 \implies x^2 \le 4$ $\Rightarrow \sqrt{x^2} \le \sqrt{4} \implies |x| \le 2 \iff -2 \le x \le 2$ Hence, $D_f = [-2,2]$.
- 45) The function $f(x) = \frac{x+1}{x^2-4}$ is continuous on its domain where f(x) is defined, we mean that $x^2 - 4 \neq 0 \implies x^2 \neq 4 \implies x \neq \pm 2$

Hence,

$$D_f=\mathbb{R}\setminus\{\pm2\}$$

 $= (-\infty, -2) \cup (-2, 2) \cup (2, \infty) = \{x \in \mathbb{R} : x \neq \pm 2\}.$

46) The function $f(x) = \log_2(x+2)$ is continuous on
its domain where $f(x)$ is defined, we mean that
$r+2>0 \implies r>-2$

Hence,

$$D_f = (-2, \infty) .$$

48) The function $f(x) = 5^x$ is continuous on its domain.

Hence,

$$D_f = \mathbb{R} = (-\infty, \infty)$$
.

50) The function $f(x) = \sin^{-1}(3x - 5)$ is continuous on its domain where f(x) is defined, we mean that $-1 \le 3x - 5 \le 1 \iff 4 \le 3x \le 6 \iff \frac{4}{3} \le x \le 2$. Hence,

$$D_f = \left[\frac{4}{3}, 2\right].$$

52) The number c that makes $f(x) = \begin{cases} c+x, & x > 2 \\ 2x-c, & x \le 2 \end{cases}$ is continuous at x = 2 is

Solution:

 $\lim_{x \to \infty} f(x)$ exists if

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{-}} f(x)$$

$$\lim_{x \to 2^{+}} (c + x) = \lim_{x \to 2^{-}} (2x - c)$$

$$c + 2 = 4 - c$$

$$c + c = 4 - 2$$

$$2c = 2$$

$$c = 1$$

54) The number c that makes

$$f(x) = \begin{cases} \frac{\sin cx}{x} + 2x - 1, & x < 0 \\ 3x + 4, & x \ge 0 \end{cases}$$
 is continuous at 0 is Solution:

Solution:

 $\lim_{x\to 0} f(x)$ exists if

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{-}} f(x)$$

$$\lim_{x \to 0^{+}} (3x + 4) = \lim_{x \to 0^{-}} \left(\frac{\sin cx}{x} + 2x - 1 \right)$$

$$3(0) + 4 = c(1) + 2(0) - 1$$

$$4 = c - 1$$

$$c = 4 + 1$$

$$c = 5$$

56) The number c that makes $f(x) = \begin{cases} c^2x^2 - 1, & x \le 3 \\ x + 5, & x > 3 \end{cases}$ is continuous at 3 is

Solution:

 $\lim_{x \to \infty} f(x)$ exists if

$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{-}} f(x)$$

$$\lim_{x \to 3^{+}} (x+5) = \lim_{x \to 3^{-}} (c^{2}x^{2} - 1)$$

$$(3) + 5 = c^{2}(3)^{2} - 1$$

$$8 = 9c^{2} - 1$$

$$9c^{2} = 8 + 1$$

$$c^{2} = 1$$

$$c = \pm 1$$

47) The function $f(x) = \sqrt{x-1} + \sqrt{x+4}$ is continuous on its domain where f(x) is defined, we mean that $x-1 \ge 0$ and $x+4 \ge 0 \implies x \ge 1 \cap x \ge -4$ Hence,

$$D_f = [1, \infty)$$
.

49) The function $f(x) = e^x$ is continuous on its domain.

Hence,

$$D_f = \mathbb{R} = (-\infty, \infty)$$
.

51) The function $f(x) = \cos^{-1}(3x + 5)$ is continuous on its domain where f(x) is defined, we mean that $-1 \le 3x + 5 \le 1 \Leftrightarrow -6 \le 3x \le -4 \Leftrightarrow -2 \le x \le -\frac{4}{3}$ Hence,

$$D_f = \left[-2, -\frac{4}{3}\right].$$

 $D_f = \left[-2, -\frac{4}{3}\right].$ 53) The number c that makes

$$f(x) = \begin{cases} cx^2 - 2x + 1, & x \le -1 \\ 3x + 2, & x > -1 \end{cases}$$
 is continuous at -1 is

Solution:

 $\lim_{x \to -1} f(x)$ exists if

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{-}} f(x)$$

$$\lim_{x \to -1^{+}} (3x + 2) = \lim_{x \to -1^{-}} (cx^{2} - 2x + 1)$$

$$3(-1) + 2 = c(-1)^{2} - 2(-1) + 1$$

$$-1 = c + 3$$

$$c = -1 - 3$$

$$c = -4$$

55) The value c that makes $f(x) = \begin{cases} cx^2 + 2x, & x \le 2\\ x^3 - cx, & x > 2 \end{cases}$ is continuous at 2 is

Solution:

 $\lim_{x\to 2} f(x)$ exists if

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{-}} f(x)$$

$$\lim_{x \to 2^{+}} (x^{3} - cx) = \lim_{x \to 2^{-}} (cx^{2} + 2x)$$

$$(2)^{3} - c(2) = c(2)^{2} + 2(2)$$

$$8 - 2c = 4c + 4$$

$$-2c - 4c = 4 - 8$$

$$-6c = -4$$

$$c = \frac{-4}{-6}$$

$$c = \frac{2}{3}$$
57) The number c that makes $f(x) = \begin{cases} x - 2, & x > 5 \\ cx - 3, & x \le 5 \end{cases}$

is continuous at 5 is

Solution:

 $\lim f(x)$ exists if

$$\lim_{x \to 5^{+}} f(x) = \lim_{x \to 5^{-}} f(x)$$

$$\lim_{x \to 5^{+}} (x - 2) = \lim_{x \to 5^{-}} (cx - 3)$$

$$(5) - 2 = c(5) - 3$$

$$3 = 5c - 3$$

$$5c = 3 + 3$$

$$5c = 6$$

$$c = \frac{6}{5}$$

58) The number c that makes $f(x) = \begin{cases} x+3, & x > -1 \\ 2x-c, & x \le -1 \end{cases}$ is continuous at -1 is Solution: $\lim_{x \to -1} f(x) \text{ exists if}$ $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^-} f(x)$ $\lim_{x \to -1^+} (x+3) = \lim_{x \to -1^-} (2x-c)$ (-1) + 3 = 2(-1) - c 2 = -2 - c c = -2 - 2

c = -4