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Chapter |

Lebesgue Measure

1. Introduction

In mathematics, more specifically measure theory, a measure is a certain
association between subsets of a given set X and the (extended set) of non-negative
real numbers. Often, some subsets of a given set X are not required to be associated to
a non-negative real number; the subsets which are required to be associated to a non-
negative real number are known as the measurable subsets of X. The collection of all
measurable subsets of X is required to form what is known as a sigma algebra;
namely, a sigma algebra is a subcollection of the collection of all subsets of X that in

addition, satisfies certain axioms.

Measures can be thought of as a generalization of the notions: ‘length,’ ‘area’ and
'volume.' The Lebesgue measure defines this for subsets of a Euclidean space, and an
arbitrary measure generalizes this notion to subsets of any set. The original intent for
measure was to define the Lebesgue integral, which increases the set of integrable
functions considerably. It has since found numerous applications in probability
theory, in addition to several other areas of academia, particularly in mathematical

analysis. There is a related notion of volume form used in differential topology.


http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Set
http://en.wikipedia.org/wiki/Extended_real_line
http://en.wikipedia.org/wiki/Sigma_algebra
http://en.wikipedia.org/wiki/Power_set
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Lebesgue_integral
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Mathematical_analysis
http://en.wikipedia.org/wiki/Mathematical_analysis
http://en.wikipedia.org/wiki/Volume_form
http://en.wikipedia.org/wiki/Differential_topology

Definition 1.1:

The length I (1) of an interval | is defined to be the difference of the endpoints

of the interval.

l.e. if I =[a,b] or (a,b] or [a,b) or (a,b) with-co<a<b <o, thenl (1)=b-a.

If a = -00 or b =00, we define | (1) =co.

Definition 1.2:

If E =U|i , Where I; = [a; , bi] and Iy, Iy, ....... I, are mutually disjoint, then

i=1

IE)=3101).

Definition 1.3:

A set function is a function that associates an extended real number to each set

in some collection of sets.

Example: The length I(1) is a set function whose domain is the set of all intervals.

Is it possible to extend the notion of length to a more complicated sets then

intervals?

For example what is the length of E ={x:0<x <1, x is a rational number}?

We could define the length of an open set since any open set O can be

expressed as the union of a countable number of mutually disjoint open intervals.
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Definition 1.4:

Let O be an open set, then 1(0) = _I(I;) where O=Jl;and Iy, I, ....... are

i=1 i=1
mutually disjoint open intervals.

The class of open sets is still too restricted, we would like to construct a set function

m:M — R such that VE € M we have m(E) >0 and we call M(E) the measure

of E where M is a collection of sets of real numbers.

We should like m to have the following properties:

1. m(E) is defined VE =R .i.e., M =P(R)

2. Forany interval I, m(1) =I(I)

3. 1f {E, Y7, is a sequence in M with E,NE, =4, then M(_JE,) =D_m(E,)

n=1 n=1
4. m is translation invariant. i.e., if E € M then m(E +y) =m(E)
where E+Yy={X+Y:Xe E}is obtained by replacing each point x in E by the

point x+y
Remark:

Unfortunately, it is impossible to construct a set function having all four of
these properties. So we are going to construct m such that M(E) is not defined for all

sets E of real numbers.



Definition 1.5:

A collection # of subsets of a set X is called an algebra of sets if:

i) IfA, Be~,then AUB e+

i) IfA e4,then A’=X-Aec4

An algebra # of sets is called a ¢ — algebra if every union of a countable collection of

sets in #is again in 4 i.e., if {AY, 4 then (JA € #

i=1
Note: We are going to require the family M for which m is defined to be a o— algebra

Definition 1.6:

m:M —R Is said to be countably additive measure if:

i) m(E)=0

i) M is a o— algebra of sets

i) m(_JE,) =>_m(E,) for each sequence {E,}~, of mutually disjoint sets in M.

n=1 n=1

Example 1.7:

Let n:P(R) > R be defined by N(E) =co if E is an infinite set and N(E) =
the number of elements in E if it is finite. Show that n is a countably additive measure

that is translation invariant.



Solution: (i) Clearly n(E) =0,
(i) M = P(R) which is a o— algebra.
(iii) Let {E, },_, be a sequence of mutually disjoint sets in R.

a) If Jisuch that E; is an infinite set, then U E, is also infinite, and so

n(E)=n(JE,) ==
But S N(E,) = N(E)) + N(Ep) + oot N(E,) oo — o

n=1

0

Therefore, H(O E,)=>n(E,)

n=1 n=1

b) If E, is a finite set for every n =1,2,3,...... , then n(E,) = r, , where r, is the

number of elements in E,. So Zn(En) =h+hL+ =00 .0n the

n=1

other hand U E. is infinite since the sets En are mutually disjoint and therefore
n=1

n(JE) == n(E,).
n=1 n=1
Hence, n is a countably additive measure. To prove that it is translation invariant:

a) If E is infinite then so is E+y. Therefore n(E) = n(E+y) = .

b) If E is finite then the number of elements in E is the same as the number of

elements in E+y. Therefore n(E) = n(E+y).

Hence, n is a translation invariant.



Problem Set 1

1. Let # be an algebra of sets of X. Prove that if A, Be #, then ANB €4

2. Let 4 be an o— algebra of sets of X. Prove that if {A ¥, 4 then [ |A € #

i=1
3. Let ~# be an algebra of sets of a finite set X. Is # a topology on X? Is the
converse true?
4. Give an example of an algebra #on [0 , o] that is not a 6— algebra.
5. Let m be a countably additive measure. If A, Be M with Ac B, prove that
MA<mB. This property is called monotonicity.

6. Let m be a countably additive measure. If 3A e M such that m(A) < oo, prove

that m(¢) =0.

7. Let M ={E c R:E or E is countable}. Define m: M >R by

m(E)=

0 if Eiscountable
1 if E®iscountable

Show that m is a countably additive measure.



2. Outer Measure

Definition 2.1: Let Ac R

(i) The set A is said to be bounded above if there exists a number u e R such that

X<U VXe A.Eachnumber u is called an upper bound of A.

The set A is said to be bounded below if there exists a number we R such that x>w

VX € A. Each number w is called a lower bound of A.

(i) a; = sup A iff a; = min {u : u is an upper bound of A}. i.e., a, <u Y upper bound

u of A.

Also a, = inf A iff a, = max {w :w is a lower bound of A}. i.e., a, 2w V lower bound

w of A.

Definition 2.2:

Let AcR. Consider the countable collections of open intervals{l,},for

which Ac U I, , and for each such collection consider the sum of the length of the
n=1

intervals in the collection ), !(1,). We define the outer measure (Lebesgue outer
n=1

measure) m'A to be:

m*Azinf{il(ln):AcDIn}
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Proposition 2.3:

i) If AcB,then mMA<m'B.
i) mg=0.

i) m{x}=0.
Proof: i) Let £ >0, then M B+&>m Band hence m B+ ¢ is not a lower bound of

the set {Z'(h): B CU In}. Therefore, there exists a covering {l,}..,of B such
n=1 n=1

that MB+e>>1(1,) .

n=1
But AcBc|Jl, = {I,}-,isacovering of Aalso = M A< Y I(l,).
n=1 n=1

Therefore, mMA<mB+¢& Ve >0, and hence mA<m'B.

i) 40,0 = m*¢s|(o,%):%.

* 1 .
Therefore O£m¢gﬁ vne N, and hence m¢=0.

iii) {x}c(x—%,x+%):> m*{X}SI(X—%,X+%):% _

11



. 2 N
Therefore 0 <m {x} < — VneN, and hence m {}=0.

Proposition 2.4:

The outer measure of an interval is its length, i.e., m 1 =1(1)for any interval I.
Proof: Case (1): I is a closed finite interval. i.e., 1 =[a, b] with -co <a <b <o,
Let £>0.Then [a,b]c(a—s,b+&) = m[a,b]<l(a—eb+e)=b—a+2s.
Therefore, m [a,b]<b—a+2s Ve >0, and hence m[a,b]<b-a (1)
Conversely, we want to show that ma,b]>b-a.

If we could prove that for any countable collection of open intervals {l,}, covering

[a, b] we have Y,1(I,)>b—2a, then we are done because this means that b—ais a
n=1

lower bound of the set{Z'(H):[a, b] CU In}WhiCh implies that m[a,b]>b-a.

n=1 n=1
So we are going to prove that Y, 1(I,) >b—a for any countable collection of open

n=1

intervals {l,}, covering [a , b]. Now [a , b] is compact, therefore any open cover

N N [e'e)
has a finite subcover, {1, 3", ie. [abl<(JI, and D003,
n=1 n=1 n=1

12



N
Now @ & U l, = 3(a,b) e {l,},,such that a < (a,,b)and we have a; < a < b,.
n=1

N N
If by<b, then DB €la b]CU|n = b GU l, = 3(a,,b,) e {I,} such that

n=1 n=1

b, € (a,,b,)and we have a, < b; <b, = a,—b; <0.

N
Again If b,<b, then D, €U|n = 3(a,,b;) e {l,};such that b, €(a;,b,) and we

n=1

have a; < b, < b; = a; - b, <0.

We continue until we reach an interval (ay,0) such that be(ay,by) =ay<b<hby

a; a a b1 as b2 g b3 b4 an b bN
N N N
Thus, ZI(In) :Zl(an,bn) :an —4a,
n=1 n=1 n=1

=(by —ay)+ by —ayy) e +(, —-a)
=by —(ay —byy)— @y Dby o) =i —(a,—b)—a

>by—a;> b-a

0 N
Therefore 2, 1(1,) 2> 1(I,)>b-a = m[a,b]>b-a. (2)
n=1 n=1

13



From (1) and (2) we get that m [a,b]=b—a=1(l).

Case (2): I is any finite interval (open or half open, i.e., | = (a ,b) or [a, b) or (a ,b]).
Let £ >0, then there exists a closed interval J such that J < | and 1(J)>1(l)-¢.
Hence, I(1)—e<1(J)=m I <m I <m I =1(1)=1(1) V&>0.

ie., I(D—s<m1<I(1) Ve>0,andso m I =I(l).

Case (3): | is an infinite interval. In this case 1(l) =, so we want to prove that

*

ml =o0,

Leto >0, then there exists a closed interval J such that J | with 1(J)=0.

Therefore, M1 >m"J =1(J)=J.ie, m1>5 V5>0.Hence, Ml =00=I(l).

Proposition 2.5:

Let {A,},.be a countable collection of sets of real numbers. Then

m(Ja) <> mA
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Proof: Consider the collection {A.}.;, and let & > 0. Then for each A, there exists a

countable collection {l,;}-; of open intervals such that A, < U l.; and
i=1

A+ 2> Y1),

o0 o0 o0

But UAq c U U i, which means that {l,,;}, i covers U A, . Therefore,

m (UAH)< Zmn,) ZZI('”')<Z(m A+ ):im*An ‘e,

Sowe have M ((JA) <D m'A +& ve>0. Hence, M ((JA) <D mA,
n=1 n=1 n=1 n=1

Proposition 2.6:

If A is countable, then m"A=0.

Proof: Let A={a; ay as,..........} and let £ >0.

Let |, =(a, ——, +§),thenl(ll):§

22

& &
Let 1, =(a, - 2 : +§),then |(|z)=2—2

&
In general, let I, = (@, T “ ) then 11, )——

2 n+1l

15



o]

* X 8
Now {1, }7. covers A. Therefore m A< I(1,) =Z? =3

n=1 n=1

ie, 0<SMA<e Ve>0.Hence, mA=0.

Corollary 2.7:

The set [0, 1] is not countable.
Proof: If [0, 1] is countable, then by proposition 2.6 m [0, 1] = 0.

But we know that m*[0, 1] = 1[0, 1] =1 #0. Therefore, [0, 1] is not countable.

Problem Set 2

1. Prove thatif m"A =0, then m (AUB)=m'B.
2. Prove that m” is translation invariant.

3. For Ac Rdefine

E*Azinf{il(an):AcOJn}

where J,, is an interval not necessarily open. Prove that mA=mA.

16



3. Measurable Sets and Lebesgue Measure

While the outer measure has the advantage that it is defined for all sets, it is not
countably additive. To make our outer measure countably additive, something has to
give. We decide to restrict the domain to gain countable additivity. There are several
ways to restrict an outer measure. In our course we will use an approach due to

Caratheodory to define measurable sets.

Definition 3.1: A set E is said to be measurable if for each set A we have

mA=m (ANE)+m (ANE®).

Proposition 3.2:

1) E is measurable if and only if for each A we have

mA>m (ANE)+m (ANE®)

ii) E is measurable if and only if E° is measurable.

iii) ¢and R are measurable.

17



Proof: i) A=ANR=AN(EUE®)=(ANE)U(ANE®).

Therefore, M A=m [(ANE)U(ANE®)]<m (ANE)+m (ANE®) by prop. 2.5
So mA=m (ANE)+m (ANE®)ifand only if mA>m (ANE)+m (ANE®).
Hence, E is measurable if and only if mA>m"(ANE)+m (ANE®).

Lemma 3.3:

If m'E = 0, then E is measurable.
Proof: Let A be any set. Then ANEcE=m (ANE)<mME=0,
So 0<m (AN E) < 0which means that m (ANE) =0,
Also, ADANE =m A>m (ANE®)=m (ANE)+m (ANE®)
ie, MA=m (ANE)+m (ANE®)and hence E is measurable.
Lemma 3.4:

If E; and E, are measurable then E; UE, is measurable.

Proof: We want to show that for any set A we have

m Azm (AN[E, UE,D)+m (AN[E UE,]").

18



E, is measurable, so for any set Twe have: m T >m (TNE,)+m (T NE,").

Let T=ANE’, then M (ANE")2m (ANE NE)+m (ANE'NE,) (1)

Now E1UE2:(E1UEz)ﬂRz(aUEz)ﬂ(aUElc):E1U(E2ﬂElc)-

Therefore, AN(E,UE,)=AN[E,U(E,NE)]=(ANE)U(ANE,NE)

—m (AN[E,UE,]) <m"(ANE)+m (ANE,NE) 2
From (1) and (2), we get

m (AN[E, UE,])+m (AN[E, UE,I") =m (AN[E,UE,])+m (ANE NE,’)
<m'(ANE)+m (ANE,NE’)+m (ANE°NE,)=m"(ANE)+m"(ANE,)
=m'A (since E; is measurable).

Therefore, M A=m (AN[E,UE,])+m (AN[E,UE,]).

Hence, E; UE, is measurable.

Corollary 3.5:

The collection M of measurable sets is an algebra of sets.

Lemma 3.6:

19



Let Abeanysetand E;, E,, ............,E, be a finite sequence of disjoint

measurable sets. Then M (AN[LJED =D m (ANE).

i=1 i=1

Proof: We will prove the lemma by induction on n.

Forn=1, m*(Aﬂ[U E)=m (ANE)

1
and .M (ANE)=m(ANE,) . so Itis true for n=1.

i=1

n-1 n-1
Assume it is true for n — 1 sets, i.e. M (Aﬂ[U El= Zm (ANE) , and we will

i=1 i=1

prove that it is true for n sets.

Now E, is measurable, therefore

m (ANIUED =m (ANLJEINE,) +m' (ANIUEINE,).
Aﬂ[o EINE, = Aﬂ[_LnJ(Ei NE)I=ANE,
ANIUEINE, = ANIUGE NE= ANTE]

Hence, M (ANILED =m (ANE,)+m (AN[JE

20



=m (ANE,) +§m*(Aﬂ E)= Zn:m*(Aﬂ E)

So we proved that M (AN[JET) =D m'(ANE).

i=1 i=1

Corollary 3.7:

LetEy, E,,............,E, be a finite sequence of disjoint measurable sets. Then
* n 4 *
m (UEi)zzm E .
i=1 i=1

Proof: Let A=Rin lemma 3.6

Theorem 3.8:

The collection M of measurable sets is a 6-algebra; that is the complement of a
measurable set is measurable and the union (also intersection) of a countable

collection of measurable sets is measurable.

Proof: By corollary 3.5 M is an algebra of sets. So we only have to prove that if

{E,}", is a countable collection of measurable sets, then U E; is measurable.
i=1

21



0

We can find a sequence {F },; of disjoint measurable sets such that U F = U E .

i=1 i=1

n
Let A be any set, by lemma 3.4 U F. is measurable. So we have,
i=1

m A=m (ANLJRD +m (ANLJRT) o)

aiso, UF cUF = lUFRT sHJRT = ANIUFRT > ANLUFT

Therefore, M (AN [U FI)>m (AN [U FT) (2)
By lemma 3.6, m*(Aﬂ[U Fi])ZZm*(Aﬂ F) (3)

From (1), (2) and (3), we get M A> Zm*(Aﬂ F)+m (ANIYFRT).

i=1

Since the left side of this inequality is independent of n, we have

mAz Y m (ANF)+m (ANIJRT).

Now, ™ (ANIJFD =m (JIANFD < Y m (ANF).
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Hence, ™ A=m"(ANUFD -+ (ANIUF).

Finally since UF =UE  we have mA=m (ANIJED+m (ANIJET") , and

i=1 i=1 i=1 =1

therefore, U E: is measurable.
i=1

Lemma 3.9:
The interval (a , «) is measurable.

Proof: Let A be any set. We want to prove that

m'A>m"(AN(a,©)+m (AN (a,©))=m (AN (a,©))+m (AN (-x,a]).
Let A =A(a,) and A, =A[1(-x,a], then A=A UAand ANA =¢.
We want to show that M A>m'A +m'A, |

Let £ >0, then there exists a countable collection of open intervals {I,}, which

covers A (i.e., A<(J1,)and for which D_I(1,) <m'A+¢,
n=1 n=1
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Let I, =1 N(@o) and I, =1, N(-x,a],then I, =1 Ul and I, NI, =¢ and

both 1, and I,are intervals (or empty).

so, 1(1)=1(1,UL)=1(1)+1(1))=m"l_ +m"l_,

since A = AN(@%) < (1) N@») =, N@») =L e
m*ASm*(CJI;)Sim*I;.

Also A, CUL: =>mA, Sm*(UI;)SZm*I;_
n=1 n=1

n=
Thus, MA+MA <> M +> ml => 1 +m1)=>I(1)<mA+e
n=1 n=1 n=1 n=1

Therefore, m*Ai + m*A2 <mA+e Ve>0,and hence m*A1 + m*Az <maA.

Definition 3.10:

A Borel set is any set that can be formed from open sets and closed sets

through the operations of countable union and countable intersection.

Remarks:
e The collection # of all Borel sets on a set X forms a c-algebra, known as the
Borel algebra. The Borel algebra on X is the smallest c-algebra containing all

open sets and closed sets.

24


http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Closed_set
http://en.wikipedia.org/wiki/Countable
http://en.wikipedia.org/wiki/Union_(set_theory)
http://en.wikipedia.org/wiki/Intersection_(set_theory)
http://en.wikipedia.org/wiki/Sigma-algebra

e Borel sets are important in measure theory, since any measure defined on open
sets and closed sets must also be defined on all Borel sets.
e Almost every set that you will run into is a Borel set. It takes a certain amount

of work to show that there are some sets which are not Borel sets.

A
@

Question: Can you find a non-Borel set? =

Theorem 3.11:

Every Borel set is measurable. In particular each open set and each closed set is

measurable.
Proof: First we are going to prove that each open interval is measurable:

(-0, a] = (a, )¢, therefore by (-o0 , a] is measurable by proposition 3.2, lemma 3.9.

* 1
(—o0,b) = U(—OO, b _H] , therefore (-00 , b) is measurable by theorem 3.8.

n=1
Hence, each open interval (&,b) =(—oo,b)(1(a, ) is measurable.
Secondly, we are going to prove that each open set is measurable:

Let O be an open set, then we can write O as the union of a countable number of open

intervals and so must be measurable by theorem 3.8.
25


http://en.wikipedia.org/wiki/Measure_theory

Finally, we are going to prove that each closed set is measurable:

Let F be a closed set, then F°is open and so F°is measurable. This implies that

(FC)C = F is measurable.

Thus, the collection M of measurable sets is a c-algebra that contains all open sets

and closed sets and must therefore contain the collection & of Borel sets since Zis the

smallest c-algebra containing all open sets and closed sets.

Now we are ready to define the Lebesgue measure introduced by Henri

Lebesgue in the first decade of the twentieth century.

Definition 3.12:

We define the Lebesgue measure m to be the set function obtained by

restricting the outer measure m™ to the family M of measurable sets. i.e., if E is

measurable, we define the Lebesgue measure mE to be the outer measure of E.

Two important properties of Lebesgue measure are summarized by proposition

3.13 and 3.15:

Proposition 3.13:

Let {E; }; be a sequence of measurable sets. Then

m(JE)< X m(E)

If the sets E; are pairwise disjoint, then
26
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m(O Ei) = im(Ei)

Proof: M(_JE;) <> m(E;) by proposition 2.5.
i=1

i=1

If {E;}i.is a finite sequence of disjoint measurable sets, then by corollary 3.7 we

have M(JE;) =Y _mE; and so m is finitely additive.

i=1 i=1

Let {E }-i be an infinite sequence of pairwise disjoint measurable sets. Then

0 n o0 n

UEi S JEi, and so m(UEi)Zm(UEi)ZZn:mEi :

i=1 i

Since the left side of this inequality is independent of n, we have m(U E;)= ZmEi :

i=1 i=1

Also m(U E;) < ZmEi by proposition 2.5 and hence, m(U E)= ZmEi :
i=1

i=1 i=1 i=1

Proposition 3.14:

i) If ABeM  then AABeMand B\Ae M.,

i) If Ac B, then m(B\ A)=mB-mA,

Proof: i) A\B=A[1B“ €M since AeM and B eM .

Similarly B\A=BN A" e M

27



i) If AcB, then B=(B\A)UA and (B\A)(NA=¢.

Then mB=m(B\ A) + mA by proposition 3.13, which implies that

m(B\ A)=mB—-mA,

Proposition 3.15:

Let {E;}-; be an infinite decreasing sequence of measurable sets, i.e., a

sequence with E,,; € E, . Let mE; < oo then

m((E,) = lim mE,

. n—o0
i=1

Proof: Let E= ﬂ Ei and F =E \E,,.

i=1

Then B, \E = U F and the sets F; are pairwise disjoint.

i=1

Hence, M(E,\E) =m(JF) = Y mF, = > m(E,\E,,

EcE =m(E\E)=mE —-mE,

E.,cE =m(E\E,)=mE -mE,, .
o0 . N

Therefore, mE, —mE = Z(mEi -mE,,;) = ;!mlz(mEi —-mE,_,)
i=1 i=1
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=lim(mE, —-mE, +mE, -mE; +............ +mE, , —mE, + mE, —mE,,,)

N—0

= lim(mE, —mE,,;)= mE, —limmE,

N— n—oo

So mE, ~mE= mE, —limmE,

n—o0

Since mE; < o0, we have ME =M ME, and therefore m(()E) =limmE,

. n—o0
i=1

The following proposition expresses a number of ways in which a measurable set is

very nearly a nice set.

Proposition 3.16:

Let E be a given set. The following statements are equivalent:

1) E is measurable.

ii) Given & > Othere exists an open set O > E with m(O\E) <¢.

iii) Given & > O there exists a closed set F < Ewith m(E\F)<¢ .
Proof: We will prove that (i) < (ii). The rest is left as an exercise.
(i) = (ii): Let E be a measurable set.

Case 1: mE < oo:
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Given ¢ >0 there exists a countable collection of open intervals {I,}, which covers

E (e, E<J!,)and for which _1(1,) <mE+¢
n=1 n=1

Let O=(JI,, then Olisopenand EO.

n=1

Also MO=m( J1)<DI(1,)<mE+& = mO<mE+& = mO-mE<e¢.

n=1 n=1
But Ec O = m(O\ E) =mO—-mE < gand hence (ii) holds.
Case 2: mE = oo:

ForeverynsetB,=[-n,n],and E,=ENB,.

o0 o0 o0

Then UEnZU (EﬂBn):Eﬂ(UBn)ZEﬂRZE

n=1 n=1 n=1

E, is measurable since E and B, are measurable, and ME, <mB, =2n< o So, by

&
applying case 1 on each E, , there exists an open set O, D E, with m(O, \E,) < on -

Let O=(JO, , then Oisopenand E < O.

n=1

O\E = (Qon)\@ E )= (Qon)ﬂ(o E.)° = (Jo) N(NED)
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o0

:O[on m(ﬁ Edl< (J(O,NE) = [_OJ(On \E,).

n=1

0 o0 o0 8
Therefore, M(O\E) < m(U(On \ En)] <>'m@,-E,)< z? =¢
n=1

n=1 n=1
and hence (ii) holds.

(i) = (i): Assume that (ii) holds.

1
For each n choose an open set O, such that O, > E and m(O, \E) < H

Let G= ﬂon ,then E <G and G is measurable. Also G< O, V¥n

n=1

* * 1 *
m (G\E)<m (On\E)<H vn = m (G\E) =0 which means that G \ E is

measurable by lemma 3.3. But E =G\ (G \ E) , therefore E is measurable.

Problem Set 3

1. Prove that every countable set is measurable.

n
2. Provethatif E;, E,,.........E, are measurable then U E; is measurable.
i=1

3. Let {E;}; be an infinite increasing sequence of measurable sets, i.e., a

sequence with E,,; D E,. Let mE; < o . Prove that
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m(_JE,) = lim mE,

) n—o0
i=1

4. Show that if E; and E, are measurable then
m(E, UE,) +m(E, NE,) = mE, +mE,

Hint: (E, UE,)\E, =E,\(E,NE,).
5. Show that the condition mE; < oo is necessary in proposition 3.15 by giving a
decreasing sequence of measurable sets {E; }i; with ﬂ E;=¢ and ME, =00 Vi,
i=1

6. Complete the proof of proposition 3.16

4. Measurable Functions

The measurable functions form one of the most general classes of real

functions. They are one of the basic objects of study in analysis.

If we start with a function f, the most important sets that arise from it are those

listed in the following proposition:

Proposition 4.1:

Let E be a measurable set and let f be an extended real-valued function on E.

Then the following statements are equivalent:

(i) VaeR, theset f'(a,0)={x: f(X)>a}is measurable.

(i) VaeR, theset f [a,00)={x: f(X)>a} is measurable.
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(i) Va e R, the set f *(—o0,a) ={x: f (X) < a}is measurable.

(iv) YaeR, theset f*(~oo,a] ={x: f(X) < a}is measurable.
Proof: (i) < (ii)

(i) = (ii); {x: f(X)Za}=ﬁ{X: f(X)>a—%}.

1
By (i) {X: f(X) >« —E}is measurable, and so {X: f(X) > a} is the intersection of a

sequence of measurable sets. Therefore, {X: f (X) > ar}is measurable.

(i) =@ 0 F00> ad=Utx: 002 a+)

1
By (ii) {X: f(X)ZOHE}is measurable, and so {X: f(X)>a} is the union of a

sequence of measurable sets. Therefore, {X: f (X) > a}is measurable.

Hence, (i) < (ii).

(i) < (iv): {x: F(X) <ad=E\{X: f(X)>a}={x: f(X)>a}.

Therefore, {X: f (X) < a}is measurable if and only if {X: f (X) > a}is measurable.
(i) < (iii): X fT(X) = a}=E\{x: f(X) <a}={x: T (X) <}

Therefore, {X: f(X) = a}is measurable if and only if {X: f (X) < a}is measurable.
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This shows that the four statements are equivalent.

Definition 4.2:

An extended real-valued function f is said to be (Lebesgue) measurable if its

domain is measurable and it satisfies one of the statements in proposition 4.1.

Proposition 4.3:

(i) A continuous function on a measurable set is measurable.
(i)  If fis a measurable function and Ecdom (f ) is measurable, then the

function f /¢ is also measurable.

Proof: (i) Let f:E — R be a continuous function (where E is measurable). We want

to prove that f is measurable i.e., VaeR, the set f ‘(a,0)={x: f(X)>a} is

measurable.

Since f is continuous, the set f_l(a,OO) iIs open = f_l(a,OO) IS measurable and

hence f is measurable.

(i) Let f be a measurable function, and let Ecdom (f ) be a measurable set. We want

to prove that f /¢ : E — R is measurable. Let o € R, then

{xeE: flc(X)>a}={xeE: f(X)>a}=EN{xedom(f): f(x)>a}which is
measurable since it is the intersection of two measurable sets (since f is measurable).

Therefore, f /¢ is measurable.
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Remark: While every continuous function is measurable, not every measurable

function is continuous.

The following proposition tells us that certain operations performed on

measurable functions lead again to measurable functions:

Proposition 4.4:

Let ¢ be a constant and f , g two measurable real-valued functions defined on

the same domain. Then the following functions are all measurable: (i) f + ¢ (i) cf

GifFg @v)|f| P (vifg.

Proof: (i) The set {X: f(X)+c<a}={x: f(X)<a—c} is measurable since f is

measurable. Therefore, f + ¢ is measurable.

(if) The set{x: of (x) < a}={x: f(x)<%} ifc>0

={X1f(X)>%}ifc<0

is measurable since f is measurable. Therefore, f is measurable if c=0.
If ¢ = 0, then cf = 0 which is measurable. (why?)

(iii) First, we are going to prove that if we have two measurable functions h and | on

the same domain, then the set {x: h(x) <I(x)} is measurable;
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VX e{x:h(x) <I(X)} there exists a rational number r such that h(x) <r <I(X) and

the set {X:h(x) <r <I(X)}={x:h(x) < r}N{x:1(X) > r}is measurable since h and

| are both measurable. So{X5h(X)<|(X)}=U{X3h(X)<r<|(X)}is a countable
reQ

union of measurable sets and hence it is measurable.

Now we will prove that f + g is measurable:

{x: f(X)+9(X) <a}={x: f(X) <a—g(X)} is measurable since both the functions

f and a — g are measurable. Therefore, f + g is measurable.

f—g="f+(-g) is also measurable.

(iv)The set {X:|f(X)|<a}={x:—a < f(x) <a}={x: f(x) <a}N{x: f(X) >-a}

Is measurable since f is measurable. Therefore, \f\ Is measurable.

(V)The set {x: F2(x) > a}={x: f (x) > Ja}U{x: f (X) <—/a} for >0

is measurable since f is measurable. Therefore, f* is measurable.

1
(vi) fg =§[(f +9)* - £2—9°] is measurable.

Theorem 4.5:

Let {f,}be a sequence of measurable functions (with the same domain). Then

the following functions are all measurable: (i) SUp{f;, f,,...... f }(ii) inf{ f,, f,,......f .}

iy sup f,  (ivy inf £, (v) limf,  (vi) limf,  (vii) lim f, .
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Proof: (i) Let h(x) =sup{f,(x), f,(X),......T,(X)}. We want to prove that the set

{x:h(x)>a} is measurable for everya. But if h(X)>ea, then Fisuch that

f.(X)>a. So, the set{x:h(x) >a}= U{X: fi(X) >} is measurable since it is the
i=1

finite union of measurable sets. Therefore, h is measurable.

(i) Let g(x) =inf{f (x), f,(X),...... T, (X)}. We want to prove that the set

{x:g(x) <a} is measurable for everyea. But if g(X)<e«, then Jisuch that

f.(X) <. So, the set{X: 9(X) <a}= U{X3 fi(X) <a} is measurable since it is the
i=1

finite union of measurable sets. Therefore, g is measurable.

(iii) Let ﬁ(X) =sup f,(X) . Then {X: ﬁ(X) >a}= U{X3 fi(X) > a}is measurabe

i=1

~

since it is the countable union of measurable sets. Therefore, h is measurable.

(iv) Let §(x) =inf f,(x). Then {X: (%) <a}=J{x: f,(x) < a}is measurabe

i=1

since it is the countable union of measurable sets. Therefore, @ IS measurable.

(v) limf, (x) = inf (sup T, (X)) is measurable by (iii) and (iv),
(vi) imf, (x) =sup(inf 1, (X)) is measurable by (iii) and (iv).

(vii) lim f, =limf_(x)=limf,_ is measurable by (v) and (vi).

Definition 4.6:
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A property is said to hold almost everywhere (a.e.) if the set of points where it

fails to hold is a set of measure zero.

For example, we say f =g a.e. if m{x: f(x) = g(x)}=0.
Similarly, we say f, converges to fa.e. if M{x:lim f,(x) = f (x)}=0.

Proposition 4.7:

If f is a measurable function and f = g a.e. then g is measurable.
Proof: Let E ={x: f(X) = g(x)}, thenm E =0 since f =g a.e.
Now,{X: g(X) > a}=[{x: f(X)>a}U{xeE:g(X)>a}]\{xeE:g(X)<a}
{x: f(X) > a}is measurable since f is measurable.
{xeE:gX)>a}cE=m{XxeE:g(X)>a}<mE=0=m{xeE:g(X)>a}=0
So by lemma 3.3, {Xx€E:g(X)>a} is measurable. Similarly {x€ E: g(X)<a} is
measurable.
Therefore, {X: g(X) > a}is measurable for each « and hence g is measurable.

Definition 4.8:

If A is any set we define the characteristic function y, of the set A to be

1 xeA

ZA(X)Z{O X A

Proposition 4.9:

Xa Is measurable if and only if A is measurable.
Proof: Let y, be a measurable function. By definition, x,(X)=1 if and only if

xeA.So A={X: z,(X) =T ={x: z.(X) 2TN{x: x.(x) <1}
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The two sets on the right are measurable since jy, is measurable, and hence A is
measurable.

Conversely, let A be a measurable set. Then A® is also measurable. Consider the set

{X: xA(X) <a}. We have three cases: .. (I

(i) @ <0: {X: yA(X) < a}=¢ which is measurable. 1| —

(i) O<a <1: {X: yA(X) <a}= A°which is measurable. ------------ ) A
A

(iii) a >1: {X: yo(X) <a}=Rwhich is measurable. ~ -------- Q-

Hence, Va € R the set {X: y,(X) < a}is measurable. Therefore, y, is measurable.

Proposition 4.10:

) Xae = Xals
) Xae =XatXs— Xaks
i) ¥, =1—72a

1 xeA(B
0 xg¢ANB

Proof: i) st(x)={
Thenif Xxe A[IB=xe AAxeB= 1, (X)=1A 1s(X)=1= y s (X) =1,
If XxgANB=xgAvxgB= 7,(X)=0v 7, (X)=0= y,7:(X) =0,

Therefore, Xas = XaXs -

1 XEAC_{l Xxg A

(X) = _
i) 2 () {O Xx¢g¢A° |0 xeA
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1 XeA_ 0 xeA
0 xeA |1 xgA

On the other hand, 1- Xa(X) =1— {

Therefore, ¥, =1— 74.
Ii) XAUB :1_Z(AUB)C :1_ZACQBC :1_ZACXBC :1_(1_XA)(1_ZB)

=1-Q— A= X T Xaks) = Xnt Xs— Xnks-

Definition 4.11:

A real-valued function ¢ is called simple if it is measurable and assumes only

a finite number of values, (i. e. the range of @ is a finite set).

n
If @is a simple function and has the values ¢;, a,,........ , &, then (DZZOGZA
i=1

where A ={X:¢(X) =},

Proposition 4.12:

The sum of two simple functions is simple.
Proof: Let @ and ¥ be two simple functions and let §0=ZailA , V/=Zaj)(aj
i=1 j=1

where A ={x:@(X)=a} and B, ={x:w(x)=;}.
Note that @ +¥ is measurable since both @ and ¥ are measurable.

Now if Xe A then @(X) =, if X€B; then w(X)=f; and if X€ A B; then

(p+y)X) =0+ ;.
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So we can write @+ as Pty = Z(Ofi +ﬂ,—)ﬂ(msj (Note that some of the sets
i,j=1

A N B; might be empty). Hence, @+ is a simple function.

Proposition 4.13:

If {f,}.— is a sequence of measurable functions defined on a measurable set E
such that f, — f a.e. on E, then f is a measurable function.
Proof: Let E, ={x€E: Ml f.(X) = £(X)}. Then mE, = 0.

f.(xX) xeE\E,

Define a sequence { f,}7; on E by fn(X) :{ 0 xeE

~

Then f,=f, ae. = Fn is measurable by proposition 4.7.

Therefore, {f,}.is a sequence of measurable functions.

f(x) xeE\E,

Define a function f on E by f() z{ 0 xek

Then lim f, = f = is measurable by theorem 4.5

N—0

But f =1 a.e.,andhence fis measurable.

Proposition 4.14:

Let E be a measurable set of finite measure, and {f,}._ a sequence of
measurable functions defined on E. Let f be a real-valued function such that
f.(X) > f(X) pointwise. Then given £>0 and & >O0there is a measurable set
Ac E with mA<$ and a natural number N such that
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.00~ f(x)| <& vxeAand vn>N

Proof: Let £>0 and let G, ={x e E:\fn(x)— f(X)‘ > &}, and set En = UGn :
n=N

So Ey ={xeE:|f (x)— f(X)|>&for some n>N}.
If xeEy, =|f,(x)— f(X)|=& for some n>N +1
= |f,(X)— f(X)|= & for some n>N = xeE,
Therefore Ey,; < Ey . So{Ey }u4is a decreasing sequence of measurable sets(why?).

Also Vxe E: f (x) > f(X), therefore there exists a natural number N such that

f,()—f(X)|<e Yvn>N =>xgE,.

This means that VX € E there exists some Ey such that X ¢ E . So ﬂ Ev=9.

N=1
N—w

By proposition 3.15 we have: M([)Ey) = lim mE, = lim mE, =0,
N=1

Hence, given & > 0 there exists a natural number N such that MEy <9, i.e.,
m{x e E:|f,(X)— f (X)| > &for some N>N}<&.

Let A= Ey, then mMA<dJand if xe A, then |f,(X) - f(X)| <& ¥n>N,
Remark:

Proposition 4.14 states that if {f,}. converges to f pointwise, then {f, }.is

nearly uniformly convergent to f.

Problem Set 4:
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. Let f be a measurable function defined on a measurable set E, and let O be an open

set. Prove that the set{x € E : f (X) € O}is measurable.

Jx XeQ

. Let f:[01]] > R be defined by f(X)={ 0 xeO -

Prove that f is measurable.

. Let f be a real-valued function defined on a measurable set E and let E; E; be
measurable sets such that E,UE, =E,E (1E, =¢. Assume that f /¢ and f/¢

are measurable. Prove that f is measurable.

. Prove that the product of two simple functions is simple.
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