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Chapter I 

Lebesgue Measure 

 

1. Introduction 

 In mathematics, more specifically measure theory, a measure is a certain 

association between subsets of a given set X and the (extended set) of non-negative 

real numbers. Often, some subsets of a given set X are not required to be associated to 

a non-negative real number; the subsets which are required to be associated to a non-

negative real number are known as the measurable subsets of X. The collection of all 

measurable subsets of X is required to form what is known as a sigma algebra; 

namely, a sigma algebra is a subcollection of the collection of all subsets of X that in 

addition, satisfies certain axioms. 

Measures can be thought of as a generalization of the notions: 'length,' 'area' and 

'volume.' The Lebesgue measure defines this for subsets of a Euclidean space, and an 

arbitrary measure generalizes this notion to subsets of any set. The original intent for 

measure was to define the Lebesgue integral, which increases the set of integrable 

functions considerably. It has since found numerous applications in probability 

theory, in addition to several other areas of academia, particularly in mathematical 

analysis. There is a related notion of volume form used in differential topology. 

 

 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Set
http://en.wikipedia.org/wiki/Extended_real_line
http://en.wikipedia.org/wiki/Sigma_algebra
http://en.wikipedia.org/wiki/Power_set
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Lebesgue_integral
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Mathematical_analysis
http://en.wikipedia.org/wiki/Mathematical_analysis
http://en.wikipedia.org/wiki/Volume_form
http://en.wikipedia.org/wiki/Differential_topology
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Definition 1.1: 

 The length l (I ) of an interval I is defined to be the difference of the endpoints 

of the interval.  

i.e.  if I = [a,b] or (a,b] or [a,b) or (a,b) with -∞ < a < b < ∞, then l ( I ) = b - a. 

If a = -∞ or b = ∞, we define l (I ) = ∞. 

Definition 1.2: 

 If 
n

i

iIE
1

 , where Ii = [ai , bi] and I1, I2, .......In are mutually disjoint, then 





n

i

iIlEl
1

)()( . 

Definition 1.3: 

 A set function  is a function that associates an extended real number to each set 

in some collection of sets. 

Example: The length l(I) is a set function whose domain is the set of all intervals. 

Is it possible to extend the notion of length to a more complicated sets then 

intervals? 

For example what is the length of 10:{  xxE , x is a rational number}? 

 We could define the length of an open set since any open set O can be 

expressed as the union of a countable number of mutually disjoint open intervals. 
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Definition 1.4: 

 Let O be an open set, then 





1

)()(
i

iIlOl  where 





1i

iIO and I1, I2, ....... are 

mutually disjoint open intervals. 

The class of open sets is still too restricted, we would like to construct a set function 

RMm :  such that ME  we have 0)( Em , and we call )(Em  the measure 

of E where M is a collection of sets of real numbers. 

 We should like m to have the following properties: 

1. )(Em  is defined RE  . i.e., )(RPM   

2. For any interval I, )()( IlIm   

3. If 


1}{ nnE is a sequence in M with mn EE  , then 









1 1

)()(
n n

nn EmEm  

4. m is translation invariant. i.e., if ME then )()( EmyEm   

where }:{ ExyxyE  is obtained by replacing each point x in E by the 

point x+y 

Remark: 

 Unfortunately, it is impossible to construct a set function having all four of 

these properties. So we are going to construct m such that )(Em  is not defined for all 

sets E of real numbers. 
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Definition 1.5:  

 A collection  A of subsets of a set X is called an algebra of sets if: 

i) If A, BA , then BA A. 

ii) If A A , then A
c
= X - AA. 

An algebra A of sets is called a σ – algebra if every union of a countable collection of 

sets in A is again in A. i.e., if 

1}{ iiA A  then 





1i

iA  A. 

Note: We are going to require the family M for which m is defined to be a  σ– algebra 

Definition 1.6: 

 RMm :  is said to be  countably additive measure if: 

i) 0)( Em  

ii) M is a σ– algebra of sets 

iii) 









1 1

)()(
n n

nn EmEm for each sequence 


1}{ nnE of mutually disjoint sets in M. 

Example 1.7: 

 Let RRPn )(:  be defined by )(En  if E is an infinite set and )(En = 

the number of elements in E if it is finite. Show that n is a countably additive measure 

that is translation invariant. 
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Solution: (i) Clearly 0)( En . 

(ii) M = P(R) which is a σ– algebra. 

(iii) Let 


1}{ nnE be a sequence of mutually disjoint sets in R. 

a) If i such that Ei is an infinite set, then 


1n

nE is also infinite, and so 

          





1

)()(
n

ni EnEn  

          But  





1

21 .....................)(.......)()()(
n

in EnEnEnEn  

          Therefore,  









1 1

)()(
n n

nn EnEn  

b) If En is a finite set for every n = 1,2,3,……, then n(En) = rn , where rn is the 

number of elements in En. So 





1

21 ...............)(
n

nn rrrEn .On the 

other hand 


1n

nE is infinite since the sets En are mutually disjoint and therefore 











1 1

)()(
n n

nn EnEn . 

Hence, n is a countably additive measure. To prove that it is translation invariant: 

a) If E is infinite then so is E+y. Therefore n(E) = n(E+y) = ∞. 

b) If E is finite then the number of elements in E is the same as the number of 

elements in E+y. Therefore n(E) = n(E+y). 

Hence, n is a translation invariant. 
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Problem Set 1 

1. Let A be an algebra of sets of X. Prove that if A, BA , then BA A. 

2. Let A be an σ– algebra of sets of X. Prove that if 

1}{ iiA A  then 





1i

iA  A. 

3. Let A be an algebra of sets of a finite set X. Is A a topology on X? Is the 

converse true?  

4. Give an example of an algebra A on [0 , ∞] that is not a σ– algebra. 

5. Let m be a countably additive measure. If  A, BM with BA , prove that 

mBmA . This property is called monotonicity. 

6. Let m be a countably additive measure. If MA such that m(A) < ∞, prove 

that 0)( m . 

7. Let :{ REM  E or E
c
 is countable}. Define RMm :  by 

 





countable is  if1

countable is  if0
cE

E
Em  

Show that m is a countably additive measure. 
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2. Outer Measure 

Definition 2.1: Let RA   

(i) The set A is said to be bounded above if there exists a number Ru  such that  

ux    Ax . Each number u is called an upper bound of A. 

The set A is said to be bounded below if there exists a number Rw  such that  wx    

Ax . Each number w is called a lower bound of A. 

(ii) a1 = sup A iff a1 = min {u : u is an upper bound of A}. i.e., ua 1   upper bound 

u of A.   

Also ao = inf A iff ao = max {w :w is a lower bound of A}. i.e., wao    lower bound 

w of A. 

Definition 2.2:  

Let RA . Consider the countable collections of open intervals


1}{ nnI for 

which 





1n

nIA , and for each such collection consider the sum of the length of the 

intervals in the collection 


1

)(
n

nIl . We define the outer measure (Lebesgue outer 

measure) m
*
A to be: 









 






1 1

* :)(inf
n n

nn IAIlAm   
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Proposition 2.3: 

i) If BA , then BmAm **  . 

ii) 0* m . 

iii) 0}{* xm . 

Proof: i) Let 0 , then  BmBm **  and hence Bm*
is not a lower bound of 

the set 















1 1

:)(
n n

nn IBIl  . Therefore, there exists a covering 


1}{ nnI of B such 

that 





1

* )(
n

nIlBm  . 

But 





1n

nIBA   


1}{ nnI is a covering of A also  





1

* )(
n

nIlAm . 

Therefore,  BmAm **
 0 , and hence BmAm **  . 

ii) )
1

,0(
n

   
nn

lm
1

)
1

,0(*   . 

Therefore 
n

m
1

0 *    Nn , and hence 0* m . 

iii) )
1

,
1

(}{
n

x
n

xx    
nn

x
n

xlxm
2

)
1

,
1

(}{*   . 
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Therefore 
n

xm
2

}{0 *   Nn , and hence 0}{* xm . 

Proposition 2.4: 

 The outer measure of an interval is its length, i.e., )(* IlIm  for any interval I. 

Proof: Case (1): I is a closed finite interval. i.e.,  I = [a , b] with -∞ < a < b < ∞. 

Let 0 . Then ),(],[   baba    2),(],[*  abbalbam . 

Therefore, 2],[*  abbam  0 , and hence abbam ],[*
                   (1) 

Conversely, we want to show that abbam ],[*
.  

If we could prove that for any countable collection of open intervals 


1}{ nnI covering 

[a , b] we have abIl
n

n 


1

)( , then we are done because this means that ab  is a 

lower bound of the set















1 1

],[:)(
n n

nn IbaIl  which implies that abbam ],[*
. 

So we are going to prove that abIl
n

n 


1

)(  for any countable collection of open 

intervals 


1}{ nnI covering [a , b]. Now [a , b] is compact, therefore any open cover 

has a finite subcover, 
N

nnI 1}{  , i.e., 
N

n

nIba
1

],[


  and 





11

)()(
n

n

N

n

n IlIl . 
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Now 
N

n

nIa
1

   ),( 11 ba


1}{ nnI such that ),( 11 baa and we have a1 < a < b1. 

If b1<b, then 
N

n

nIbab
1

1 ],[


  
N

n

nIb
1

1



   ),( 22 ba


1}{ nnI such that 

),( 221 bab  and we have a2 < b1 < b2   a2 – b1 <0. 

Again If b2<b, then 
N

n

nIb
1

2



   ),( 33 ba


1}{ nnI such that ),( 332 bab  and we 

have a3 < b2 < b3   a3 – b2 <0. 

We continue until we reach an interval ),( NN ba such that ),( NN bab aN < b < bN  

                               

a1   a    a2      b1              a3    b2 a4        b3   b4                        aN    b      bN 

Thus,  
 


N

n

N

n

nnnn

N

n

n abbalIl
1 11

),()(  

                        )(............)()( 1111 ababab NNNN    

                        112211 )(............)()( abababab NNNNN    

                        > bN – a1 >  b – a  

Therefore abIlIl
N

n

n

n

n 




 11

)()(  abbam  ],[*
.                                       (2) 



 14 

From (1) and (2) we get that abbam ],[*
= l (I) .  

 

Case (2): I is any finite interval (open or half open, i.e., I = (a ,b) or [a , b) or (a ,b]). 

Let 0 , then there exists a closed interval J such that IJ   and  )()( IlJl . 

Hence, )()()()( *** IlIlImImJmJlIl   0 . 

i.e., )()( * IlImIl   0 , and so )(* IlIm  . 

Case (3): I is an infinite interval. In this case )(Il , so we want to prove that 

Im*
.  

Let 0 , then there exists a closed interval J such that IJ   with )(Jl . 

Therefore,  )(** JlJmIm . i.e., Im*
 0 . Hence, )(* IlIm  . 

Proposition 2.5: 

 Let 


1}{ nnA be a countable collection of sets of real numbers. Then  











1 1

** )(
n n

nn AmAm  
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Proof: Consider the collection 


1}{ nnA , and let 0 . Then for each An there exists a 

countable collection 


1, }{ iinI of open intervals such that 





1

,

i

inn IA and 







1

,

* )(
2 i

innn IlAm


.  

But 













1

,

11 i

in

nn

n IA , which means that 


1,, }{ ininI covers 


1n

nA . Therefore, 


























    
1 1, 1 1 1

**

1

,,

* )
2

()()()(
n in n n n

nnn

i

ininn AmAmIlIlAm 


. 

So we have 








 
1 1

** )(
n n

nn AmAm   0 . Hence, 









1 1

** )(
n n

nn AmAm  

Proposition 2.6: 

 If A is countable, then 0* Am . 

Proof: Let A = {a1 , a2, a3,……….} and let 0 . 

Let )
2

,
2

(
21211


 aaI , then 

2
)( 1


Il . 

Let )
2

,
2

(
32322


 aaI , then 22

2
)(


Il . 

In general, let )
2

,
2

(
11 


nnnnn aaI


, then nnIl
2

)(


 . 
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Now 


1}{ nnI covers A. Therefore  

 







 11

*

2
)(

n
n

n

nIlAm . 

i.e.,  Am*0  0 . Hence, 0* Am . 

 

Corollary 2.7: 

 The set [0 , 1] is not countable. 

Proof: If [0 , 1] is countable, then by proposition 2.6 m
*
[0 , 1] = 0. 

But we know that m*[0 , 1] = l[0 , 1] = 1  0. Therefore, [0 , 1] is not countable. 

 

Problem Set 2 

1. Prove that if m
*
A = 0, then BmBAm ** )(  . 

2. Prove that m
*
 is translation invariant. 

3. For RA define  









 






1 1

*

:)(inf
n n

nn JAJlAm   

           where Jn is an interval not necessarily open. Prove that AmAm **

 . 
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3. Measurable Sets and Lebesgue Measure 

While the outer measure has the advantage that it is defined for all sets, it is not 

countably additive. To make our outer measure countably additive, something has to 

give. We decide to restrict the domain to gain countable additivity. There are several 

ways to restrict an outer measure. In our course we will use an approach due to 

Caratheodory to define measurable sets. 

Definition 3.1: A set E is said to be measurable if for each set A we have 

)()( *** cEAmEAmAm   . 

Proposition 3.2:  

i) E is measurable if and only if for each A we have 

          )()( *** cEAmEAmAm    

ii) E is measurable if and only if E
c
 is measurable. 

iii)   and R are measurable. 
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Proof: i) )()()( cc EAEAEEARAA   . 

Therefore,  )()()]()[( **** cc EAmEAmEAEAmAm   by prop. 2.5 

So )()( *** cEAmEAmAm   if and only if )()( *** cEAmEAmAm   . 

Hence, E is measurable if and only if )()( *** cEAmEAmAm   . 

Lemma 3.3: 

  If m
*
E = 0, then E is measurable. 

Proof: Let A be any set. Then 0)( **  EmEAmEEA  . 

So 0)(0 *  EAm  which means that 0)(* EAm  . 

Also, )()()( **** ccc EAmEAmEAmAmEAA    

i.e., )()( *** cEAmEAmAm   and hence E is measurable. 

Lemma 3.4: 

 If E1 and E2 are measurable then 21 EE  is measurable. 

Proof: We want to show that for any set A we have 

)][(])[( 21

*

21

** cEEAmEEAmAm   . 
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E2 is measurable, so for any set T we have:  )()( 2

*

2

** c
ETmETmTm   . 

Let 
c

EAT 1 , then )()()( 21

*

21

*

1

* cccc
EEAmEEAmEAm           (1) 

Now )()()()( 12111212121

cc
EEEEEEEREEEE   . 

Therefore, )()()]([)( 12112121

cc
EEAEAEEEAEEA    

)()(])[( 12

*

1

*

21

* c
EEAmEAmEEAm                                            (2) 

From (1) and (2), we get 

)(])[()][(])[( 21

*

21

*

21

*

21

* ccc EEAmEEAmEEAmEEAm    

)()()()()( 1

*

1

*

21

*

12

*

1

* cccc
EAmEAmEEAmEEAmEAm    

= m
*
A  (since E1 is measurable). 

Therefore, )][(])[( 21

*

21

** cEEAmEEAmAm   .  

Hence, 21 EE  is measurable. 

Corollary 3.5: 

 The collection M of measurable sets is an algebra of sets. 

Lemma 3.6: 
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 Let A be any set and E1, E2,…………,En be a finite sequence of disjoint 

measurable sets. Then 



n

i

i

n

i

i EAmEAm
1

*

1

* )(])[(   . 

Proof: We will prove the lemma by induction on n. 

For n = 1, )(])[( 1

*
1

1

* EAmEAm
i

i   


 

and  )()( 1

*
1

1

* EAmEAm
i

i  


. So It is true for n=1. 

Assume it is true for n – 1 sets, i.e. 









1

1

*
1

1

* )(])[(
n

i

i

n

i

i EAmEAm   , and we will 

prove that it is true for n sets. 

Now En is measurable, therefore 

  
n

i

n

i

c

nini

n

i

i EEAmEEAmEAm
1 1

**

1

* )][()][(])[(
 

 . 

 
n

i

nni

n

i

ni EAEEAEEA
11

)]([][


  

  
n

i

n

i

i

c

ni

n

i

c

ni EAEEAEEA
1

1

11

][)]([][






  

Hence,  
1

1

**

1

* ])[()(])[(





n

i

in

n

i

i EAmEAmEAm  
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n

i

i

n

i

in EAmEAmEAm
1

*
1

1

** )()()(   

So we proved that 



n

i

i

n

i

i EAmEAm
1

*

1

* )(])[(   . 

 

 

Corollary 3.7: 

 Let E1, E2,…………,En be a finite sequence of disjoint measurable sets. Then 





n

i

i

n

i

i EmEm
1

*

1

* )( . 

Proof: Let A = R in lemma 3.6 

Theorem 3.8: 

 The collection M of measurable sets is a σ-algebra; that is the complement of a 

measurable set is measurable and the union (also intersection) of a countable 

collection of measurable sets is measurable. 

Proof: By corollary 3.5 M is an algebra of sets. So we only have to prove that if 



1}{ iiE  is a countable collection of measurable sets, then 


1i

iE is measurable. 
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We can find a sequence 


1}{ iiF of disjoint measurable sets such that 









11 i

i

i

i EF . 

Let A be any set, by lemma 3.4 
n

i

iF
1

is measurable. So we have, 

 
n

i

n

i

c

ii FAmFAmAm
1 1

*** )][(])[(
 

                                                                 (1) 

Also, 





11 i

i

n

i

i FF 




c

i

i

c
n

i

i FF ][][
11

 c

i

i

c
n

i

i FAFA ][][
11

 




  

Therefore, )][()][(
1

*

1

* c

i

i

c
n

i

i FAmFAm  




                                                        (2) 

By lemma 3.6, 



n

i

i

n

i

i FAmFAm
1

*

1

* )(])[(                                                         (3) 

From (1), (2) and (3), we get )][()(
1

*

1

** c

i

i

n

i

i FAmFAmAm 




 . 

Since the left side of this inequality is independent of n, we have 

)][()(
1

*

1

** c

i

i

i

i FAmFAmAm 








 . 

Now,  













1

*

1

*

1

* )()][()][(
i

i

i

i

i

i FAmFAmFAm   . 
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Hence, )][()][(
1

*

1

** c

i

i

i

i FAmFAmAm  








 . 

Finally since 









11 i

i

i

i EF , we have )][()][(
1

*

1

** c

i

i

i

i EAmEAmAm  








 , and 

therefore, 


1i

iE is measurable. 

 

 

Lemma 3.9: 

 The interval (a , ∞) is measurable. 

Proof: Let A be any set. We want to prove that 

)),(()),(( *** caAmaAmAm   = ]),(()),(( ** aAmaAm   . 

Let ),(1  aAA   and ],(2 aAA   , then 21 AAA  and 21 AA  . 

We want to show that 2

*

1

** AmAmAm  . 

Let 0 , then there exists a countable collection of open intervals 


1}{ nnI which 

covers A (i.e., 





1n

nIA ) and for which 




AmIl
n

n

*

1

)( . 
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Let ),('  aII nn   and ],('' aII nn   , then 
'''

nnn III  and '''

nn II   and 

both 
'

nI and 
''

nI are intervals (or empty). 

So, 
''*'*'''''' )()()()( nnnnnnn ImImIlIlIIlIl   . 

Since  













1

'

11

1 )),((),()(),(
n

n

n

n

n

n IaIaIaAA , then 











1

'*

1

'*

1

* )(
n

n

n

n ImImAm  . 

Also 





1

''

2

n

nIA 









1

''*

1

''*

2

* )(
n

n

n

n ImImAm  . 

Thus,  
















AmIlImImImImAmAm
n

n

n

nn

n

n

n

n

*

11

''*'*

1

''*

1

'*

2

*

1

* )()( . 

Therefore,  AmAmAm *

2

*

1

*
  0 , and hence  AmAmAm *

2

*

1

*  . 

Definition 3.10: 

 A Borel set is any set that can be formed from open sets and closed sets 

through the operations of countable union and countable intersection. 

Remarks: 

 The collection B of all Borel sets on a set X forms a σ-algebra, known as the 

Borel algebra. The Borel algebra on X is the smallest σ-algebra containing all 

open sets and closed sets. 

http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Closed_set
http://en.wikipedia.org/wiki/Countable
http://en.wikipedia.org/wiki/Union_(set_theory)
http://en.wikipedia.org/wiki/Intersection_(set_theory)
http://en.wikipedia.org/wiki/Sigma-algebra
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 Borel sets are important in measure theory, since any measure defined on open 

sets and closed sets must also be defined on all Borel sets.  

 Almost every set that you will run into is a Borel set. It takes a certain amount 

of work to show that there are some sets which are not Borel sets. 

Question: Can you find a non-Borel set?  

 

 

Theorem 3.11: 

 Every Borel set is measurable. In particular each open set and each closed set is 

measurable.   

Proof: First we are going to prove that each open interval is measurable:  

(-∞ , a] = (a , ∞)
c
, therefore by (-∞ , a] is measurable by proposition 3.2 , lemma 3.9. 

 





1

]
1

,(),(
n n

bb , therefore (-∞ , b) is measurable by theorem 3.8. 

Hence, each open interval ),(),(),(  abba   is measurable. 

Secondly, we are going to prove that each open set is measurable: 

Let O be an open set, then we can write O as the union of a countable number of open 

intervals and so must be measurable by theorem 3.8. 

http://en.wikipedia.org/wiki/Measure_theory
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Finally, we are going to prove that each closed set is measurable: 

Let F be a closed set, then 
cF is open and so 

cF is measurable. This implies that 

  FF
cc  is measurable. 

Thus, the collection M of measurable sets is a σ-algebra that contains all open sets 

and closed sets and must therefore contain the collection B of Borel sets since B is the 

smallest σ-algebra containing all open sets and closed sets. 

 Now we are ready to define the Lebesgue measure introduced by Henri 

Lebesgue in the first decade of the twentieth century. 

Definition 3.12: 

 We define the Lebesgue measure m to be the set function obtained by 

restricting the outer measure m
*
 to the family M of measurable sets. i.e., if E is 

measurable, we define the Lebesgue measure mE to be the outer measure of E. 

Two important properties of Lebesgue measure are summarized by proposition 

3.13 and 3.15: 

Proposition 3.13: 

 Let 


1}{ iiE be a sequence of measurable sets. Then  











1 1

)()(
i i

ii EmEm  

If the sets Ei are pairwise disjoint, then 

http://planetmath.org/encyclopedia/HenriLeonLebesgue2.html
http://planetmath.org/encyclopedia/HenriLeonLebesgue2.html
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1 1

)()(
i i

ii EmEm  

Proof:  









1 1

)()(
i i

ii EmEm  by proposition 2.5. 

If 
n

iiE 1}{  is a finite sequence of disjoint measurable sets, then by corollary 3.7 we 

have 
n

i

n

i

ii mEEm
1 1

)(
 

 and so m is finitely additive.  

Let 


1}{ iiE be an infinite sequence of pairwise disjoint measurable sets. Then 


n

i

i

i

i EE
11 





 , and so 







n

i

i

n

i

i

i

i mEEmEm
111

)()(  . 

Since the left side of this inequality is independent of n, we have 









11

)(
i

i

i

i mEEm  . 

Also 









11

)(
i

i

i

i mEEm   by proposition 2.5 and hence, 









11

)(
i

i

i

i mEEm  . 

Proposition 3.14: 

i) If MBA , , then MBA \ and MAB \ . 

ii) If BA , then mAmBABm )\( . 

Proof: i) MBABA c  \  since MA  and MBc  . 

Similarly MABAB c  \  
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ii) If BA , then AABB )\(  and AAB )\( . 

Then mAABmmB  )\(  by proposition 3.13, which implies that 

  mAmBABm )\( . 

 

 

Proposition 3.15: 

 Let 


1}{ iiE be an infinite decreasing sequence of measurable sets, i.e., a  

sequence with nn EE 1 . Let mE1 < ∞ then  

n
n

i

i mEEm






 lim)(
1

  

Proof:  Let 





1i

iEE  and 1\  iii EEF .  

Then 





1

1 \
i

iFEE and the sets Fi are pairwise disjoint. 

Hence, 















1

1

11

1 )\()()\(
i

ii

i

i

i

i EEmmFFmEEm   

mEmEEEmEE  111 )\( . 

111 )\(   iiiiii mEmEEEmEE . 

Therefore, mEmE 1 = 









 
N

i

ii
N

i

ii mEmEmEmE
1

1

1

1 )(lim)(  
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= )............(lim 113221 


 NNNN
N

mEmEmEmEmEmEmEmE  

= )(lim 11 


 N
N

mEmE = n
n

mEmE


 lim1  

So mEmE 1 = n
n

mEmE


 lim1 . 

Since mE1 < ∞, we have n
n

mEmE


 lim , and therefore n
n

i

i mEEm






 lim)(
1

 . 

The following proposition expresses a number of ways in which a measurable set is 

very nearly a nice set. 

Proposition 3.16: 

Let E be a given set. The following statements are equivalent: 

i) E is measurable. 

ii) Given 0 there exists an open set EO  with )\( EOm . 

iii) Given 0 there exists a closed set EF  with )\( FEm . 

Proof: We will prove that (i) (ii). The rest is left as an exercise. 

(i)  (ii): Let E be a measurable set. 

Case 1: mE < ∞: 



 30 

Given 0  there exists a countable collection of open intervals 


1}{ nnI which covers 

E (i.e., 





1n

nIE ) and for which 




mEIl
n

n

1

)( . 

Let 





1n

nIO , then O is open and OE  . 

Also  








mEIlImmO
n

n

n

n

11

)()(     mEmO   mEmO . 

But OE    mEmOEOm )\( and hence (ii) holds. 

Case 2: mE = ∞:  

For every n set Bn = [-n , n], and nn BEE  . 

Then EREBEBEE
n

nn

nn

n 












  )()(
111

. 

En is measurable since E and Bn are measurable, and  nmBmE nn 2 . So, by 

applying case 1 on each En , there exists an open set nn EO  with nnn EOm
2

)\(


 . 

Let 





1n

nOO , then O is open and OE  . 










)(\)(\
11


n

n

n

n EOEO 








c

n

n

n

n EO )()(
11

  )()(
11

 






 n

c

n

n

n EO  
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)]([
11

 
n

c

n

n

n EO 




)(
1

c

n

n

n EO  )\(
1

n

n

n EO




. 

Therefore, 






















111 2
)()\()\(

n
nnn

nn

nn EOmEOmEOm 


   

and hence (ii) holds. 

(ii)  (i): Assume that (ii) holds. 

For each n choose an open set On such that EOn  and 
n

EOm n

1
)\(  . 

Let 





1n

nOG , then GE   and G is measurable. Also nOG   n  

n
EOmEGm n

1
)\()\( **  n  0)\(* EGm  which means that G \ E is  

measurable by lemma 3.3. But E = G \ (G \ E) , therefore E is measurable. 

Problem Set 3 

1. Prove that every countable set is measurable. 

2. Prove that if E1 , E2,………En are measurable then 
n

i

iE
1

is measurable. 

3. Let 


1}{ iiE be an infinite increasing sequence of measurable sets, i.e., a  

     sequence with nn EE 1 . Let mE1 < ∞ . Prove that 
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n
n

i

i mEEm






 lim)(
1

  

4. Show that if E1 and E2 are measurable then  

212121 )()( mEmEEEmEEm    

Hint: )(\\)( 212121 EEEEEE   . 

5. Show that the condition mE1 < ∞ is necessary in proposition 3.15 by giving a 

decreasing sequence of measurable sets 


1}{ iiE with 





1i

iE  and imE i . 

6. Complete the proof of proposition 3.16   

4. Measurable Functions 

The measurable functions form one of the most general classes of real 

functions. They are one of the basic objects of study in analysis.  

If we start with a function f, the most important sets that arise from it are those 

listed in the following proposition: 

Proposition 4.1: 

 Let E be a measurable set and let f be an extended real-valued function on E. 

Then the following statements are equivalent: 

(i)   R , the set })(:{),(1   xfxf is measurable. 

(ii)  R , the set })(:{),[1   xfxf  is measurable.  

http://mathworld.wolfram.com/RealFunction.html
http://mathworld.wolfram.com/RealFunction.html
http://mathworld.wolfram.com/Analysis.html
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(iii) R , the set })(:{),(1   xfxf is measurable.  

(iv)  R , the set })(:{],(1   xfxf is measurable. 

Proof: (i)  (ii) 

(i)  (ii): 





1

}
1

)(:{})(:{
n n

xfxxfx  .  

By (i) }
1

)(:{
n

xfx  is measurable, and so })(:{ xfx  is the intersection of a 

sequence of measurable sets. Therefore, })(:{ xfx is measurable. 

(ii)  (i): 





1

}
1

)(:{})(:{
n n

xfxxfx    

By (ii) }
1

)(:{
n

xfx  is measurable, and so })(:{ xfx  is the union of a 

sequence of measurable sets. Therefore, })(:{ xfx is measurable. 

Hence, (i)  (ii). 

(i)  (iv): 
cxfxxfxExfx })(:{})(:{\})(:{   .  

Therefore, })(:{ xfx is measurable if and only if })(:{ xfx is measurable. 

(ii)  (iii): 
cxfxxfxExfx })(:{})(:{\})(:{   . 

Therefore, })(:{ xfx is measurable if and only if })(:{ xfx is measurable. 
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This shows that the four statements are equivalent. 

Definition 4.2: 

 An extended real-valued function f is said to be (Lebesgue) measurable if its 

domain is measurable and it satisfies one of the statements in proposition 4.1. 

Proposition 4.3: 

(i) A continuous function on a measurable set is measurable. 

(ii) If f is a measurable function and Edom (f ) is measurable, then the 

function f /E is also measurable. 

Proof: (i) Let REf :  be a continuous function (where E is measurable). We want 

to prove that f is measurable i.e., R , the set })(:{),(1   xfxf  is 

measurable. 

Since f is continuous, the set ),(1  f is open  ),(1  f is measurable and 

hence f is measurable. 

(ii) Let f be a measurable function, and let Edom (f ) be a measurable set. We want 

to prove that f /E RE :  is measurable. Let R , then  

})(:)({})(:{})(/:{   xffdomxExfExxfEx E  which is 

measurable since it is the intersection of two measurable sets (since f is measurable). 

Therefore, f /E is measurable. 
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Remark: While every continuous function is measurable, not every measurable 

function is continuous.  

 The following proposition tells us that certain operations performed on 

measurable functions lead again to measurable functions: 

Proposition 4.4: 

 Let c be a constant and f , g two measurable real-valued functions defined on 

the same domain. Then the following functions are all measurable: (i) f + c  (ii) cf   

(iii) f   g     (iv) f      (v) f
2
     (vi) fg. 

Proof: (i) The set })(:{})(:{ cxfxcxfx    is measurable since f is 

measurable. Therefore, f + c is measurable. 

(ii) The set })(:{})(:{
c

xfxxcfx


   if c > 0 

                                          })(:{
c

xfx


 if c < 0 

is measurable since f is measurable. Therefore, f is measurable if 0c . 

If c = 0, then cf = 0 which is measurable. (why?) 

(iii) First, we are going to prove that if we have two measurable functions h and l on 

the same domain, then the set )}()(:{ xlxhx   is measurable: 
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)}()(:{ xlxhxx   there exists a rational number r such that )()( xlrxh   and 

the  set })(:{})(:{)}()(:{ rxlxrxhxxlrxhx   is measurable since h and 

l are both measurable. So 
Qr

xlrxhxxlxhx


 )}()(:{)}()(:{ is a countable 

union of measurable sets and hence it is measurable. 

Now we will prove that f + g is measurable: 

)}()(:{})()(:{ xgxfxxgxfx    is measurable since both the functions 

f and α – g are measurable. Therefore, f + g is measurable. 

f – g = f + (-g) is also measurable. 

(iv)The set })(:{})(:{})(:{})(:{   xfxxfxxfxxfx   

is measurable since f is measurable. Therefore, f  is measurable. 

(v)The set })(:{})(:{})(:{ 2   xfxxfxxfx  ,for 0  

 is measurable since f is measurable. Therefore, f
2
 is measurable. 

(vi) ])[(
2

1 222 gfgffg   is measurable. 

Theorem 4.5: 

 Let }{ nf be a sequence of measurable functions (with the same domain). Then 

the following functions are all measurable: (i) },......,sup{ 21 nfff (ii) },......,inf{ 21 nfff  

(iii) n
n

fsup     (iv) n
n

finf     (v) nflim     (vi) nflim       (vii) nflim . 
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Proof:  (i) Let )}(),......(),(sup{)( 21 xfxfxfxh n . We want to prove that the set  

})(:{ xhx  is measurable for every . But if )(xh , then i such that 

)(xfi . So, the set 
n

i

i xfxxhx
1

})(:{})(:{


   is measurable since it is the 

finite union of measurable sets. Therefore, h is measurable.  

(ii) Let )}(),......(),(inf{)( 21 xfxfxfxg n . We want to prove that the set  

})(:{ xgx  is measurable for every . But if )(xg , then i such that 

)(xfi . So, the set 
n

i

i xfxxgx
1

})(:{})(:{


   is measurable since it is the 

finite union of measurable sets. Therefore, g is measurable. 

(iii) Let )(sup)(
~

xfxh n
n

 . Then 





1

})(:{})(
~

:{
i

i xfxxhx  is measurabe 

 since it is the countable union of measurable sets. Therefore, h
~

 is measurable. 

(iv) Let )(inf)(~ xfxg n
n

 . Then 





1

})(:{})(~:{
i

i xfxxgx  is measurabe 

 since it is the countable union of measurable sets. Therefore, g~ is measurable. 

(v) ))(sup(inf)(lim xfxf k
nkn

n


  is measurable by (iii) and (iv). 

(vi) ))(inf(sup)(lim xfxf k
nkn

n


  is measurable by (iii) and (iv). 

(vii) nnn fxff lim)(limlim   is measurable by (v) and (vi). 

Definition 4.6: 



 38 

 A property is said to hold almost everywhere (a.e.) if the set of points where it 

fails to hold is a set of measure zero. 

For example, we say f = g a.e. if 0)}()(:{  xgxfxm . 

Similarly, we say fn converges to f a.e. if 0)}()(lim:{ 


xfxfxm n
n

. 

Proposition 4.7: 

 If f is a measurable function and f = g a.e. then g is measurable. 

Proof: Let )}()(:{ xgxfxE  , then m E = 0 since f = g a.e. 

 Now, })(:{\}])(:{})(:[{})(:{   xgExxgExxfxxgx   

})(:{ xfx is measurable since f is measurable. 

 0})(:{})(:{ mExgExmExgEx  0})(:{  xgExm  

So by lemma 3.3,  })(:{  xgEx  is measurable. Similarly })(:{  xgEx  is 

measurable. 

Therefore, })(:{ xgx is measurable for each  and hence g is measurable. 

Definition 4.8: 

 If A is any set we define the characteristic function A  of the set A to be 










Ax

Ax
xA

0

1
)(  

Proposition 4.9: 

 A  is measurable if and only if A is measurable. 

Proof: Let A  be a measurable function. By definition, 1)( xA  if and only if 

Ax . So }1)(:{}1)(:{}1)(:{  xxxxxxA AAA   . 
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The two sets on the right are measurable since A  is measurable, and hence A is 

measurable. 

Conversely, let A be a measurable set. Then A
c
 is also measurable. Consider the set 

})(:{  xx A . We have three cases:                                                     

(i) 0 :   })(:{ xx A  which is measurable.                              1 

(ii) 10  : 
c

A Axx  })(:{  which is measurable.                       

                                                                                                                            A           

(iii) 1  : Rxx A  })(:{  which is measurable.                             

Hence, R  the set })(:{  xx A is measurable. Therefore, A  is measurable. 

 

Proposition 4.10: 

i) BABA    

ii) BABABA    

iii) AAc  1  

Proof: i) 









BAx

BAx
xBA






0

1
)(               

Then if 1)(1)(1)(  xxxBxAxBAx BABA  . 

If 0)(0)(0)(  xxxBxAxBAx BABA  . 

Therefore, BABA   . 

iii)  


















Ax

Ax

Ax

Ax
x

c

c

Ac

0

1

0

1
)(  
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On the other hand, 1-


















Ax

Ax

Ax

Ax
xA

1

0

0

1
1)(  

Therefore, AAc  1 . 

ii)  
)1)(1(1111 BABABABABA ccccc  

  

               )1(1 BABA  BABA   . 

Definition 4.11: 

 A real-valued function   is called simple if it is measurable and assumes only 

a finite number of values, (i. e. the range of   is a finite set). 

If  is a simple function and has the values 1 , 2 ,…….., n , then 



n

i

Ai i

1

  

where  })(:{ ii xxA   . 

Proposition 4.12: 

 The sum of two simple functions is simple. 

Proof: Let   and   be two simple functions and let 



n

i

Ai i

1

 , 



m

j

Bj j

1

  

where })(:{ ii xxA    and })(:{ jj xxB   . 

Note that    is measurable since both   and   are measurable.  

Now if iAx  then ix  )( , if jBx  then jx  )(  and if ji BAx   then  

  jix   )( . 
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So we can write    as 



nm

ji

BAji ji

1,

)(   (Note that some of the sets 

ji BA   might be empty). Hence,   is a simple function. 

Proposition 4.13: 

 If 


1}{ nnf is a sequence of measurable functions defined on a measurable set E 

such that ffn   a.e. on E, then f is a measurable function. 

Proof: Let )}()(lim:{ xfxfExE n
n

o 


. Then mEo = 0. 

Define a sequence 


1}
~

{ nnf  on E by 









o

on

n
Ex

EExxf
xf

0

\)(
)(

~
 

Then nn ff 
~

 a.e.  nf
~

 is measurable by proposition 4.7.  

Therefore, 


1}
~

{ nnf is a sequence of measurable functions.  

Define a function f
~

 on E by 









o

o

Ex

EExxf
xf

0

\)(
)(

~
 

Then ffn
n

~~
lim 


   f

~
is measurable by theorem 4.5 

But  ff 
~

 a.e. , and hence f is measurable. 

Proposition 4.14: 

 Let E be a measurable set of finite measure, and 


1}{ nnf a sequence of 

 measurable functions defined on E. Let f be a real-valued function such that 

)()( xfxfn   pointwise. Then given 0  and 0 there is a measurable set 

EA  with mA  and a natural number N such that  
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 )()( xfxfn  Ax  and Nn   

Proof: Let 0  and let })()(:{  xfxfExG nn , and set 





Nn

nN GE . 

So NE  )()(:{ xfxfEx n for some }Nn  . 

If   )()(1 xfxfEx nN  for some 1 Nn  

                   )()( xfxfn  for some Nn  NEx  

Therefore NN EE 1 . So


1}{ NNE is a decreasing sequence of measurable sets(why?). 

Also Ex : )()( xfxfn  , therefore there exists a natural number N such that 

  )()( xfxfn  Nn  NEx .  

This means that Ex there exists some EN such that NEx . So 





1N

NE . 

By proposition 3.15 we have: N
N

N

N mEEm






 lim)(
1

 0lim 


N
N

mE . 

Hence, given 0 there exists a natural number N such that  NmE , i.e., 

m  )()(:{ xfxfEx n for some }Nn   . 

Let A = EN, then mA and if Ax , then  )()( xfxfn  Nn  . 

Remark: 

 Proposition 4.14 states that if 


1}{ nnf converges to f pointwise, then 


1}{ nnf is 

nearly uniformly convergent to f. 

 

Problem Set 4: 
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1. Let f be a measurable function defined on a measurable set E, and let O be an open 

set. Prove that the set })(:{ OxfEx  is measurable. 

2. Let Rf ]1,0[:  be defined by 









Qx

Qxx
xf

0
)(   .  

      Prove that f is measurable. 

3. Let f be a real-valued function defined on a measurable set E and let E1 , E2 be 

measurable sets such that   2121 , EEEEE  . Assume that 
1

/Ef and 
2

/Ef  

are measurable. Prove that f is measurable. 

4. Prove that the product of two simple functions is simple. 


